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Electron vortex beams subject to static magnetic fields
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The properties of electron vortex beams are examined when subject to static magnetic fields. The fields are
assumed to be applied after the electron vortex beam carrying a well-defined orbital angular momentum has been
created as a result of using a holographic mask. The shifts in the electron vortex beam energy momentum as well as
its angular momentum due to the presence of an axial uniform magnetic field are evaluated. Order-of-magnitude
estimates of the shifts are given with reference to typical electron vortex beams subject to moderate magnetic
fields.
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Considerable emphasis has been laid in recent years on the
physics and potential applications of electron vortex beams
[1–3]. Advances in this area swiftly followed their prediction
and realization in the laboratory and occurred after much work
was carried out on optical vortex beams, leading to a great deal
of fundamental physics as well as notable applications [4–7].
Electron vortex beams are a special case of particle vortices
first discussed by Bilalyncki-Birula and coworkers [8–10] and
the concept has recently been extended to neutral atom vortex
beams [11,12].

From a quantum-mechanical point of view, an electron
vortex beam consists of an axial flow of twisting probability
density and probability current density distributions which
implies that the beam is endowed with its own charge and
current as well as intrinsic spin sources and, like other vortex
beams, it carries orbital angular momentum l� per electron
about the beam axis where l is the winding number with
|l| � 0. In addition to generating electric and magnetic fields
associated with its own sources, the electron vortex beam
must respond to the application of externally applied magnetic
fields. Recent studies involving electrons in magnetic fields
have dealt with Landau levels and Aharonov–Bohm states
[13], the vacuum Faraday effect for electrons [14], and the
propagation of electron wave functions in a magnetic field
[15].

Here we base our treatment on the realization that, for
electron vortex beams of relatively low winding numbers l

subject to moderate magnetic fields, the formation of Landau
states is a weak feature and the physics is dominated by
the electron vortex state. Our main task is to quantify the
modifications to the properties of the electron vortex beam
arising from the application of the magnetic field.

In the absence of the magnetic field the Hamiltonian for a
vortex beam with a well-defined axis along z is given by

HEV = P 2

2m

= P 2
z

2m
+ P 2

⊥
2m

≡ Hz + H⊥, (1)
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where the subscripts z and ⊥ describe axial and in-plane
motions, respectively. A specific eigenfunction of HEV is
that for an electron vortex beam of winding number l in the
Bessel form expressed conveniently in cylindrical coordinates
r = (ρ,φ,z):

ψl (r,t) = NlJl (k⊥ρ) eikzzeilφe−iWt/�, (2)

where Nl is a normalization constant to be specified later,
k⊥ and kz are the transverse and axial components of the
wave vector of the vortex beam, respectively, such that
k2
⊥ + k2

z = k2 = 2mW
�2 , with W being the energy eigenvalue of

HEV corresponding to ψl , and Jl(k⊥ρ) is the lth-order Bessel
function. A typical value in the case of an electron vortex beam
created inside an electron microscope is W = 200 keV. The
transverse-wave-vector component is an adjustable parameter,
which enters the mask design. It indicates the extent of the
cross section of the electron vortex beam. Due to certain
practical constraints that are imposed by the fabrication
process involved in the creation of the holographic mask the
transverse-wave-vector component is typically in the range
k⊥ ≈ 109 to 1010 m−1.

The intrinsic properties of such an electron vortex beam
in the absence of external fields have been explored recently
[16–20]. In particular, it has been shown by explicit analysis
that the beam is endowed with a linear momentum vector
of magnitude �kz parallel to the beam axis and also an axial
orbital angular momentum vector of magnitude �l and all other
vector components vanish [18]. The vortex beam also carries
electric charge and current sources associated with its wave
function and hence it possesses its own electric and magnetic
fields due to these sources [19]. The coupling of the electron
vortex beam to atomic matter has been explored theoretically
and in relation to experiment [16,20].

It is interesting to explore how the transverse energy of the
electron vortex beam is shared between the radial motion and
the rotational motion. This can be seen by working out the
expectation value of H⊥ in cylindrical polar coordinates. We
find after some algebra

〈�l|H⊥|�l〉 = �
2k2

⊥
2m

{αl + l2βl}, (3)

where αl and βl are definite integrals which depend on
the winding number l. The first term between the brackets
represents the fraction of energy associated with the radial
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motion, while the second term is the fraction associated with
the rotational motion. It is straightforward to check that the
sum between the brackets is unity:

αl + l2βl = 1, (4)

as it should be.
In the presence of an external magnetic field B0 = ∇×A

the vortex Hamiltonian becomes

H = (P − eA)2

2m
− σ · B0, (5)

where σ is the spin magnetic moment. If the magnetic field is
constant and uniform, the vector potential can be expressed as
follows:

A = 1

2
B0×r, (6)

and the Hamiltonian can be shown to reduce to

H = HEV − M · B0 + e2

8m
{|B0|2r2 − (B0 · r)2}, (7)

where HEV is given by Eq. (1) and M is the total magnetic
moment

M = ML + MS = −μB

�
(L + 2S) , (8)

where L and S are the orbital and spin angular-momentum
vector operators. Note that μB |B0|/� = ωL is the Larmor
angular frequency with μB = �|e|/(2m) being the Bohr
magneton.

As will be explained below for vortex beams of not too large
winding numbers l in static magnetic fields of up to 10 T, all the
Hamiltonian terms apart from the first term on the right-hand
side of Eq. (7) are small and can be treated as perturbations.
The dominant feature in this case is the electron vortex, and
the effects of magnetic field are too small relative to the vortex
for consideration of the formation of Landau states. Thus we
write

H = HEV + Hint, (9)

where HEV is the zero-order Hamiltonian given by Eq. (1) and
Hint is the interaction Hamiltonian

Hint = −M · B0 + e2

8m
[|B0|2r2 − (B0 · r)2]. (10)

Perturbation theory is justifiable in this situation rather than
consideration of Landau levels since the typical energy arising
from the magnetic field is of the order �ωL and this is of the
order of an meV for a magnetic field of a few T. This is rather
small when compared with the zero-order vortex beam energy
of the order of keV. However, the relevant energy to compare
with the magnetic-field energy is the transverse energy of the
electron vortex beam, given by W⊥ = �

2k2
⊥/(2m) which is

approximately equal to 31 meV for k⊥ = 109 m−1 and is
approximately 3.1 eV for k⊥ = 1010 m−1

We take the magnetic-field vector pointing along the axis so
that B0 = |B0| ẑ and the leading interaction term is the −M·B0

term where the magnetic moment is given by Eq. (8). The last
terms in Hint represent the diamagnetic energy and are much
smaller that the −M·B0 term.

We now show that the system displays dichroism. The zero-
order state is an eigenfunction of H0 and is identified as the
electron vortex wave function given by Eq. (2). The spin state
can, as commonly done, be tagged to the space wave function.
We write

|l; sz〉 = |ψl (r,t) ; χs〉 , (11)

where |χs〉 is the spin state and is either spin up or spin
down such that Szχ±1/2 = ±�

2 χ±1/2. The expectation value
of −M·B0 in the state |l; sz〉 represents a shift in the vortex
beam energy. For l > 0 and sz = ±1/2 we have


Wl,±1/2 = μB |B0| (|l| ± 1) = �ωL (|l| ± 1) . (12)

On the other hand for l = −|l| and sz = ±1/2 we have the
shift in energy


W−|l|,±1/2 = μB |B0| (−|l| ± 1) = �ωL (−|l| ± 1) . (13)

Thus the two vortex beams with opposite but equal signs of
l experience different energy shifts when subject to a static
magnetic field, indicating dichroism. If the energy distributions
of the beam first in the field-free region and second when the
beam is subject to the influence of the magnetic field can both
be measured, they should, in principle, show the differences in
the effects of the different signs of the winding number l of the
vortex. Note that the magnitudes of the energy shifts increase
with increasing |l|.

In the presence of the magnetic field there exists an
additional linear momentum for which the volume density
is in the form

π = ε0Ev×(B0 + Bv), (14)

where Ev and Bv are the electric and magnetic fields associated
with the electron vortex by virtue of its charge and current
density quantum distributions. These have been evaluated in
detail by Lloyd et al. [18] who also found that the vortex fields
are small for electron vortex beams created in a typical electron
microscope. The leading momentum-density term arising from
the presence of the external magnetic field is [21]

π = ε0Ev×B0, (15)

and this leading linear momentum density is also responsible
for a leading shift in �L in the angular momentum vector due
to the presence of the external magnetic field

�L =
∫

d3rr×π . (16)

The total changes in the linear and angular momenta imparted
on the vortex beam due to the external magnetic field are found
by integration over space.

The external field is axial so that B0 = |B0| ẑ and the
vortex electric field is radial and depends only on the radial
coordinate ρ, so that Ev = El(ρ)ρ̂. Thus the change in the
linear momentum density is purely azimuthal and is given by

π = ε0Ev×B0

= ε0|B0|El (ρ) φ̂. (17)

However, the volume integral of π is zero because the
azimuthal component when integrated over all angles leads
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to a null result. Thus we have

�P =
∫

πd3r = 0. (18)

This means that the linear momentum of the electron vortex is
conserved in the presence of the magnetic field and remains,
as given in Ref. [18], equal to �kz ẑ.

Consider next the change in the orbital angular momentum
due to the presence of the external magnetic field, defined in
Eq. (16). Substituting from Eq. (17) into Eq. (16) and using
r = ρρ̂ + z ẑ, we find

�Ll = ε0|B0|
∫ 2π

0
dφ

∫ D/2

−D/2
dz

∫ ρm

0
ρdρ

× (ρρ̂ + z ẑ) × φ̂El(ρ)

= 2πε0|B0|D
∫ ρm

0
dρEl (ρ) ρ2dρ ẑ, (19)

where only the term involving the cross product ρ̂×φ̂ = ẑ
survives after integration, so there is no in-plane vector
component in �Ll . Here D is the beam length and the
electric-field function E l(ρ) is given by [19]

E l (ρ) = −e|Nl |2
2ε0

ρ
{
J 2

|l| (k⊥ρ) − J|l|−1 (k⊥ρ) J|l|+1 (k⊥ρ)
}
,

(20)

where |Nl| is the vortex wave function normalization factor

|Nl|2 = 1

2πD
∫ ρm

0 J 2
l (k⊥ρ) ρdρ

. (21)

Note that E(ρ) is invariant under the change of the sign of l.
In the evaluation of the ρ integrals we follow the procedure
by Lloyd et al. [19] where the upper integration limit is
appropriately chosen to coincide with the first zero xm = ρmk⊥
of the Bessel function in question. Substituting in Eq. (19) we
find

�Ll = e|B0|
2k2

⊥
Ql ẑ, (22)

where Ql is a dimensionless factor, which depends on l, and
is given by

Ql =
∫ xm

0 x3
[
J 2

|l|(x) − J|l|−1(x)J|l|+1(x)
]
dx∫ xm

0 xJ 2
|l|(x)dx

. (23)

Equation (22) is the predicted orbital angular momentum
gained by the electron vortex in the presence of the magnetic
field. Note that it is axial in direction and therefore imparts
an additional twisting action to the electron vortex. The
orbital-angular-momentum change can be written alternatively
in terms of an additional azimuthal speed vl and a change in
the magnitude of the radius al as follows:

�Ll = mωL

k2
⊥

Ql ẑ

= mvl

k⊥
ẑ

= mvlλ̄ ẑ, (24)

TABLE I. Ql versus |l|.

|l| Ql

1 9.77
2 15.58
3 21.80
4 28.38

where λ̄ = k−1
⊥ is the reduced transverse wavelength. The

corresponding change vl in the rotational speed is given by

vl = ωLQlλ̄ = ωLal, (25)

where we have identified al as the change in the radius of the
circular motion

al = Qlλ̄. (26)

The l dependence appears only in the change in the rotational
speed vl and the change in the orbit radius al . The l dependence
of the shift in the orbital angular momentum �Ll enters
through the constant Ql , defined in Eq. (23). Table I lists the
values of Ql for the lowest winding numbers, evaluated along
the lines of Ref. [18]. Note that Ql increases only slowly
with increasing |l|. We may now consider order-of-magnitude
estimates leading to values of the shifts arising from the
presence of the axial magnetic field.

In the first instance we explore the scenario of electron
vortex beams generated in an electron microscope with the
following parameters:

k⊥ ≈ 1010 m−1, λ̄ = 10−10 m, (27)

so that W⊥ ≈ 3.1 eV. The reduced transverse wavelength λ̄

is in fact a measure of the spread of the electron vortex beam
about its axis; this is the origin of referring to such electron
vortex beams as Angstrom beams. In the context of an electron
microscope the B fields are of the order of 1 T. The Larmor
frequency is ωL = e|B0|/(2m) ≈ 1011 s−1. The change in the
radius for the lowest value of l with reference to Table I is al =
Q1λ̄ ≈ 10−9 m. The additional rotational velocity vl is then
vl = ωLal ≈ 102 m/s. The magnitude of the largest energy
shift for a given l is


Wl = �ωL (|l| + 1) ≈ 0.05 (|l| + 1) meV. (28)

This energy shift increases with the magnitude of the winding
number. For sufficiently large values of |l|, the energy
shift could be measurable as the accuracy in the energy
measurement is currently about 10 meV. The shift in the orbital
angular momentum per electron in the beam can be estimated
for l = 1 and turns out to be

|�L1| = mvlλ̄ = 10−4
�. (29)

Thus the magnitude of the shift per electron of the orbital
angular momentum for vortex beams generated in an electron
microscope with the parameters given in Eq. (27) interacting
with a 1 T magnetic field turns out to be a small fraction of the
unit �.

It is clear that, to achieve a larger shift in the orbital angular
momentum, we need to increase the Larmor frequency ωL
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(equivalent to increasing the external magnetic field) and the
value of λ̄, which is controlled by the choice of k⊥ entering
the mask function as a basic property of the vortex. We shall
now assume that the magnetic-field strength can be increased
to 10 T and we can arrange for k⊥ to be one order of magnitude
smaller than in Eq. (27). We have

|B0| = 10 T, λ̄ = 10−9 m. (30)

This corresponds to a nanovortex rather than an Angstrom
vortex. We then have ωL = e|B0|/(2m) ≈ 1012 s−1, and al =
Q1λ̄ ≈ 10−8 m. These lead us to vl = 104 m/s and we finally
have for l = 1,

�L1 = 0.1� ẑ. (31)

For a large value of |l| there would be a larger shift of the beam
orbital angular momentum. The largest energy shifts for this
case are given by


W ≈ 0.5 (|l| ± 1) meV. (32)

This would be quite substantial for very large values of |l|.
However, the transverse energy for this scenario is W⊥ ≈ 31
meV, so that for not too large values of |l| this case is still within
the regime in which the electron vortex is dominant. However,
any sufficiently large increases in λ̄ and/or the magnetic field,
or in the magnitude of the winding number |l|, would result
in the perturbative regime being no longer valid. This would
be the scenario reported in a recent study where the electron
vortex beam was created with a radius chosen to match the
waist of the Landau states in the magnetic field [22].

In conclusion, we investigated the effects introduced by
a constant axial magnetic field on the basic properties of an
initially well-defined electron vortex beam. Our analysis and
results demonstrate that accompanying the presence of the
magnetic field are additional linear momentum and orbital
angular momentum densities which influence the shape and
propagation of the vortex by introducing additional azimuthal
momentum flow and axial as well as radial orbital-angular-
momentum flows. However, the volume integrals of the densi-
ties yield a null value for the shift in the linear momentum, but
they give rise to a finite axial orbital-angular-momentum shift.
The shift in the electron vortex orbital angular momentum

depends on the vortex parameters and the value of the magnetic
field. For a scenario in which a typical electron vortex beam
is generated in an electron microscope subject to a magnetic
field of 1 T, the shift in the orbital angular momentum due
to the presence of the magnetic field turned out to be a
relatively small fraction of the angular-momentum-unit � per
electron. However, in a second scenario where the transverse
reduced wavelength of the electron vortex and the magnetic
field strength are each an order of magnitude larger, the shift
of the orbital angular momentum turned out to be a sizable
fraction of �. This is despite the fact that, for small values
of |l|, the energy change due to the increased magnetic field
remains within the regime in which the electron vortex is
dominant. It is interesting to explore whether such shifts in the
properties of the electron vortex beam can be realized in the
laboratory.

In an electron microscope the beam energy is currently
measurable to an accuracy of about 10 meV, so the rotational
energy shifts in Eqs. (28) and (32) could be detectable within
an electron microscope for large values of |l|. The shift in the
orbital angular momentum should, in principle, be measurable
in terms of the corresponding change in the rotational velocity
vl and also in the change of the radius of the electron vortex
beam due to the presence of the magnetic field. We estimated
that the presence of the magnetic field leads to a change of
the beam radius one order of magnitude larger than the vortex
beam radius in the absence of the magnetic field.

The theory presented here assumes that the measurements
are taken while the vortex is in the region of the magnetic field.
A related problem which needs to be investigated concerns the
case when the vortex enters the region of the magnetic field
and measurement is carried out on exit in the field-free region.
This is essentially a scattering problem and will require an
entirely different treatment based on scattering theory, but we
shall not pursue this matter any further here.
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