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Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode
entanglement
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The quantum Fisher information and quantum correlation parameters are employed to study the application of
nonclassical light to the problem of parameter estimation. It is shown that the optimal measurement sensitivity of
a quantum state is determined by its intermode correlations (which depends on path entanglement) and intramode
correlations (which depends on the photon statistics). In light of these results, we consider the performance of
quantum-enhanced optical interferometers. Furthermore, we propose a Heisenberg-limited metrology protocol
involving standard elements from passive and active linear optics, for which the quantum Cramér-Rao bound is
saturated with an intensity measurement. Interestingly, the quantum advantage for this scheme is derived solely
from the nonclassical photon statistics of the probe state and does not depend on entanglement. We study the
performance of this scheme in the presence of realistic losses and consequently predict a substantial enhancement
over the shot-noise limit with current technological capabilities.
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I. INTRODUCTION

The requirement of performing extremely sensitive and
high-resolution measurements is ubiquitous in the fundamen-
tal and applied sciences. Some examples of this include:
gravitational wave detection via optical interferometers [1],
Ramsey interferometry for measuring properties of atoms and
molecules [2], and nanodevice fabrication using optical lithog-
raphy [3]. The fundamental limits on measurement sensitivity
and resolution are ultimately dictated by the laws of quantum
mechanics. The field of quantum metrology is concerned with
determining these limits and providing protocols to realize
them by exploiting quantum resources [4,5].

We can divide any measurement protocol into three stages:
probe preparation, probe modification, and probe readout
[see Fig. 1(a)]. Initially, a quantum state |�o〉 is prepared,
which serves as the probing state for the measurement.1 Then
|�o〉 is modified by some physical mechanism, resulting in
a state |�ϕ〉, which depends on a parameter ϕ that we are
interested in estimating. Finally, we measure the expectation
value of an observable Ô corresponding to |�ϕ〉 and the
resulting signal S(ϕ) = 〈�ϕ|Ô|�ϕ〉 is used to estimate ϕ. As
a concrete example, consider a coherent laser field |α〉 that is
fed into a 50:50 beam splitter (BS) to obtain the output probe
state V̂ |α〉 ⊗ |0〉 = | iα√

2
〉 ⊗ | α√

2
〉, where V̂ = ei π

4 (â†⊗b̂+â⊗b̂†)

represents the operation of a 50:50 BS. The two spatial modes
of this state, corresponding to the arms inside a Mach-Zehnder
interferometer (MZI), acquire a relative phase ϕ as described
by Û (ϕ) = exp[ iϕ

2 (â†â − b̂†b̂)]. Finally, the resulting state is
passed through a second 50:50 BS, and a relative intensity
measurement 〈Ô〉 = 〈â†â − b̂†b̂〉 is performed on the output
beams. This measurement signal is used to estimate ϕ with
estimation error �ϕ that is bounded from below by the
shot-noise limit (SNL), �ϕ � 1/

√
n̄, where n̄ = |α|2 is the
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1Note that this can be generalized to mixed states, however we will

mainly be concerned with pure states in this article.

mean photon number of |α〉. [See Fig. 1(b) for a diagram of
a MZI.] Specifically speaking, one should take into account
the number of times the experiment is carried out. If �ϕ is
determined from k experiments, each of which employ a probe
state containing n̄ photons on average, then the SNL is given
by �ϕ = 1/

√
kn̄. However, one typically omits this k term for

the sake of brevity as we will also do in the following.
In 1981, Caves showed that the unused port of the laser-

MZI (as described above) can be injected with a squeezed
vacuum state to attain a sub-SNL phase error [6]. The
probe state created by such a preparation procedure is path
entangled inside the MZI. The success of this protocol
initiated efforts to exploit the quantum nature of light in
order to reach the fundamental limits of quantum metrology.
In another approach, the maximally path-entangled NOON
state, |NOON〉 = (|n,0〉 + |0,n〉)/√2, is created inside the
MZI. This is the optimal n-photon state for noiseless quantum
interferometry as it attains a phase error �ϕ = 1/n (this
is called this Heisenberg limit) [7–16]. Much work has
focused on developing quantum schemes that can realize this
limit [7,9,10,17–23]. Unfortunately, these states are easily
decohered in the presence of losses, consequently losing their
sensitivity to phase changes [24,25]. This has initiated efforts
to find n-photon probe states that are optimal in the presence
losses [26–30]. Aside from improving sensitivity, another
challenge of quantum metrology is to generate bright probe
states (i.e., states with a large mean photon number) that yield
high-resolution measurement. Reference [23] and Ref. [31]
propose different methods of creating bright entangled states
inside a MZI.

Most quantum technologies rely on the resources of quan-
tum entanglement to accomplish tasks deemed impossible by
classical physics. Some examples of such technologies include
quantum computing [32], quantum teleportation [33], quantum
cryptography [34], quantum-enhanced photodetector calibra-
tion [35], quantum imaging [36], and lidar [37]. In addition,
the aforementioned metrology protocols employ probe states
that are path entangled inside the MZI to beat the classical limit
(i.e., the SNL). This has fostered the view that entanglement is
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FIG. 1. (Color online) (a) The three steps of a metrology proto-
col: probe preparation, probe modification, and probe readout. (b)
Example: The MZI, where a relative phase ϕ between modes â and
b̂ is inferred by observing the photon intensities of the output beams
of the interferometer.

necessary for quantum-enhanced metrology. References [38]
and [39] have challenged this view by demonstrating that
the advantage obtained via entanglement is contingent on the
measurement employed and the way in which the unknown
parameter is imprinted in the probe state, and have further
shown that under certain conditions entanglement can even be
disadvantageous in a metrology protocol.

In this manuscript, we show that the metrological power
of quantum light is determined not only by the intermode
correlations (i.e., path entanglement), but also by intramode
correlations (determined by the photon statistics within each
mode and quantified by the Mandel Q parameter). Hence we
are able to identity scenarios where the fragile property of
path entanglement can be discarded and a “quantum enhance-
ment” can be attained by leveraging solely the nonclassical
photon statistics of quantum light. Finally, motivated by these
findings, we are able to describe a metrology protocol which
attains Heisenberg-limited phase sensitivity without the aid
of entanglement. Conveniently, this proposal relies only on
commonly employed technologies of passive and active linear
optics. Based on the analysis provided, we predict a significant
improvement over the SNL in the presence of realistic losses.

II. QUANTUM FISHER INFORMATION

For a general metrology strategy as shown in Fig. 1(a), the
error �2ϕ in the estimated phase is bounded from below by
the inverse Fisher information, as given by the Cramér-Rao
bound, �2ϕ � 1/F . The Fisher information F is determined
by the measurement statistics used to estimate ϕ [41]. That is,
if a positive operator-valued measure (POVM) {�̂i} describes
a measurement on the modified probe |�ϕ〉, then

F =
∑

i

1

〈�ϕ|�̂i |�ϕ〉

(
∂〈�ϕ|�̂i |�ϕ〉

∂ϕ

)2

. (1)

Optimizing over measurements, we obtain the quantum Fisher
information, which for a pure state equals F = 4(〈� ′

ϕ|� ′
ϕ〉 −

|〈� ′
ϕ|�ϕ〉|2), where primes denote derivatives with respect to

ϕ. Hence the quantum Cramér-Rao bound reads [41–43]

�2ϕ � 1

F
� 1

F
. (2)

In the case of a MZI, where Û (ϕ) = exp[ iϕ

2 (â†â − b̂†b̂)]
describe the incurred phase shift, we have F =
�2(â†â − b̂†b̂) [31]. This expands to

F = �2(n̂a) + �2(n̂b) − 2 Cov[n̂a,n̂b], (3)

where n̂a = â†â, n̂b = b̂†b̂ and Cov[n̂a,n̂b] = (〈n̂a ⊗ n̂b〉 −
〈n̂a〉〈n̂b〉). Equation (3) conveys the resources important for
quantum-enhanced optical interferometry. The first two terms
describe the photon statistics in each arm of the MZI,
and the Cov[n̂a,n̂b] term describes correlations between the
arms of the MZI. To make this more explicit, we introduce
the Mandel Q-parameter, Qa = (�2n̂a − 〈n̂a〉)/〈n̂a〉 (likewise
for mode b̂), and the mode correlation parameter J =
Cov[n̂a,n̂b]/(�n̂a�n̂b) [44]. Therefore,

F = 〈n̂a〉(1 + Qa) + 〈n̂b〉(1 + Qb)

− 2
√

〈n̂a〉〈n̂b〉(1 + Qa)(1 + Qb)J . (4)

The probe states of interest in most phase estimation protocols
are symmetric with respect to an exchange (nonphysical) of
the MZI arms [45]. This path symmetry assumption implies
〈n̂a〉 = 〈n̂b〉 = n̄/2 and 〈n̂2

a〉 = 〈n̂2
b〉. Therefore,

F = n̄(1 + Q)(1 − J ), (5)

where n̄ is the average number of photons in the probe state.
For Q > 0 (−1 < Q < 0), the photon statistics within each
arm of the MZI is super-Poissonian (sub-Poissonian). The
intermode correlations (between the arms of the MZI) are
described by J , which depends on the path entanglement of
the probe state. We note that J ranges between −1 and 1,
meaning that Q should scale as n̄ in order to obtain Heisenberg
error scaling when n̄ is large. Surprisingly, this suggests that
the metrological advantage of nonclassical light is derived
primarily from the photon statistics and not path entanglement.
This fact is depicted in Table I, where we have tabulated the
values of Q, J , and F for various path-symmetric MZI probe

TABLE I. The Mandel parameter Q, mode correlation parameter
J , and the quantum Fisher information F are listed for various
MZI path-symmetric probe states: Laser light, NOON states [8],
twin squeezed vacuums, Caves state [6] (assuming the laser intensity
equals the squeezed state intensity), the amplified Bell state [31], the
twin Fock state [19], two-mode squeezed vacuum, and the entangled
coherent state [40] (assuming the mean number of photons n̄ is such
that e−n̄ � 1). Note that J is always between –1 and 1, meaning that
the supersensitivity of these probe states results from the scaling of
Q rather than mode entanglement when n̄ is large.

Probe state Q J F

| iα√
2
〉 ⊗ | α√

2
〉 0 0 n̄

NOON state n̄

2 − 1 −1 n̄2

|s(r,0)〉 ⊗ |s(r,0)〉 n̄ + 1 0 n̄2 + 2n̄

Caves state 1+2n̄+√
n̄(n̄+2)

4
1−√

n̄(n̄+2)
5+2n̄+√

n̄(n̄+2)
2n̄+n̄

√
n̄(n̄+2)+n̄2

2

Amplified Bell state 5n̄−11/n̄+2
8

−(n̄+1)2

5n̄2+10n̄−11
(3n̄2+6n̄−5)

4

Twin Fock state (n̄/2−1)
2 −1 n̄2

2 + n̄

Two-mode squeezed vacuum n̄ 1 0

Entangled coherent state n̄

2
−1

1+ 2
n̄

n̄2 + n̄
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states that are of interest in quantum metrology. Furthermore,
it is evident from Eq. (5) that even a separable state (i.e.,
states for which J = 0) can surpass the SNL, provided that
the photon statistics is super-Poissonian. For example, the twin
single-mode squeezed vacuum probe state |s(r,0)〉 ⊗ |s(r,0)〉,
where

|s(r,ϕ)〉 =
∞∑

j=0

(−1)j
√

(2j )!

2j j !

[
(tanh r)j√

cosh r

]
ei2jϕ |2j 〉 (6)

is the single-mode squeezed vacuum with phase ϕ, yields
Heisenberg-limited phase error. This follows from Eq. (5),
since F = n̄(n̄ + 2), where n̄ = sinh2 r . This sensitivity can
be attained in principle by performing a parity measurement
on one of the output modes of the MZI [46]. Also, note that
in Ref. [47] F = n̄(n̄ + 2) is optimal under the constraint of
fixed n̄. In the case when the photon number is fixed (i.e., are
no number fluctuations), the optimal state to be injected into
a MZI is the twin Fock state |n/2〉 ⊗ |n/2〉, giving the state
V̂ |n/2〉 ⊗ |n/2〉 inside the interferometer [19,47].

III. HEISENBERG-LIMITED SENSITIVITY WITHOUT
ENTANGLEMENT

Now we discuss a practical metrology strategy that provides
Heisenberg-limited phase error in the lossless case without
employing path entanglement (i.e., J = 0). In this scenario, a
quantum advantage is obtained because the photon statistics of
the probe state is super-Poissonian. Finally, we investigate the
performance of this scheme in the presence of realistic losses
and conclude that a significant improvement over the SNL
should be observable with current technological capabilities.

The probe state for this protocol is generated by pumping
a strong coherent field |β〉 into a χ (2) crystal. On occasion, a
photon from the pump field is converted into a pair of identical
photons of the probe field, each of which has half the frequency
of the pump field photon. This process, known as degenerate
parametric down-conversion, is described by the interaction
Hamiltonian

Ĥ = i�χ (2)(â2 ⊗ b̂† − â†2 ⊗ b̂), (7)

where b̂, b̂† corresponds to the pump field and â, â† corre-
sponds to the probe state. As a result of this interaction, the
state created in mode â is |s(r,0)〉, a single-mode squeezed
vacuum as described in Eq. (6).2 Note that in our proposal
the strong classical beam prepared in mode b̂ will serve as
the phase reference for the phase ϕ imprinted on the squeezed
state. In the undepleted pump regime, the output of the χ (2)

crystal is a product state of the coherent classical field and the
single-mode squeezed vacuum to be employed as the probe
state. Therefore we need not consider the classical pump field
in the calculation of the Fisher information [48].

Now we are interested in reversing this squeezing operation
so that |s(r,0)〉 is antisqueezed back to the vacuum |0〉. This
can be accomplished by either retroreflecting the output modes

2Another consequence of (7) is that the phase of the pump field is
inherited by the squeezed vacuum created in mode â. Without loss of
generality, we have set this phase to be 0.

FIG. 2. (Color online) The probe state for this scheme is obtained
by squeezing the vacuum state |0〉 to obtain |s(r,0)〉. A phase
shift occurs between |s(r,0)〉 and the pump field used to create
it, which results in the modified probe state |s(r,ϕ)〉. Finally, the
squeezing operation is reversed and a photon intensity measurement
is performed on the resulting state. Note that the pump field has been
omitted from this diagram for simplicity.

(both pump and down-converted photons) of the χ (2) crystal
back onto itself, or by sending these modes into a second χ (2)

crystal, which serves to reverse the effect of the first crystal.
Both of these techniques are feasible from an experimental
standpoint [49–55]. In order to successfully obtain |0〉 after
antisqueezing |s(r,0)〉, there must be a definite phase relation
between the probe mode â and the pump mode b̂. If mode
â acquires an unknown phase ϕ relative to mode b̂, then the
output of this protocol will be

|�f 〉 = Ŝ†(r)Û (ϕ)Ŝ(r)|0〉 = Ŝ†(r)Û (ϕ)|s(r,0)〉. (8)

Here we are denoting the squeezing and antisqueezing opera-
tions as Ŝ(r) = e

r
2 (â2−â†2) and Ŝ†(r), respectively. Additionally,

the phase shift acquired by mode â is described by Û (ϕ) =
eiϕâ†â , so that |�f 〉 = Ŝ†(r)|s(r,ϕ)〉 (see Fig. 2).

The unknown phase ϕ can be inferred from the photon
intensity of |�f 〉, which we determine to be

S(n̄,ϕ) = 〈�f |â†â|�f 〉
= 〈s(r,ϕ)|Ŝ(r)â†âŜ†(r)|s(r,ϕ)〉
= 4n̄(n̄ + 1) sin2 ϕ. (9)

In the previous line we have used the fact that Ŝ(r)âŜ†(r) =
â cosh r + â† sinh r and n̄ = sinh2 r . Likewise, we determine
the error in this observable to be

�2(â†â) = 〈�f |(â†â)2|�f 〉 − 〈�f |â†â|�f 〉2

= 8[n̄(n̄ + 1) sin2 ϕ]

×[1 + 2n̄ + 2n̄2 − 2n̄(n̄ + 1) cos 2ϕ]. (10)

We find that the measurement signal S(n̄,ϕ) is supersensitive
to small fluctuations in ϕ:

�ϕ =
[

�(â†â)∣∣ ∂
∂ϕ
S(n̄,ϕ)

∣∣
]

ϕ=0

= 1√
8n̄ + 8n̄2

. (11)

In fact, this error �ϕ scales better than the 1/n̄ Heisenberg
scaling. In addition, this value of �ϕ saturates the quantum
Cramér-Rao bound, as F = 4�2(â†â) = 8n̄(n̄ + 1).

The setup that we have proposed is most sensitive to losses
between Ŝ(r) and Ŝ†(r), and after Ŝ†(r) [56]. In order to model
the effect of photon loss in this scheme, we insert a fictitious
BS with transmissivity η1 after the phase shift and another one
with transmissivity η2 before the intensity detector. (See Fig. 2
and Appendix B for a detailed calculation.) Note that we have
the freedom to put the η1 BS before or after the phase shift
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because this noise operation commutes with the phase shifter.
Additionally, another cause of antisqueezing inefficiency is
mode mismatching. This source of error is also accounted for
by the η1 BS. After the modified probe state passes through
this fictitious BS, we trace over the environment to obtain [26]

σ̂ϕ =
∞∑

j=0

̂
(1)
j ρ̂ϕ̂

(1)†
j , ̂

(1)
j = (1 − η1)

j

2 η
1
2 â†â
1 âj

√
j !

, (12)

where ρ̂ϕ = |s(r,ϕ)〉〈s(r,ϕ)|. Likewise, we obtain the final
state, right before the photon detector:

σ̂f =
∞∑

j=0

̂
(2)
j ρ̂f ̂

(2)†
j , ̂

(2)
j = (1 − η2)

j

2 η
1
2 â†â
2 âj

√
j !

, (13)

with ρ̂f = Ŝ(r)σ̂ϕŜ†(r). In analogy with the lossless case, we
can repeat steps (9)–(11), but now the expectation values in
these equations should be computed with respect to the density
operator σ̂f . Due to the Gaussian nature of this protocol,
these calculations can be completed simply by considering
the second moments of the creation and annihilation operators
(see Appendix B). This yields the noisy signal

S(n̄,ϕ,η) = n̄η[1 + η + 2n̄η − 2(n̄ + 1)η cos (2ϕ)], (14)

where we have assumed η = η1 = η2 for simplicity. This
leads to an estimation error which depends on η, ϕ, and of

course, n̄:

�2ϕ = [
η3 + 2η + 12η3n̄3 + 16η3n̄2 + 8η2n̄2

+ 4η3n̄(n̄ + 1)2 cos(4ϕ) + 6η3n̄

− 2η(n̄ + 1)(η + 4η2n̄(2n̄ + 1) + 4ηn̄ + 1) cos(2ϕ)

+ 6η2n̄ + 4ηn̄ + 1
] ×

[
csc2(2ϕ)

16η3n̄(n̄ + 1)2

]
. (15)

In order to demonstrate that (15) predicts sub-SNL phase er-
ror, we plot the ratio of �ϕSNL = 1/

√
4n̄ to (15): �ϕSNL/�ϕ

for various values of η [see Figs. 3(a)–3(c)]. Here we have
used the fact that the SNL for the single-mode case is equal to
�ϕSNL = 1/

√
4n̄, which follows from the Fisher information

for a single-mode probe, F = 4�2(â†â). Note that we do not
claim that when losses are present one still attains a better
than 1/

√
4n̄ scaling in the large n̄ limit. Rather, as shown in

Fig. 3, a significant improvement over the SNL is attained for
experimental parameters (i.e., n̄ and ϕ) within the range of
current technological capabilities.

According to Refs. [57] and [58], only a constant enhance-
ment over the SNL is possible when losses are introduced.
We note here that our results respect the bounds derived
in these references. Although only a constant enhancement
over the SNL is possible, such an enhancement can still
be quite substantial for a given experiment (i.e., for given
experimental parameters n̄ and ϕ), as depicted in Fig. 3. It
should be possible in practice to keep losses low enough

FIG. 3. (Color online) (a)–(c) The ratio of the SNL to the phase error �ϕ of example 2, �ϕSNL/�ϕ, which indicates the extent to which
the SNL is beat. This has been plotted for ϕ = 10−3 (solid, black curve), ϕ = 2 × 10−3 (dashed, purple curve), and ϕ = 3 × 10−3 (dotted,
orange curve). Figures (a), (b), and (c) correspond to η = 0.99, η = 0.95, and η = 0.90, respectively. The shaded green region corresponds to
classical phase sensitivity (below the SNL). Finally, figure (d) shows a log-log plot of �ϕ versus n̄ for example 2 when ϕ = 10−3. Different
values of photon loss are considered: η = 0.99 (solid, blue curve), η = 0.95 (dotted, red curve), and η = 0.90 (dashed, gold curve). The SNL
is also depicted (solid, green curve).
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in order to observe such a significant enhancement. The
Steinberg group has already demonstrated squeezing and then
antisqueezing by retroreflecting with a high efficiency [51–54].
In addition, as proposed in Ref. [56], a value of η = 0.99
should be attainable if squeezing and antisqueezing occur in
the same solid-state system, where the nonlinear parts are
divided by a nonactive space layer. For η = 0.99, we predict a
fivefold improvement over the SNL when n̄ = 1.5 × 104. Note
that squeezed states with mean photon number greater than
n̄ = 3.5 × 104 have been reported in Ref. [59]. If η = 0.95, a
threefold improvement over the SNL should be observable for
n̄ = 2 × 104 [see Fig. 3(b)]. Not only does this scheme yield
high sensitivity to small changes in ϕ, it also provides high
resolution, as the probe state employed can be created with
current capabilities, where n̄ is in the order of many thousands
of photons [59].

Finally, note that Ref. [39] and Ref. [60] discuss other
Heisenberg-limited single-mode quantum metrology schemes.
These schemes require nonconventional probe preparation
techniques as they employ tailored superpositions of Fock
states or coherent states.

IV. CONCLUSION

In summary, we have shown that the metrological power
of quantum light is determined by its intermode correlations
and intramode correlations. This yields an alternative to
entanglement for leveraging quantum properties, namely,
nonclassical photon statistics, to surpass classical limitations.
This is exemplified by our experimental proposal, which
employs standard elements of passive and active linear optics
while saturating the quantum Cramér-Rao bound with a
simple intensity measurement. This proposal performs well
in the presence of realistic losses and generates bright probe
states (i.e., n̄ in the order of many thousands of photons
with current technological capabilities), thus overcoming
some major obstacles of supersensitive and super-resolving
measurement implementation.
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APPENDIX A: PARTICLE AND MODE ENTANGLEMENT

We illustrated in Sec. II of this manuscript that mode entan-
glement is not required to beat the SNL and obtain a quantum
advantage in metrology. However, there are other types of
entanglement that can be studied, including particle entangle-
ment. It can be shown that particle entanglement is necessary
but not sufficient for quantum-enhanced interferometry.3

The twin single-mode squeezed vacuum state discussed at
the end of Sec. II does not possess any mode entanglement.
Nevertheless, as discussed in Ref. [48], it does possess particle

3In preparation.

entanglement. Note that particle entanglement needs to be
defined in subspaces with a definite number of particles. For
instance, if the twin single-mode squeezed vacuum state were
projected into the two-particle subspace and normalized one
would obtain

�2|s(r,0)〉 ⊗ |s(r,0)〉 ∝ |2〉 ⊗ |0〉 + |0〉 ⊗ |2〉√
2

, (A1)

were �2 is the projector into the two-particle subspace. Note
that the notation used in the previous equation is that of
occupation numbers in second quantization, e.g., the last state
is a linear combination of a state with particles in arm (mode)
1 and two particles in arm (mode) 2. This state could also be
equivalently written in first quantization notation as

|2〉 ⊗ |0〉 + |0〉 ⊗ |2〉√
2

= |a〉1 ⊗ |a〉2 + |b〉1 ⊗ |b〉2√
2

, (A2)

where the notation |x〉1 ⊗ |y〉2 indicates particle 1 in mode x

and particle 2 in mode y. Note that the last state is entangled
with respect to the partition 1|2 and that it is, of course,
symmetrized with respect to the indices 1 and 2.

APPENDIX B: LOSSES

In this Appendix we provide details of the calculation of the
effects of losses in the metrology scheme discussed in the main
text. We note that the initial state, vacuum, and the operations
involved in its transformation, squeezing, amplitude damping
(photon loss), and rotations in phase space are Gaussian; hence
we only need to propagate the first and second moments of
the quadratures of the electric field to completely specify the
state. Furthermore, since there are no displacement operators
involved in the scheme, the first moments of the state are
always zero and we do not need to calculate them. We remind
the reader that a squeezing operator transforms operators
according to

âOUT = Ŝ(r)†âINŜ(r) = âIN cosh(r) − â
†
IN sinh(r), (B1)

and rotation operators transform the mode according to

âOUT = Û (ϕ)†âINÛ (ϕ) = âINe−iϕ. (B2)

Finally, amplitude damping can be modeled by sending
the mode of interest through a beam splitter of amplitude
transmissivity

√
η in which the second input port of the beam

splitter is in the vacuum state and looking at the output of
the transmitted arm ignoring (tracing out) the reflected output
mode. The effect of a beam splitter on the quadrature operator
is

âOUT = Û (η)†âINÛ (η) = √
ηâIN +

√
1 − ηb̂IN. (B3)

In the last equation b̂IN is the second input mode of the beam
splitter that later will be assumed to be prepared in vacuum
and traced out.

Because all the operations described before can be im-
plemented using passive and active linear optics, the output
operators are linear combinations of the input operators. This
also implies that the second moments of the outputs can be
written as linear combinations of the second moments of the
inputs. To use this property let us define the following vector:

v = (〈â2〉,〈(â†)2〉,〈â†â〉)T . (B4)
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Each of the transformations described before can be repre-
sented as an affine (linear transformations augmented with
translations) of the vector v: vOUT = MvIN + f. Explicitly, for
squeezing we have

As(r) =

⎛
⎜⎝

c2
r s2

r −s2r

s2
r c2

r −s2r

cr sr crsr c2r

⎞
⎟⎠ , (B5)

e(r) = ( − crsr , − crsr ,s
2
r

)
, (B6)

cr = cosh(r), sr = sinh(r), (B7)

for rotations we have

B(ϕ) = diag(e−2iϕ,e2iϕ,1), (B8)

f(ϕ) = 0, (B9)

and finally, for amplitude damping we have

C(η) = ηI3, (B10)

g(η) = 0, (B11)

where diag(x1,x2,x3) is a diagonal matrix with entries x1,x2,x3

and I3 is the 3 × 3 identity matrix.
To obtain the second moments we only need to apply the

operations in the right order to the second moments of vacuum,

vIN = (0,0,0):

vOUT = C(η)[A(−r){C(η)B(ϕ)[A(r)vIN + e(r)]} + e(−r)]

= C(η)[A(−r){C(η)B(ϕ)e(r)} + e(−r)]. (B12)

In the last equation vIN are the second moments of the state
before the protocol is applied, which are all zero since that
state is vacuum; likewise, vOUT are the second moments of the
state after the protocol has been applied, explicitly, they are

〈â†â〉 = ηn̄[1 + η + 2ηn̄ − 2(n̄ + 1)η cos(2ϕ)], (B13)

〈a2〉 = 〈(a†)2〉∗ = η
√

n̄
√

n̄ + 1[ηn̄(2 − e2iϕ)

− η(n̄ + 1)e−2iϕ + 1], (B14)

with n̄ = sinh2 r . Among the second moments we obtain the
value of the signal in the metrology protocol, 〈â†â〉. To evaluate
the error in the protocol, we also calculate the variance of this
observable,

�2â†â = 〈(â†â)2〉 − 〈â†â〉2

= 〈â†â†ââ〉 + 〈â†â〉 − 〈â†â〉2. (B15)

To finalize the calculation, we note that for a Gaussian state all
the normal ordered moments can be expressed as functions of
the first and second moments that we already calculated, and
that in particular,

〈â†â†ââ〉 = 2〈â†â〉2 + 〈â2〉〈(â†)2〉. (B16)
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