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Generalized rotating-wave approximation for the two-qubit quantum Rabi model
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The generalized rotating-wave approximation (GRWA) is presented for the two-qubit quantum Rabi model.
The analytical expressions in the zeroth-order approximation recover the previous adiabatic ones. The counter-
rotating-wave terms can be eliminated by performing the first-order corrections. An effective solvable Hamiltonian
with the same form as the ordinary RWA one is then obtained, giving very accurate eigenvalues and eigenstates.
Energy levels in the present GRWA are in accordance with the numerical exact diagonalization ones in a wide
range of coupling strengths. The population dynamics in the GRWA are in quantitative agreement with the
numerical results and exhibit the absence of collapses clearly, revealing the effects of the counter-rotating wave.
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I. INTRODUCTION

Recent experimental progress related to qubit-oscillator
systems using superconducting qubit circuits has made it
possible to achieve the so-called ultrastrong-coupling regime,
where the coupling strength between a single qubit and a
single oscillator is comparable to the bare frequencies of
the two constituents [1–6]. In this regime, the conventional
rotating-wave approximation (RWA) [7] is expected to break
down, leading to a mass of unexplored physics and giving
rise to fascinating quantum phenomena, such as the asym-
metry of vacuum Rabi splitting [8,9], collapse and revival
dynamics [10–13], a Bloch-Siegert shift [2], super-radiance
transition [14–16], and radiation processes based on virtual
photons [17–19]. It is highly desirable to understand the
behavior of the qubit oscillator in the whole coupling regime.

Since the Hamiltonian of a qubit-oscillator system contains
counter-rotating-wave terms, the total excitation number is
not conserved. It is very challenging to obtain the analytical
solutions in the ultrastrong-coupling regime. There is much
ongoing interest in this field. The single-qubit quantum Rabi
model [20] describing a single qubit interacting with a quantum
harmonic oscillator has been studied extensively beyond RWA
with various analytical methods [21–23] in the recent years.
Two or more qubits coupled to a common harmonic oscillator
in the ultrastrong-coupling regime have more potential appli-
cations in quantum information processing than the single-
qubit Rabi model, such as the implementation of quantum-
information protocols with the oscillator transferring informa-
tion coherently between qubits [24], quantum entanglement
of multiple qubits [25], and super-radiance phase transition
in the Dicke model describing a two-level atom ensemble
in a cavity [15,16]. We investigate the two-qubit quantum
Rabi model beyond the RWA, in which a quantum harmonic
oscillator interacts with two identical qubits symmetrically.
One of our motivations is the absence of extensive study of two
and more qubits in the ultrastrong-coupling regime. Recently,
an adiabatic approximation functions well when the qubit
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frequency is much smaller than the oscillator frequency [26],
a Bargmann space technique [27] and an extended coherent
state method [28] have been adopted to solve the two-qubit
quantum Rabi model [27], and the variational treatment [29]
reasonably captures the properties of the ground state.

We focus here on the analytic energy spectrum and eigen-
states of the two-qubit quantum Rabi model with two identical
qubits beyond the RWA in the ultrastrong-coupling regime
by the generalized rotating-wave approximation (GRWA). By
mapping the two-qubit quantum Rabi model with counter-
rotating-wave interactions into a solvable Hamiltonian with
the same form as the ordinary RWA term, we show that all
eigenvalues and eigenstates can be approximately determined
by the analytical expression based on our method, which agree
well with the exactly numerical simulation in the ultrastrong-
coupling regime under different detunings. We recover the
same results with the zeroth-order approximation as that in
Ref. [26] and make great improvement of energy spectrum by
the first-order corrections. The two-qubit population dynamics
is calculated to discuss the collapse and revivals of the quantum
Rabi’s oscillation, justifying the validity of the GRWA within
a wide range of parameters.

II. HAMILTONIAN AND THE ZEROTH-ORDER
APPROXIMATION

The Hamiltonian of the two-qubit quantum Rabi model,
where two identical qubits couple to a harmonic oscillator
with the counter-rotating-wave interactions, is (� = 1)

H = ω0Jx + ωa†a + g(a† + a)Jz, (1)

where a and a† are, respectively, the annihilation and creation
operators of the harmonic oscillator with frequency ω. The
collective spin-1 angular momentum operators Jz = 1

2 (σ 1
z +

σ 2
z ) and Jx = 1

2 (σ 1
x + σ 2

x ). Physically, the spin-1 system can
be formed by the two identical qubits in their triplet space. ω0

is the atomic transition frequency, and g denotes the collective
qubit-oscillator coupling strength.

To begin, a brief review of the standard RWA is given
in order to establish the arguments used in deriving the
generalized approximation. The first step is to rewrite Eq. (1)
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in the form

H = −ω0Jz + ωa†a + g

2
(a† + a)(J+ + J−), (2)

where J± are the collective atomic raising and lowering
operators of a spin-1 system. In the bases |jz = 1,n − 1〉,
|jz = 0,n〉, and |jz = −1,n + 1〉, which are the eigenstates of
the noninteracting Hamiltonian −ω0Jz + ωa†a, the interaction
term a†J− + aJ+ couples the states |jz = 1,n − 1〉 with |jz =
0,n〉 as well as the states |jz = 0,n〉 with |jz = −1,n + 1〉,
which have nearly equal energies for near resonance ω0 ≈ ω

in the absence of the interaction. On the other hand, the
terms a†J+ + aJ− couple the off-resonant states, such as |jz =
0,n〉 with |jz = 1,n + 1〉 and |jz = −1,n − 1〉. To eliminate
the counter-rotating-wave terms, the Hamiltonian under the
RWA is HRWA = −ω0Jz + ωa†a + g

2 (a†J− + aJ+) and can be
written in a matrix form:

HRWA =

⎛
⎜⎝ω(n−1)−ω0

√
2

2 g
√

n 0√
2

2 g
√

n ωn
√

2
2 g

√
n + 1

0
√

2
2 g

√
n + 1 ω(n + 1) + ω0

⎞
⎟⎠ .

(3)

In the RWA, one can diagonalize the above Hamiltonian easily.
Including the counter-rotating-wave terms, the total excita-

tion number is not conserved and the above subspace related
to n is not closed, rendering the complication of the solution.
Here, we present a treatment of the Hamiltonian (1) based
on the unitary transformation [30–33]: H ′ = U †HU with the
following displaced operator:

U = exp

[
g

ω
Jz(a

† − a)

]
. (4)

The transformed Hamiltonian is

H ′ = H0 + H1 + H2, (5)

H0 = ωa†a − g2/ωJ 2
z , (6)

H1 = ω0JxG0(a†a) + iJyω0F1(a†a)(a† − a), (7)

H2 = ω0Jx

{
cosh

[
g

ω
(a† − a)

]
− G0(a†a)

}

+ iJyω0

{
sinh

[
g

ω
(a† − a)

]
− F1(a†a)(a† − a)

}
, (8)

where G0(a†a) and F1(a†a) are the coefficients that depend on
the oscillator number operator a†a = n and the dimensionless
parameter g/ω. When cosh[ g

ω
(a† − a)] is expanded as 1 +

1
2! [

g

ω
(a† − a)]2 + 1

4! [
g

ω
(a† − a)]4 + · · · , it is performed by

keeping the terms containing the number operator n with the
coefficient G0(n)

G0(n) = 〈n| cosh

[
g

ω
(a† − a)

]
|n〉 = e

− g2

2ω2 Ln

(
g2

ω2

)
, (9)

with the Laguerre polynomials Ln(g2/ω2). Higher-order exci-
tation terms such as a†2, a2, . . . , which are accounted for in
the multiphoton process, are neglected within this approxima-
tion. Similarly, by expanding sinh[ g

ω
(a† − a)] = g

ω
(a† − a) +

1
3! [

g

ω
(a† − a)]3 + 1

5! [
g

ω
(a† − a)]5 + · · · , the one-excitation

terms are kept as F1(n)a† − aF1(n) with the coefficient F1(n)
to be determined. Since the terms aF1(n) and F1(n)a† involve
creating and eliminating a single photon of the oscillator, it
can be evaluated as

F1(n) = 1√
n + 1

〈n + 1| sinh

[
g

ω
(a† − a)

]
|n〉

= 1

n + 1

g

ω
e
− g2

2ω2 L1
n

(
g2

ω2

)
, (10)

with the Laguerre polynomials L1
n( g2

ω2 ) =∑n+1
i=0 (−1)n−i (n+1)!(g2/ω2)n−i

(n+1−i)!(n−i)!i! . The simplicity of the GRWA
is based on its close connection to the standard RWA.
Consequently, the terms retained in H1 correspond to the
energy-conserving one-excitation terms, just as in the standard
RWA.

In the zeroth-order approximation, we neglect the terms
F1(a†a)(a† − a) involving creating and eliminating a single
photon, and the Hamiltonian is then approximated as

H ′ = ωa†a − g2/ωJ 2
z + ω0JxG0(a†a). (11)

Note that only the oscillator excitation operator n = a†a
emerges, so the Hilbert space can be decomposed into different
n manifolds spanned by the spin and oscillator basis of
|1,n〉, |0,n〉, and | − 1,n〉. For nth manifold, the Hamiltonian
takes the form

H ′
n =

⎛
⎜⎝

ωn − g2

ω

ω0√
2
G0(n) 0

ω0√
2
G0(n) ωn ω0√

2
G0(n)

0 ω0√
2
G0(n) ωn − g2

ω

⎞
⎟⎠ . (12)

The corresponding eigenvalues and eigenfunctions are
straightforwardly given by

ε±,n = ωn + ω0G0(n)

2
√

2

( − χn ±
√

χ2
n + 8

)
,

(13)

ε0,n = ωn − g2

ω
,

and

|ε0,n〉 =
⎛
⎝−1

0
1

⎞
⎠ , |ε±,n〉 =

⎛
⎝ 1(

χn ± √
8 + χ2

n

)
/2

1

⎞
⎠ , (14)

where χn =
√

2g2

ωω0G0(n) . Interestingly, the eigenvalues and eigen-
states obtained in this way are exactly the same as those
obtained by the adiabatic approximation [26], which are also
obtained in the nth manifold.

The zeroth-order energy spectrum is plotted in Fig. 1 with
blue (gray) dashed lines. For comparison, the energies obtained
from numerically exact diagonalization and in the RWA are
also given with black solid lines and green (gray) dashed
lines. The ground-state energy and low excited energies agree
well with the numerical results for ω0/ω = 0.5. It is obvious
that the RWA results become worse as the coupling strength
increases. The adiabatic approximate results also deviate from
the numerical ones in the ultrastrong coupling regime, and
this deviation gets worse with increasing atomic transition
frequency. By neglecting the term iJyF1(a†a)(a† − a) in
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FIG. 1. (Color online) Ground-state energy E0/ω in Eq. (25), the first excited state energy E1±/ω in Eq. (24), and the energies obtained by
solving Eq. (21) for n > 0 by the GRWA method (red [gray] solid lines) for different ω0/ω = 0.5 (a) and ω0/ω = 1 (b). The energies by the
numerically exact diagonalization (black solid lines), results of RWA in Eq. (3) (green [gray] dashed line) and results in Ref. [26] expressed in
Eq. (13) (green [gray] dotted lines) obtained by the zeroth-order approximation are plotted for comparison.

the zeroth-order approximation, there exists transition only
between states in the same manifold spanned by |0,n〉 and
|±1,n〉. Hence, the validity of the adiabatic approximation is
restricted to the large detuning regime ω0 � ω. The transitions
between states belonging to the different manifolds for large
value of ω0 will be considered in the next section.

III. GENERALIZED ROTATING-WAVE APPROXIMATION

As the first-order correction, the term iJyF1(a†a)(a† − a)
in H ′ = H0 + H1 will be included. The Hamiltonian now
consists of two parts:

H ′
0 = ωa†a − g2

ω
J 2

z + ω0βJx, (15)

H ′
1 = ω0Jx[G0(a†a) − β]

+ iJyω0F1(a†a)(a† − a), (16)

where β = G0(0) = e
− g2

2ω2 .
Obviously, the spin and oscillator in H ′

0 are decoupled and
its spin part can be diagonalized in the spin basis of |−1〉,|0〉,
and |1〉 by a unitary matrix S as

S =
⎛
⎝ 1/λ− 1/

√
2 1/λ+

μ−/λ− 0 μ+/λ+
1/λ− −1/

√
2 1/λ+

⎞
⎠ , (17)

where μ± = χ0

2 ±
√

χ2
0 +8
2 ,χ0 =

√
2g2

ωω0β
,λ± =

√
2 + μ2

±. The

corresponding eigenvalues are ε± = ω0β

2
√

2
(−χ0 ±

√
χ2

0 + 8)

and ε0 = −g2/ω. Therefore the diagonal H ′
0 takes the form

∼
H0 =

⎛
⎝ωn + ε− 0 0

0 ωn + ε0 0
0 0 ωn + ε+

⎞
⎠ , (18)

The first-order term H ′
1 is transformed by the unitary matrix

∼
H1 = S+H ′

1S

=

⎛
⎜⎝

2
√

2μ−
λ2−

0
√

2(μ++μ−)
λ+λ−

0 0 0√
2(μ++μ−)

λ+λ−
0 2

√
2μ+

λ2+

⎞
⎟⎠ ω0[G0(a†a) − β]

+
⎛
⎝ 0 −μ−

λ−
0

μ−
λ−

0 μ+
λ+

0 −μ+
λ+

0

⎞
⎠ ω0F1(a†a)(a† − a). (19)

Neglecting the counter-rotating-wave terms a†J+ + aJ− and

the remote matrix elements
√

2(μ++μ−)
λ+λ−

, we give the total
Hamiltonian as

HGRWA = ωa†a +
{
ε+ + 2

√
2μ+ω0

λ2+
[G0(a†a) − β]

}
|1〉〈1|

+
{
ε− + 2

√
2μ−ω0

λ2−
[G0(a†a) − β]

}
|−1〉〈−1|

+ ε0|0〉〈0| + μ+ω0

λ+
F1(a†a)(a|1〉〈0| + a†|0〉〈1|)

− μ−ω0

λ−
F1(a†a)(a|0〉〈−1| + a†|−1〉〈0|), (20)

where there are only the energy-conserving terms a|1〉〈0| +
h.c and a|0〉〈−1| + h.c with renormalized coefficients
μ+ω0

λ+
F1(a†a) and −μ−ω0

λ−
F1(a†a) respectively, originating from

the counter-rotating-wave terms iJyF1(a†a)(a† − a). So it is
exactly the two-qubit quantum Rabi model with renormalized
parameters in the RWA form. In this sense, we can also call
the first-order corrections as the GRWA. Due to the presence
of the energy-conserving terms, there exist state transitions
with different oscillator excitations n and n ± 1. It exhibits
an improvement on the adiabatic approximation and would
display the effect of the counter-rotating wave, especially in
the ultrastrong coupling regime.
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Note that the individual bosonic creation (annihilation)
operator a†(a) also appears in the GRWA, so the transitions
between states belonging to different manifolds should be

involved. In the basis of |−1,n + 1〉, |0,n〉, and|1,n −
1〉,(n = 1,2, . . . ), HGRWA takes the following matrix
form:

HGRWA =

⎛
⎜⎝

ω(n + 1) + ξ−,n+1 −μ−
λ−

Rn,n+1
√

n + 1 0

−μ−
λ−

Rn,n+1
√

n + 1 ωn + ε0
μ+
λ+

Rn−1,n

√
n

0 μ+
λ+

Rn−1,n

√
n ω(n − 1) + ξ+,n−1

⎞
⎟⎠ , (21)

where ξ+,n−1 = ε+ + 2
√

2μ+ω0[G0(n−1)−β]
λ2+

, ξ−,n+1 =
ε− + 2

√
2μ−ω0[G0(n+1)−β]

λ2−
, and Rn,n+1 = ω0F1(n)

√
n + 1,

Rn−1,n = ω0F1 (n − 1)
√

n.
Similar to the usual RWA Hamiltonian (3), the eigenvalues

En and eigenstates |φn〉GRWA can be easily obtained in the closed
form

|φn〉GRWA = α−1,n|−1,n + 1〉 + α0,n|0,n〉 + α1,n|1,n − 1〉,
(22)

where the coefficients {αn} are given in Appendix A in detail.
Under the GRWA, the eigenfuntions consist of the states
| ∓ 1,n ± 1〉 and |0,n〉, which are different from the states in
the same manifold in the adiabatic approximation. The GRWA
combines the states with different value of oscillator excitation,
providing an excellent approximation to the actual energies
and eigenfunctions of the system in the ultrastrong-coupling
regime.

There is a special case for n = 0. In the basis |−1,1〉 and
|0,0〉, we have

HGRWA =
(

ε0 −μ−R0,1

λ−
−μ−R0,1

λ−
ω + ξ−,1

)
, (23)

which results in the first and second excited eigenvalues

E0,± = ε0 + ω + ξ−,1

2

±1

2

√
(ε0 − ω − ξ−,1)2 + 4

(
μ−ω0R0,1

λ−

)2

(24)

and eigenstates |φ〉0,± = α0,±|−1,1〉 + |0,0〉 with
the coefficients α0,± = { λ−

2μ−ω0R0,1
[(ε0 − ω − ξ−,1) ±√

(ε0 − ω − ξ−,1)2 + 4(μ−ω0R0,1

λ−
)2]}.

The ground-state energy for the state |−1,0〉 is

E0 = ω0β

2
√

2

(−χ0 −
√

χ2
0 + 8

)
. (25)

The GRWA results for ω0/ω = 0.5 and 1 are presented in
Fig. 1 using red (gray) lines. It is obvious that the GRWA
results for the energy spectrum are much better than the
adiabatic approximated ones [26], compared with those in the
numerically exact diagonalization. Remarkably, the GRWA
works reasonably well even at resonance with ω0/ω = 1.
As illustrated in Fig. 1(a), the ground-state energy E0 in
Eq. (25) agrees well with the numerical one in the whole
coupling regime and there is qualitative agreement for high
energy levels. The level crossing is present in both the GRWA
results and the exact ones, as shown in Fig. 1(b). The RWA

reproduces the correct limiting behavior as g/ω → 0, but
breaks down in the ultrastrong-coupling regime g/ω � 0.3.
The RWA requires weak coupling due to the complete neglect
of counter-rotating-wave terms. The adiabatic approximation
in Ref. [26] is derived under the assumption that ω0 � ω, so
it is valid only for small detuning. Our approach is basically a
perturbative expansions in terms of ω0/ω and includes the
dominant contribution of the counter-rotating-wave terms.
In the framework of the present approach, the adiabatic
approximated is actually the zeroth-order one and the GRWA
is the first-order correction. As the increase of ω0/ω and g/ω,
the present GRWA should be better than both the RWA and
the adiabatic approximation.

IV. POPULATION DYNAMICS

The quantum dynamical effects are one fundamental issue
in quantum optics. We will explore the qubit population
dynamics in the two-qubit and cavity coupling system in the
ultrastrong-coupling regime.

In the zeroth-order approximation, the eigenstates of the
Hamiltonian (1) with the counter-rotating-wave terms can be
given by using the unitary transformation U

∣∣ϕ0
0,n

〉 = U †|ε0,n〉 =
⎛
⎝−|n〉1

0
|n〉−1

⎞
⎠ ,

(26)∣∣ϕ0
±,n

〉 = U †|ε±,n〉 =
⎛
⎝ |n〉1

(χ ±
√

8 + χ2)/2|n〉0

|n〉−1

⎞
⎠ ,

with the oscillator extended coherent states |n〉j =
exp[ jg

ω
(a† − a)]|n〉, (j = 0, ± 1). Similarly, the GRWA eigen-

states |ϕn〉GRWA of Eq. (1) are evaluated in detail in Appendix B.
The initial state is set |ϕ(0)〉 = |−1〉|α−1〉 with |α−1〉 =

eg/ω(a†−a)|α〉. The wave function evolves as |ϕ(t)〉 =
e−iH t |ϕ(0)〉, which can be expanded by the eigenvalues and
eigenstates under the adiabatic approximation and the GRWA
method.

The population for the qubits remaining in the initial state
|−1〉 is

P−1(t) = |〈−1|Trph|ϕ(t)〉〈ϕ(t)|−1〉, (27)

which is evaluated in detail in Appendix B. From the popula-
tion formula (B4), one can get function Sn(t) in Eq. (B5), which
exhibits the collapse and revivals of the Rabi’s oscillation. It
is interesting to note that the first line in Eq. (B5) basically
give the results in the adiabatic approximation where only the
transitions between states in the same manifold are considered.
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FIG. 2. (Color online) Collapse and revivals of the population P1,−1(t) for the two-qubit quantum Rabi model using GRWA, numerical
exact diagonalization, and the adiabatic approximation are given for ω0/ω = 0.5, g/ω = 0.1 [(a)–(c)] and ω0/ω = 1, g/ω = 0.1 [(d)–(f)].

The second line of this equation will cover the effects of
the transitions between states from the different manifolds,
which are the crucial to the quantum dynamics and destroy the
collapse given in the adiabatic approximation.

Population dynamics within adiabatic approximation and
the GRWA method are plotted in Fig. 2 for g/ω = 0.1 and
two typical detunings ω0/ω = 0.5 and 1. The numerically
exact ones are also presented for comparison. Obviously, the
GRWA results agree well with the numerical ones. The results
by the adiabatic approximation obviously deviate from the
exact ones and becomes worse with ω0/ω. More seriously,
collapse found in the adiabatic approximation is absent in
the numerically exact solutions, following that the results in
adiabatic approximation are qualitatively different from the
exact ones. The reason is that the transitions between states
belonging to different manifolds in the true physical process
are neglected in the adiabatic approximation. Interestingly, in
the GRWA one can also show the absence of the collapse
as exhibited in the exact study, indicating that the dominant
mechanisms have been considered. The transitions between
states from different manifolds beyond the GRWA will only
quantitatively modify the GRWA results slightly, as shown
in Figs. 2(a), 2(b), 2(d), and 2(e). Because the agreements
between the GRWA and the exact ones are quite good, so
the further corrections beyond the GRWA are generally not
necessary.

Population dynamics for a single-qubit case has been
studied [11,33,34]. For comparison, the single-qubit popu-
lation from the initial coherent state |α〉 = eg/ω(a†−a)|0〉 in the
lower spin level for ω0/ω = 0.5,g = 0.1 by the numerical
diagonalization, GRWA, and the adiabatic approximation [34]
are collected in Fig. 3. As we can see, there are still quantum
oscillations in the GRWA in certain regions where there are
collapses in the adiabatic solution, which deviates from the

numerical ones. It is observed that the dynamical properties of
collapses and revivals for both the single- and two-qubit cases
are qualitatively similar.

V. CONCLUSION

In summary, the effective solvable Hamiltonian for the
two-qubit quantum Rabi model beyond RWA is derived by
a unitary transformation, which can in turn gives accurate
eigenvalues and eigenstates. The zeroth-order approximation
produces the analytical eigenvalues and eigenstates of the

FIG. 3. (Color online) For the single-qubit quantum Rabi model,
population dynamics P1,−1(t) using the numerically exact diagonal-
ization (a), GRWA [33] (b), and the adiabatic approximation (c), given
ω0/ω = 0.5, g/ω = 0.1.
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adiabatic approximation completely. The first-order approxi-
mation, called GRWA, is mainly performed where the rotating-
wave interacting coupling strength is renormalized and the
counter-rotating-wave interactions include the renormalized
coefficients. In the GRWA, the mathematical simplicity of
the ordinary RWA is retained, which facilitates further study.
The obtained energy spectra are in good agreement with
the numerically exact diagonalization ones in a wide range
of coupling strength and are much better than the previous
adiabatic approximation. The population dynamics obtained
using the GRWA is also in quantitative agreement with the
numerical ones, indicating the validity of the eigenstates and
eigenvalues in the ultrastrong coupling regime. Moreover,
the GRWA one can show the absence of collapses clearly,
indicating that the dominate mechanism of the counter-rotating
wave have been considered. By the analytical eigensolutions,
all properties for this two-qubit quantum Rabi model can
be easily explored. Our approach can be extended to the
multiple-qubit case, such as the Dicke model.
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APPENDIX A: SOLUTIONS TO UNIVARIATE
CUBIC EQUATIONS

From the GRWA Hamiltonian matrix HGRWA (21), the
analytic expression of eigenenergies En and eigenstates |φn〉
can be clearly derived with the following procedure. The
determinant can be reduced to∣∣∣∣∣∣

v− − E z 0
z v0 − E y

0 y v+ − E

∣∣∣∣∣∣ = 0, (A1)

where

v− = ω(n + 1) + ξ−,n+1,v0 = ωn + ε0,

v+ = ω(n − 1) + ξ+,n−1,

z = −
√

n + 1μ−
λ−

Rn,n+1,

y =
√

nμ+
λ+

Rn−1,n.

It gives the following cubic equation E3 + bE2 + cE + d =
0, where

b = −v− − v0 − v+,

c = v−v0 + v+(v− + v0) − z2 − y2,

d = −v−v0v+ + z2v+ + y2v−.

Then we can easily obtain three real eigenvalues E1,n,
E2,n, and E3,n for each n > 0 in any mathematics

manually:

En,1 = −−b − 2
√

b2 − 3c cos θ

3
, (A2)

En,2 = −−b − 2
√

b2 − 3c cos
(
θ − 2π

3

)
3

, (A3)

En,3 = −−b − 2
√

b2 − 3c cos
(
θ + 2π

3

)
3

, (A4)

where θ = 1
3arc cos[ 2b(b2−3c)−3(bc−9d)

2
√

(b2−3c)3
] when (bc − 9d)2 −

4(b2 − 3c)(c2 − 3bd) < 0.
The eigenstates |φn〉 can be expressed as

|φn〉GRWA = α−1,n|−1,n + 1〉 + α0,n|0,n〉 + α1,n|1,n − 1〉,
(A5)

where the coefficients are evaluated as

α−1,n = z(En − v−)

η
, α0,n = (En − v+)(En − v−)

η
,

α1,n = y(En − v+)

η
,

where the normalized parameter η2 = z2(En − v−)2 + (En −
v+)2(En − v−)2 + y2(En − v+)2.

APPENDIX B: ANALYTIC FORMULA FOR THE
POPULATION DYNAMICS

In the adiabatic approximation, the coefficient C−1,adia of
the qubit state |−1〉 is

C−1,adia =
∑
n=0

fn(e−iε±,nt + e−iε0,nt )|n〉−1, (B1)

where fn =−1 〈n|α〉. The transition frequencies of the pop-
ulation is determined by ε+,n − ε−,n and ε±,n − ε0,n. In
weak-coupling regime and with the assumption ω0 � ω, the
eigenenergies with adiabatic approximation are simplified as
ε±,n = ωn ± ω0G0(n) and ε0,n = ωn. Hence, the oscillation
of the population is determined by two frequencies ω0G0(n)
and 2ω0G0(n), which is the same as that in Ref. [26].

Because the GRWA eigenstates {|ϕn〉GRWA} in the original
Hamiltonian(1) are

|ϕn〉GRWA
= U †S†|φn〉GRWA

=

⎛
⎜⎝

1
λ−

(α−1,n|n+1〉−1+α1,n|n−1〉−1+μ−α0,n|n〉−1)
1√
2
(α−1,n|n + 1〉0 − α1,n|n − 1〉0)

1
λ+

(α−1,n|n + 1〉1 + α1,n|n − 1〉1 + μ+α0,n|n〉1)

⎞
⎟⎠ ,

(B2)

the dynamical wave function can be expanded as by the
eigenstates {En} and eigenstates {|ϕn〉GRWA} as

|ϕ(t)〉 = e−iH t |ϕ(0)〉
= f0e

−iE0t |0〉−1|−1〉 + f0,±e−iE0,±t |ϕ0,±〉
+

∑
n=1

fne
−iEnt |ϕn〉GRWA,
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where fn =GRWA 〈ϕn|ϕ(0)〉. By substituting {|ϕn〉GRWA} into the
above function, the coefficient CGRWA

−1 of the qubit state |−1〉
becomes

CGRWA
−1 =

(
β0e

−iE0t + β2
0,0e

−iE0,+t

+β1
0,0e

−iE0,−t +
3∑

j=1

β
j

1,1e
−iE1,j t

)
|0〉−1

+
∑
n>0

3∑
j=1

(
e−iEn−1,j tβ

j

−1,n−1 + e−iEn,j tβ
j

0,n

+ e−iEn+1,j tβ
j

1,n+1

)|n〉−1, (B3)

with the coefficients β0 = f0/λ−, β
j

±1,n = α
j

±1,nf
j
n /λ−, and

β
j

0,n = u−α
j

0,nf
j
n /λ−. It indicates that there exist energy

transitions among levels En,1, En,2, and En,3 belonging to
the same nth manifold. Besides, the level transitions between
En,j and En±1,j corresponding to states in different manifolds
also exist.

The population P−1(t) = |C∗
−1C−1| can be evaluated as

P−1(t) = β0β
2
0,0 cos(E0 − E0,+) + β0β

1
0,0 cos(E0 − E0,−)

+
3∑

j=1

β0β
j

1,1 cos(E0 − E1,j ) +
∑
n>0

Sn(t), (B4)

where

Sn(t) =
3∑

j,k=1

e−|α|2 |α|2n

n!

(
β

j

0,nβ
k
0,n cos �j,k

n,n

+β
j

1,nβ
k
1,n cos �

j,k

n+1,n+1 + β
j

−1,nβ
k
−1,n cos �

j,k

n−1,n−1

)
+

3∑
j,k=1

e−|α|2 |α|2n

n!

(
β

j

0,nβ
k
1,n+1 cos �

j,k

n,n+1

+β
j

0,nβ
k
−1,n−1 cos �

j,k

n,n−1

+β
j

−1,n−1β
k
1,n+1 cos �

j,k

n−1,n+1

)
, (B5)

with

�j,k
n,m = En,j − Em,k(n > 0), (m = n,n ± 1). (B6)
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