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Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit
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While dissipation is widely considered to be harmful for quantum coherence, it can, when properly engineered,
lead to the stabilization of nontrivial pure quantum states. We propose a scheme for continuous generation and
stabilization of Schrödinger cat states in a cavity using dissipation engineering. We first generate nonclassical
photon states with definite parity by means of a two-photon drive and dissipation, and then stabilize these
transient states against single-photon decay. The single-photon stabilization is autonomous, and is implemented
through a second engineered bath, which exploits the photon-number-dependent frequency splitting due to Kerr
interactions in the strongly dispersive regime of circuit QED. Starting with the Hamiltonian of the baths plus
cavity, we derive an effective model of only the cavity photon states along with analytic expressions for relevant
physical quantities, such as the stabilization rate. The deterministic generation of such cat states is one of the key
ingredients in performing universal quantum computation.
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I. INTRODUCTION

Quantum computing has shown great promise as a re-
source providing exponential speedup over certain classi-
cal algorithms and as an indispensable tool for efficient
simulation of quantum systems [1–4]. Recent years have
seen considerable effort in understanding how a quantum
computer outperforms its classical counterpart. An essential
ingredient has been identified for systems performing universal
quantum computation with continuous variables (e.g., modes
of electromagnetic field), namely, nonclassical states, i.e.,
states displaying negativity in their Wigner function [5–9].
This can be achieved by engineering a Hamiltonian with terms
higher than quadratic in mode amplitude, for instance, the
Kerr Hamiltonian, which is quartic [10]. Such a Hamiltonian,
together with linear scattering elements such as beam split-
ters, drives, and squeezers, is sufficient to perform arbitrary
polynomial transformations of the mode variables [11].

Nonclassical input states such as single photons and
superpositions of coherent states are the main candidates for
universal quantum computation with linear optical circuits
[12–15]. This has stimulated experiments in which single-
photon states are generated in a heralded [16–18] and on-
demand [19,20] manner. Various experimental schemes have
likewise produced and observed superposition of coherent
states in optical systems in a heralded manner using photon
subtraction [21–25]. In the context of cavity or circuit QED,
such superposition states have been generated by mapping
a qubit state to a coherent-state superposition in a heralded
manner [26] and on demand [27]. Here, we go a step further
and address the question of robustly stabilizing cavity photons
in a superposition of coherent states. This could act as a
continuous and deterministic source of nonclassical input
states in quantum information processing protocols.

*ananda.roy@yale.edu

To that end, we apply a dissipation engineering technique
leading to an autonomous preparation and protection against
decoherence of these states [28]. An earlier theoretical pro-
posal within the framework of cavity QED with Rydberg
atoms describes such a stabilization by an adequate engi-
neered system-bath interaction [29]. The current proposal is
adapted to photon states in quantum superconducting circuits,
and requires only the application of continuous-wave (CW)
microwave drives of fixed frequencies and amplitudes, thus
greatly simplifying an experimental implementation.

The first stage of our proposal builds on recent theoretical
work in such systems [30] in which a bath was engineered such
that photons are only exchanged in pairs. Such a nonlinear
system-bath interaction was shown to stabilize the manifold
spanned by two coherent states |α〉 and |−α〉 (where α,
the coherent-state amplitude parameter, is determined by
a tunable external drive). Very recently, this proposal has
been implemented successfully in an experimental setup [31].
The dynamics generated by such an interaction conserves
photon-number parity: an initial vacuum state |0〉 would
therefore converge to the even Schrödinger cat state |C+

α 〉 =∑∞
n=0 c2n|2n〉, cm = e−|α|2/2√

2(1+e−2|α|2 )

αm√
m!

. Similarly, an odd-parity

initial state will converge to the odd Schrödinger cat state
|C−

α 〉 = ∑∞
n=0 c2n+1|2n + 1〉. Finally, an initial state with

undefined parity will converge to a final state of undefined
parity. In practice, however, while one can add a two-photon
bath interaction which transiently dominates the dynamics,
there will always be a residual single-photon loss channel
that will decohere these parity superpositions, leading to a
statistical mixture of |α〉 and |−α〉 in the steady state.1

In this paper, we present a theoretical proposal where
we autonomously compensate for single-photon loss and

1The changes in photon-number parity resulting from single-
photon loss can, in principle, be continuously monitored [32] and
compensated for, in a measurement-based feedback scheme.
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ensure the stabilization of a single superposition [e.g., |C+
α 〉 =

1√
2(1+e−2|α|2 )

(|α〉 + |−α〉)] in this manifold. Similarly to some

recent autonomous stabilization protocols for superconducting
qubits [33–35], we benefit from the high-quality factors of
the superconducting microwave resonators in the presence of
strong nonlinear interactions provided by Josephson elements.
More precisely, we make use of the dispersive (cross-Kerr)
interaction between two cavity modes mediated by a transmon
qubit coupled to both of them [36]. Working in the strong
dispersive regime [37], we design an effective decay of the
cavity mode from a cat state of odd parity to a cat state of
even parity. This dissipation, together with the two-photon
process, reduces the steady state from a manifold spanned
by {|C+

α 〉,|C−
α 〉} to a unique state (|C+

α 〉). The full system
requires only a high-Q “storage cavity,” coupled to two low-Q
“readout cavities” through Josephson junctions and requires
cavity decay and coupling parameters well within the reach
of current technology. A trivial modification of the scheme
leads to stabilization of |C−

α 〉. Note that even though we
use the term “readout” to refer to the dissipative baths, the
information leaking through the ports associated with the two
low-Q cavities does not need to be monitored. It suffices that
it never returns to the stabilized “storage cavity.”

The paper is organized as follows: in Sec. II, we describe
our dissipation engineering scheme that stabilizes an even
Schrödinger cat state. In Sec. III, we describe the possible
experimental implementation, engineering the Hamiltonian
interactions and dissipation, that realizes the stabilization
scheme. We sweep the parameters that are, in principle, tunable
in an ongoing experiment to determine the optimal choice.
Next, we perform adiabatic elimination of the faster dynamical
variables to arrive at an effective interaction and dissipation for
the storage cavity alone, providing analytic expressions for the
various decay and interaction rates (Sec. III C). We summarize
our results in Sec. IV.

II. TWO-PHOTON PROCESS AND PARITY SELECTION

In this section, we briefly outline the interaction and
dissipation scheme that gives rise to an even Schrödinger
cat state (|C+

α 〉) in the steady-state regime. We assume, for
the storage cavity, the existence of a single-photon decay
channel which is the natural dominant decoherence channel
in the absence of engineered system-bath interactions. We
further assume that we have engineered two additional decay
channels: the two-photon decay channel through which pairs
of photons are lost into the environment (following previous
work [30,38–41]), and a parity-selection decay channel, which
leads to an effective transfer of population from the odd
to the even photon-number parity manifold. These decay
channels are characterized by effective decay rates κ2ph and
κps, respectively, and we assume that we can engineer them to
be much larger than the rate of single-photon loss (κ1ph) for
the relevant cavity modes:

κ1ph � κ2ph,κps. (1)

A. Two-photon process

Consider a cavity mode coupled to a bath and a drive such
that it absorbs or loses photons only in pairs. Denoting the
annihilation operator for this two-photon driven-dissipative
harmonic oscillator as as, the master equation for the mode is

dρ

dt
= −i[H2ph,ρ] + κ2phD

(
as

2
)
ρ + κ1phD(as)ρ, (2)

where D(Ô)ρ = ÔρÔ† − 1
2 Ô†Ôρ − 1

2ρÔ†Ô is the usual
Lindblad operator, H2ph = i(ε2phas

†2 − ε∗
2phas

2), and ε2ph is
the two-photon drive strength. As noted, for κ1ph = 0, one
can show that starting from vacuum [ρ(t = 0) = |0〉〈0|], the
density matrix converges towards ρ(t → ∞) = |C+

α 〉〈C+
α |,

where α = √
2ε2ph/κ2ph [30]. In the presence of single-photon

loss, due to the random photon jumps, the cat state undergoes
decoherence resulting in an incoherent mixture of |α〉 and
|−α〉.

B. Parity selection

In order to compensate for the decoherence due to single-
photon loss, we consider the action of effective jump operators
of the form J2n = |2n〉〈2n + 1|, which acting on the odd-
number states bring it to the immediate lower even-number
state. This transfers the excitations from the odd-parity
manifold, which gets populated due to single-photon loss, to
the even-parity manifold. Once the population is transferred
to the even manifold, the two-photon process redistributes
the population over the even manifold so as to reach the
steady state determined by the two-photon bath plus drive,
|C+

α 〉. Let us consider, for simplicity, only one such operator:
J2ñ = |2ñ〉〈2ñ + 1|, where 2ñ is the even integer closest to
the average number of photons in the even cat |C+

α 〉.2 The
two-photon process acts also on the odd manifold, where it
redistributes population, with maximum around |2ñ + 1〉, so
as to funnel probability density towards the escape channel
given by the jump operator, J2ñ. Thus, although by itself this
jump operator only transfers the population from the Fock
state |2ñ + 1〉 to |2ñ〉, together with the two-photon process,
it drains the population from the odd to the even manifold (cf.
Fig. 1). The rate associated with this parity-selection process
will be denoted by κps. Thus, we can write the master equation
governing the stabilized evolution of the cavity mode,

dρ

dt
= −i[H2ph,ρ] + κ2phD

(
as

2
)
ρ + κ1phD(as)ρ

+ κpsD(J2ñ)ρ. (3)

In Fig. 2, we show the results of simulation of this equation.
On the right is shown the Wigner function for the final state for
α = 2 when all terms are present in the evolution equation. The
interference fringes near the origin clearly show the negativity
of the Wigner function. On the left, we show the time evolution
of the fidelity of the solution of the evolution equation with
respect to the ideal target state for three cases. In the absence of
single-photon loss (κ1ph = 0), the fidelity approaches unity at a

2If the desired target state is |C−
α 〉, one needs to consider jump

operators of the form J2ñ−1 = |2ñ − 1〉〈2ñ|.
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FIG. 1. (Color online) Schematic for the stabilization of the “cat
state,” |C+

α=2〉. The two-photon drive and dissipation [denoted by
H2ph,κ2phD(a2

s )] act on the even and odd manifolds, shown in blue
and orange, respectively. In the absence of single-photon loss and
starting from vacuum, the odd manifold remains unpopulated, while
the even manifold population is distributed to realize an even cat state.
However, single-photon loss (shown in red) denoted by κ1phD(as)
transfers some of the population to the odd manifold, where it is
distributed as in an odd cat state due to the two-photon drive and/or
dissipation. We propose to engineer a dissipation interaction from |5〉
to |4〉 (in green) denoted by κpsD(J4). This dissipation, together with
the two-photon process, transfers excitations from the odd to even
manifold and stabilizes the desired cat state.

rate determined by κ2ph. When single-photon loss is added, but
not stabilization (κ1ph 	= 0,κps = 0), the fidelity grows initially
but then decays to 0.5 as expected for the statistical mixture
(asymptotic behavior data not shown here). When all three
processes are present, the fidelity stabilizes at a value greater
than 0.9. (For fidelity of a density matrix ρ with respect to
the target state |C+

α 〉, we use the definition F = 〈C+
α |ρ|C+

α 〉.)

FIG. 2. (Color online) Fidelity with respect to the target state
|C+

α=2〉 (left panel) and Wigner function of the steady state (right
panel). The parity-selecting dissipation and the two-photon dissipa-
tion and/or drive, in the presence of single-photon loss, stabilizes the
even cat state. The dissipation rates are κ2ph = 250κ1ph,κps = 760κ1ph.
The evolution of fidelity is shown in the absence of single-photon
loss (blue dashed line), in the presence of single-photon loss and the
absence of parity selection (red double-dashed line), and, lastly, in the
presence of single-photon loss and parity selection (green solid line).
The steady-state Wigner function of the stabilized cat state is shown
in the presence of single- and two-photon loss and parity selection.

Here we choose the two-photon dissipation rate and the parity-
selection rate to be κ2ph = 250κ1ph,κps = 760κ1ph, consistent
with the required inequality (1) above.

The master equation we have studied is an idealized “cavity-
only” system, whereas additional components will be required
to realize the required baths and drives. In the following
section, we propose a possible experimental implementation
of the aforementioned stabilization scheme. Subsequently, we
will analyze the reduction of this system to an effective model
described by the single-cavity master equation.

III. PROPOSED EXPERIMENTAL IMPLEMENTATION

We propose a three-cavity two-junction architecture, where
a high-Q cavity (referred to as storage cavity s) is linked
by small transmission lines to two low-Q cavities, referred
to as readout cavities r1 and r2, as shown in Fig. 3. Each
transmission line has an in-line embedded Josephson junction,
which by virtue of the Josephson nonlinearity provides a
nonlinear coupling between the storage and readout cavities.
The single-photon loss rate of the storage cavity is given by
κ1ph, while that of the two readout cavities are given by κr1 and
κr2 with the constraint

κ1ph � κr1 ,κr2 . (4)

FIG. 3. (Color online) Schematic of experimental setup realizing
the stabilization scheme. Josephson junction JJ1 bridges the storage
and readout cavity r1. This, together with the stiff off-resonant pump
at ωp = 2ωs − ωr1 , and the weak resonant drive at ωr1 incident on
r1, gives rise to the two-photon drive and dissipation. Josephson
junction JJ2 bridges the storage and readout cavity r2 providing
a nonlinear coupling between the modes as and low-Q mode ar2 .
An off-resonant pump incident on r2 at frequency ωp′ = (ωr2 −
ωs − 2ñχsr2 )/2 gives rise to beam-splitter-like interaction between
as and ar2 : gpse

2iωp′ tas
†ar2 + c.c. This beam-splitter-like interaction

acts conditioned on the mode as having 2ñ + 1 photons in the storage
cavity. When the condition is realized, this interaction transfers one
quantum of excitation from the as mode to the ar2 mode, which is
then lost irreversibly to the environment.
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The Hamiltonian of this device can be written as [42]

H0 =
∑

k

�ωka†kak − EJ1

[
cos

(
�1

φ0

)
+ 1

2

(
�1

φ0

)2]

−EJ2

[
cos

(
�2

φ0

)
+ 1

2

(
�2

φ0

)2]
. (5)

Here, EJ1,2 are the Josephson energy for the two junctions,
ωk are the bare frequencies of the modes ak, φ0 = �/2e is
the reduced flux quantum, and �1,2 is the flux through the
Josephson junction linking readout cavity r1,2 to storage cavity
s.

Here, only the fundamental modes of the three cavities
are excited, annihilation operators (frequencies) of which are
denoted, respectively, by as(ωs),ar1 (ωr1 ), and ar2 (ωr2 ). The
Josephson junctions ensure a nonlinear coupling of the modes
as and ar1 , and similarly between the modes as and ar2 . This
gives rise to self-Kerr and cross-Kerr interactions of the form
−χff

2 f†
2
f2 and −χfg(f†f)(g†g), where f,g correspond to the

annihilation operators for the modes under consideration. Our
stabilization scheme makes use of the following separation of
time scales (cf. Secs. III A and III B for details):

χsr1 � κr1 and κr2 � χsr2 . (6)

This separation of time scales can be engineered by appropri-
ately choosing the participation ratios of the modes interacting
through the junction nonlinearity.

A. Realizing two-photon process

We can engineer a nonlinear interaction between the two
modes as and ar1 by means of a stiff (nondepleted), off-
resonant pump incident on the readout cavity r1. The frequency
ωp of the pump is chosen to be ωp = 2ωs − ωr1 . In addition,
we drive the mode ar1 with a weak resonant tone of amplitude
εr1 and frequency ωr1 . Following the same kind of analysis as
in [42] and setting � = 1 for the rest of this work, one can
write the effective interaction Hamiltonian between the modes
as and ar1 as (see Fig. 4)

Hsr1 = ωsas
†as + ωr1 ar1

†ar1 + g2ph
(
as

†2ar1 + as
2ar1

†)
− εr1

(
ar1 + ar1

†) − χss

2
as

†2
as

2 − χr1r1

2
ar1

†2
ar1

2

−χsr1 (as
†as)

(
ar1

†ar1

)
, (7)

where we have assumed the nonlinear coupling g2ph and drive
amplitude εr1 to be real (phase of g2ph is fixed by the phase of
the stiff pump at ωp) and neglected nonlinearity higher than
fourth order in mode amplitudes. In writing Eq. (7), we have
also included self-Kerr and cross-Kerr interaction terms of the
modes as,ar1 arising out of H0. As shown in [30],

g2ph = εp

ωp − ωr1

χsr1/2, (8)

where εp is the amplitude of the pump drive. For the rate
inequalities given by Eq. (6), the Hamiltonian [Eq. (7)],
together with the decay of the low-Q mode ar1 , gives rise
to the two-photon drive and dissipation of Eq. (2) (cf. [31] and
chapter 12 of [43] for details of the calculation).

FIG. 4. (Color online) Scattering processes taking place through
the nonlinear elements. (a) One photon in readout mode ar1 , together
with one photon of pump at ωp , gets converted to two photons in
mode as, giving rise to the two-photon drive. (b) Two photons of the
mode as are converted into one photon in pump mode at frequency
ωp and one photon in mode ar1 , which then irreversibly decays to the
environment, giving rise to two-photon dissipation. (c) One photon in
the mode as, along with two photons in the pump with the adequate
frequency ωp′ , are converted conditionally into a photon in mode
ar2 , which then irreversibly decays to the environment. This process
occurs only when the number of photons in the storage cavity is
2ñ + 1, giving rise to the parity-selection mechanism.

B. Realizing parity selection

Next, we describe the interaction between the modes as and
ar2 . We propose to engineer a beam-splitter-like interaction of
the form asar2

† + as
†ar2 conditioned on the number of photons

in the as mode being 2ñ + 1. This interaction has the effect
that when the mode as has 2ñ + 1 photons, a photon of the as
mode is destroyed, in turn creating a photon in the mode ar2 ,
which is rapidly and irreversibly lost to the environment due
to its low-Q nature of resonator r2. This state-selective beam-
splitter interaction is generated by a stiff pump incident on the
readout cavity r2 at frequency ωp′ = (ωr2 − ωs − 2ñχsr2 )/2
(see below for more details). To realize the number selectivity
of this interaction, we need to work in the strong dispersive
regime of the storage cavity. This ensures that the beam-splitter
interaction becomes off resonant when the number of photons
in mode as is anything but 2ñ + 1. The Hamiltonian describing
the interaction between modes as and ar2 is given by (see Fig. 4)

Hsr2 = ωsas
†as + ωr1 ar2

†ar2 + gps
(
e2iωp′ tas

†ar2

+ e−2iωp′ tasar2
†) − χss

2
as

†2
as

2

− χr2r2

2
ar2

†2
ar2

2 − χsr2 (as
†as)

(
ar2

†ar2

)
, (9)

where gps is the strength of the beam-splitter interaction fixed
by the pump amplitude (εp′ ) and is given by

gps = √
χr2r2χsr2

∣∣∣∣ εp′

ωp′ − ωr2

∣∣∣∣
2

. (10)

Due to the rate inequalities of Eq. (6), it suffices to keep
only the cross-Kerr interaction −χsr2 (as

†as)(ar2
†ar2 ) for the

calculation. The selectivity of the transition between the levels
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FIG. 5. (Color online) Fidelity with respect to the target cat state,
obtained by solving Eq. (11), vs parameters g2ph/κ1ph,gps/κ1ph. We
choose κr1 = κr2 = 103κ1ph,χsr2 = 2.5 × 104κ1ph. The ratio of εr1 and
g2ph is chosen to be 4 so that the target cat state is |C+

α=2〉. The
white square denotes the point of optimal fidelity, �0.94 for this
choice of parameters (g2ph = 250κ1ph,gps = 400κ1ph; cf. Fig. 2). The
black square is the point in the shown range of parameters where the
adiabatic elimination of Sec. III C works best.

|2ñ + 1〉as
⊗ |0〉ar2

and |2ñ〉as
⊗ |1〉ar2

is ensured by detuning
the frequency of the stiff pump (ωp′) from (ωr2 − ωs)/2
by −ñχsr2 .3 This leads to strong number selectivity when
χsr2 
 gps. In addition, the cross-Kerr interaction also has
to be stronger than the damping of the low-Q mode ar2 , i.e.,
χsr2 
 κr2 so that the state selectivity is not washed away by
dissipation-induced level broadening.

Moving to the rotating frame as → ase
−iωs t ,ar1 →

ar1e
−iωr1 t ,ar2 → ar2e

−iωr2 t+2iñχsr2 t , we can now write the
master equation for the density matrix (ρsr1r2 ) for the full
three-mode model associated with as,ar1 , and ar2 :

dρsr1r2

dt
= −i

[
H̄2ph + Hps + Hcross−Kerr,ρsr1r2

]
+ [

κr1D
(
ar1

) + κr2D
(
ar2

) + κ1phD(as)
]
ρsr1r2 , (11)

where

H̄2ph = g2ph
(
as

†2ar1 + as
2ar1

†) − εr1

(
ar1 + ar1

†),
Hps = gps

(
asar2

† + as
†ar2

)
, (12)

Hcross−Kerr = χsr2 (2ñ − as
†as)ar2

†ar2 .

We now present the numerical results obtained from
numerically solving the above three-mode master equation.
In Fig. 5, we plot the fidelity with respect to the target cat
state (|C+

α=2〉) upon variation of the parameters g2ph/κ1ph and
gps/κ1ph. The choice of parameters is as follows: κr1 = κr2 =
103κ1ph,χr1s = 2.5 × 104κ1ph. The ratio εr1/g2ph = 4, so that
the target cat state is |C+

α=2〉. We see that for this choice
of parameters, the optimal fidelity (∼0.94) is obtained for

3In the case of stabilizing an odd cat state, ωp′ is detuned from
(ωr2 − ωs)/2 by −(ñ + 1/2)χsr2 , where 2ñ + 1 is the odd integer
closest to the average number of photons in the target cat state.

g2ph = 250κ1ph,gps = 400κ1ph. The robustness of the scheme
is indicated by the fact that for a large range of parameters,
we find fidelities in excess of 90%. Note that g2ph cannot
be increased arbitrarily; due to the inequalities (6) and (8),
g2ph � κr1 . gps also is bounded, by

√
χr2r2χsr2 [cf. Eq. (10)],

which is much larger than κr2 . For both of these variables, these
bounds are not reached in our simulations. Noting that the
optimal fidelity of ∼94% is mainly limited by single-photon
loss, a higher-Q storage cavity, while the other parameters are
fixed, would improve the target fidelity. Another possibility to
achieve high-fidelity cat states is to monitor and condition
the generation, on the output of the readout mode r2: by
selecting the events where the output of the r2 mode is in
vacuum for a time duration of order κ−1

ps , one can significantly
increase the cat state fidelity. This selection excludes the events
where a single-photon jump has happened but has not yet been
corrected.

In the following section, we will show how the above three-
mode master equation [Eq. (11)] can be reduced to the single-
mode effective master equation [Eq. (3)], with the two-photon
dissipation and parity-selection rates given by Eqs. (13) and
(26).

C. Elimination of fast dynamics

Due to the low-Q nature of the modes ar1 and ar2 , we can
eliminate their dynamics adiabatically to arrive at a reduced
equation of motion for mode as. Elimination of the ar1 mode
can be done following chapter 12 of [43]. This gives rise to a
two-photon dissipation rate,

κ2ph = 4g2
2ph

κr1

. (13)

After eliminating the mode ar1 , we proceed to eliminate the
fast dynamics associated with the mode ar2 . In the rotating
frame of the Hamiltonian Hcross−Kerr, the reduced master
equation for the density matrix (ρsr2 ) for the modes as,ar2

is given by

dρsr2

dt
= −i

[
i
(
ε2phas

†2 − ε∗
2phas

2
)

|0〉ar2

,ρsr2

]

+ κ2phD
(
as

2
|0〉ar2

)
ρsr2 + Lsr2ρsr2 , (14)

where

Lsr2ρsr2 = −igps

∞∑
j=0

{[

|2ñ+1−j〉as ⊗|j〉ar2

as
†ar2

+ asar2
†
|2ñ+1−j〉as ⊗|j〉ar2

,ρsr2

]
+ κr2D

(
ar2
|j〉as

)
ρsr2 + κ1phD

(
as
|j〉ar2

)
ρsr2

}
,

(15)

and 
|0〉ar2
=|0〉ar2 ar2

〈0|,
|2ñ+1−j〉as ⊗|j〉ar2
= |2ñ + 1 − j 〉as

⊗
|j 〉ar2 ar2

〈j | ⊗ as
〈2ñ + 1 − j |. In writing Eqs. (14) and (15),

we have made use of the rotating wave approximation,
assuming that χsr2 
 κr2 ,gps. In principle, for κr2 > gps, we
can adiabatically eliminate the dynamics of the low-Q mode
ar2 . However, a direct calculation from Eqs. (14) and (15) is
difficult since any level of the mode ar2 can be excited. Instead,
we approximately calculate an effective rate of transition
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of the system from the state |2ñ + 1〉as
⊗ |0〉ar2

to the state
|2ñ〉as

⊗ |0〉ar2
via the state |2ñ〉as

⊗ |1〉ar2
. Note that since the

ar2 mode is low Q and there is no drive resonant at ωr2 , ar2

gets populated solely due to the interaction term of the form
asar2

† in Eq. (15). Hence we can expand the two-mode density
matrix ρsr2 as

ρsr2 = ρ00|0〉ar2 ar2
〈0| + δ

(
ρ01|0〉ar2 ar2

〈1| + ρ10|1〉ar2 ar2
〈0|)

+ δ2
(
ρ11|1〉ar2 ar2

〈1| + ρ20|2〉ar2 ar2
〈0| + ρ02|0〉ar2 ar2

〈2|)
+O(δ3), (16)

where ρij ,i,j = 0,1,2 act on the Hilbert space of the as mode.
The natural small parameter of expansion is δ = gps/κr2 (for
similar analysis, cf. [44]). We will show that the short-lived
states ρ01,ρ10, and ρ11 can be adiabatically eliminated in favor
of an effective dynamics of ρ00. We will also see that ρ20,ρ02

can be dropped for a reduced dynamics in the sector of Hilbert
space of as which is of interest to us: span of {|2ñ〉as

,|2ñ +
1〉as

}. For this calculation, we omit the two-photon drive and/or
dissipation which acts only on ρ00 and the single-photon loss,
the rate of which is much slower than the fast time scale of the
adiabatic elimination. These terms gives rise to a correction
only in orders of O(κ1ph/κr2 ) and can be neglected. We will
reinsert them at the end to get the final evolution of the reduced
density matrix of mode as. Thus, from Eqs. (14) and (15), we
can write down an equation of motion for ρij ,i,j = 0,1,2 in
dimensionless variable τ = κr2 t :

dρ00

dτ
= −iδ2

(

|2ñ+1〉as

as
†ρ10 − ρ01as
|2ñ+1〉as

)

+ δ2
∞∑

n=0


|n〉as
ρ11
|n〉as

,

dρ11

dτ
= −i

(
as
|2ñ+1〉as

ρ01 − ρ10
|2ñ+1〉as
as

†) − ρ11,

dρ01

dτ
= −i

(
δ2
|2ñ+1〉as

as
†ρ11 − ρ00
|2ñ+1〉as

as
†

−
√

2δ2ρ02as
|2ñ+2〉as

) − 1

2
ρ01, (17)

dρ10

dτ
= −i

(
as
|2ñ+1〉as

ρ00 +
√

2δ2
|2ñ+2〉as
as

†ρ20

− δ2ρ11as
|2ñ+1〉as

) − 1

2
ρ10,

dρ20

dτ
= −i

√
2as
|2ñ+2〉as

ρ10 − ρ20,

dρ02

dτ
= i

√
2ρ01
|2ñ+2〉as

as
† − ρ02.

Define

ρm
ij = as

〈m|ρij |m〉as
, i,j = 0,1, m = 2ñ,2ñ + 1,

ρ̄ij = as
〈2ñ|ρij |2ñ + 1〉as

, ¯̄ρij = as
〈2ñ + 1|ρij |2ñ〉as

.

(18)

Then, from Eq. (17), we can write

dρ2ñ+1
00

dτ
= −iδ2

√
2ñ + 1(ρ̄10 − ¯̄ρ01) + δ2ρ2ñ+1

11 ,

dρ2ñ+1
11

dτ
= −ρ2ñ+1

11 ,

(19)
dρ2ñ+1

01

dτ
= −iδ2

√
2ñ + 1ρ̄11 − 1

2
ρ2ñ+1

01 ,

dρ2ñ+1
10

dτ
= iδ2

√
2ñ + 1 ¯̄ρ11 − 1

2
ρ2ñ+1

10 .

We see that the dynamics of ρ2ñ+1
11 ,ρ2ñ+1

01 , and ρ2ñ+1
10 occur

on a much faster time scale than ρ2ñ+1
00 and thus, while

performing adiabatic elimination, we can replace them by their
steady-state values:
[
ρ2ñ+1

11

]
s.s. = 0,

[
ρ2ñ+1

01

]
s.s. = −2iδ2

√
2ñ + 1

[
ρ̄11

]
s.s.,

(20)[
ρ2ñ+1

10

]
s.s. = 2iδ2

√
2ñ + 1[ ¯̄ρ11]s.s..

Similarly, we can write down the equation of motion for ρ2ñ
ij :

dρ2ñ
00

dτ
= δ2ρ2ñ

11 ,

dρ2ñ
11

dτ
= i

√
2ñ + 1(ρ̄10 − ¯̄ρ01) − ρ2ñ

11 ,

(21)
dρ2ñ

01

dτ
= i

√
2ñ + 1ρ̄00 − 1

2
ρ2ñ

01 ,

dρ2ñ
10

dτ
= −i

√
2ñ + 1 ¯̄ρ00 − 1

2
ρ2ñ

10 ,

the steady-state solutions of which give us
[
ρ2ñ

11

]
s.s. = −i

√
2ñ + 1([ ¯̄ρ01]s.s. − [ρ̄10]s.s.),[

ρ2ñ
01

]
s.s. = 2i

√
2ñ + 1

[
ρ̄00

]
s.s., (22)[

ρ2ñ
10

]
s.s. = −2i

√
2ñ + 1

[
¯̄ρ00

]
s.s..

Using Eqs. (19)–(22), we can write down equations of motion
for ρ2ñ

00 and ρ2ñ+1
00 :

dρ2ñ+1
00

dτ
= −iδ2

√
2ñ + 1([ρ̄10]s.s. − [ ¯̄ρ01]s.s.),

(23)
dρ2ñ

00

dτ
= iδ2

√
2ñ + 1([ρ̄10]s.s. − [ ¯̄ρ01]s.s.).

Note that dρ2ñ+1
00
dτ

+ dρ2ñ
00

dτ
= 0, which signifies that the population

of the state |2ñ + 1〉as
⊗ |0〉ar2

, does indeed decay to |2ñ〉as
⊗

|0〉ar2
. To complete the analysis and get an explicit form of

the rate of population transfer, we write down the equation of
motion for ρ̄10, ¯̄ρ01:

dρ̄10

dτ
= −i

√
2ñ + 1

(
ρ2ñ+1

00 − δ2ρ2ñ
11

) − 1

2
ρ̄10,

d ¯̄ρ01

dτ
= i

√
2ñ + 1

(
ρ2ñ+1

00 − δ2ρ2ñ
11

) − 1

2
¯̄ρ01,
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FIG. 6. (Color online) Comparison between the evolution of fi-
delities for the full three-mode master equation [Eq. (11)] in solid
lines, and that obtained from the reduced dynamics [Eqs. (3) and
(26)] in dashed lines. The two sets of parameters are chosen from
Fig. 5: the white square (purple curves) corresponding to gps =
400κ1ph,g2ph = 250κ1ph, and εr1 = 1000κ1ph, and the black square
(orange curves) corresponding to gps = 120κ1ph,g2ph = 50κ1ph, and
εr1 = 200κ1ph. For both sets of curves, χsr2 = 2.5 × 104κ1ph,κr2 =
κr1 = 1000κ1ph and the target state is |C+

α=2〉. The model reduction
[Eq. (3)] approaches the full three-mode master equation [Eq. (11)]
as the adiabatic approximation (g2ph/κr1 � 1,gps/κr2 � 1) and the
rotating wave approximation (gps/χsr2 � 1,κr2/χsr2 � 1) become
more and more accurate.

the steady-state solutions of which are

[ρ̄10]s.s. = −[ ¯̄ρ01]s.s.

= −2i
√

2ñ + 1
(
ρ2ñ+1

00 − δ2ρ2ñ
11

)
. (24)

Using Eqs. (22)–(24) and some tedious algebra, we have
(in dimensional variables)

dρ2ñ+1
00

dt
= −κpsρ

2ñ+1
00 ,

dρ2ñ
00

dt
= κpsρ

2ñ+1
00 , (25)

where

κps = 4δ2(2ñ + 1)

1 + 4δ2(2ñ + 1)
κr2 . (26)

Thus we have indeed derived an effective dynamics for the
reduced density matrix of the storage mode: ρ = Trar2

[ρsr2 ] as
given by Eq. (3) of Sec. II with κps given by Eq. (26).

The key requirements for the above model reduc-
tion are the validity of the adiabatic approximation
(g2ph/κr1 � 1,gps/κr2 � 1) and the rotating wave approxi-
mation (gps/χsr2 � 1,κr2/χsr2 � 1). In Fig. 6, we compare
the validity of the model reduction for two choice of
parameters (cf. Fig. 5): the white square (purple curves)
corresponding to gps = 400κ1ph,g2ph = 250κ1ph, and εr1 =
1000κ1ph, and the black square (orange curves) corresponding
to gps = 120κ1ph,g2ph = 50κ1ph, and εr1 = 200κ1ph. For both
sets of curves, χsr2 = 2.5 × 104κ1ph,κr2 = κr1 = 1000κ1ph and
the target state is |C+

α=2〉. The model reduction [Eq. (3)]
approaches the full three-mode master equation [Eq. (11)] as
the adiabatic approximation (g2ph/κr1 � 1,gps/κr2 � 1) and
the rotating wave approximation (gps/χsr2 � 1,κr2/χsr2 � 1)
becomes more and more accurate.

IV. CONCLUSIONS

Following recent advances in the production of nonclassical
states of light, we have proposed a scheme to prepare,
and protect against decoherence, Schrödinger cat states of
given photon-number parity. Relying only on the application
of continuous-wave drives of fixed but carefully chosen
frequencies, we are able to engineer an effective Hamiltonian
and dissipation which stabilizes such states. The scheme
is independent of the phase of the drives and appears to
be robust with respect to the choice of their amplitudes.
Numerical simulations illustrate that the required parameters
are within reach of the ongoing experiments in the field of
quantum superconducting circuits. Such a stabilized source
of Schrödinger cat states is a valuable system component
that could be integrated in existing quantum information
processing schemes based only on linear optical scattering
elements and amplifiers.
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