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Cubic-quintic nonlinearity in superfluid Bose-Bose mixtures in optical lattices:
Heavy solitary waves, barrier-induced criticality, and current-phase relations
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We study superfluid (SF) states of strongly interacting Bose-Bose mixtures with equal mass and intracomponent
interaction in optical lattices both in the presence and absence of a barrier potential. We show that the SF order
parameters obey the two-component nonlinear Schrödinger equation (NLSE) with not only cubic but also quintic
nonlinearity in the vicinity of the first-order transitions to the Mott insulators with even fillings. In the case of no
barrier potential, we analyze solitary-wave solutions of the cubic-quintic NLSE. When the SF state changes from
a ground state to a metastable one, a standard dark solitary wave turns into a bubblelike dark solitary wave, which
has a nonvanishing density dip and no π -phase kink even in the case of a standing solitary wave. It is shown that
the former and latter solitary waves are dynamically unstable against an out-of-phase fluctuation and an in-phase
fluctuation, respectively, and the dynamical instabilities are weakened when one approaches the transition point.
We find that the size and the inertial mass of the solitary waves diverge at the first-order transition point. We
suggest that the divergence of the inertial mass may be detected through measurement of the relation between the
velocity and the phase jump of the solitary wave. In the presence of a barrier potential, we reveal that when the
barrier strength exceeds a certain critical value, the SF state that was metastable without the barrier is destabilized
towards complete disjunction of the SF. The presence of the critical barrier strength indicates that the strong
barrier potential qualitatively changes the criticality near the metastability limit of the SF state. We derive critical
behaviors of the density, the compressibility, and the critical current near the metastability limit induced by the
barrier. It is also found that the relation between the supercurrent and the phase jump across the barrier exhibits
a peculiar behavior, owing to the nontopological nature of the bubblelike solitary wave.
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I. INTRODUCTION

Since the realization of Bose-Einstein condensates (BEC)
of alkali atomic gases [1,2], experiments studying BEC have
been extensively compared with microscopic theories, and
it has been established that BEC of a weakly interacting
dilute Bose gas near zero temperature can be quantitatively
described by the Gross-Pitaevskii (GP) equation that is a
type of nonlinear Schrödinger equation (NLSE) with cubic
nonlinearity [3,4]. The wide applicability of the GP equation
allows one to predict BEC properties not only for ground
states but also for excited states and nonequilibrium dynamics.
Despite its simple form, the cubic nonlinearity originated
from the contact interparticle interaction gives rise to a large
number of intriguing effects and phenomena regarding BEC,
such as the Bogoliubov excitation spectrum [5], nonlinear
couplings between different collective modes [6], bright [7]
and dark solitons [8–10], vortices [11,12], supercurrent and
its breakdown above the critical velocity [13–18], and the
self-trapped motion in a double-well potential [19].

When a BEC is loaded onto an optical lattice, the inter-
particle interaction relative to the kinetic energy can be widely
controlled so that one can achieve a strongly interacting regime
where the superfluid (SF) state does not obey the GP equation
any longer. A clear demonstration of this fact is the observation
of the quantum phase transition between the SF and the Mott
insulator (MI) at commensurate fillings [20], which the GP
equation completely fails to capture. Instead, the SF state
near the SF-MI transition is described by a Lorentz-invariant

version of fourth-order Ginzburg-Landau (GL) theory, whose
saddle-point approximation corresponds to a nonlinear Klein-
Gordon equation with cubic nonlinearity [21,22]. Thanks to
the Lorentz invariance, there emerges new properties that are
absent in the GP equation, such as Higgs amplitude modes
[22–24] and criticality of the SF critical velocity for dynamical
instability [25,26]. When the interaction is further stronger at
low density, the system reaches the hardcore-boson regime
[27], where the SF state obeys a Landau-Lifshitz equation
that is qualitatively different from the GP equation [28–30].
Thus, strong correlations in the optical-lattice systems may be
utilized to design several types of SF that obey equations of
motion other than the GP equation.

In this paper, we show that a SF state of Bose-Bose
mixtures in optical lattices obeys a NLSE with cubic-quintic
nonlinearity in certain parameter regions. In the previous work
by the authors [31], the sixth-order GL action has been derived
from the two-component Bose-Hubbard model (BHM) in
the vicinity of the first-order SF-MI transitions. We apply
a saddle-point approximation to the GL action in order to
derive the two-component cubic-quintic NLSE. While cubic-
quintic NLSE has been analyzed in previous studies in the
contexts of first-order phase transitions of condensed-matter
systems [32–38] and nonlinear optics [39–42], we emphasize
the following three advantages of our optical-lattice system.
First, thanks to its exquisite controllability and cleanness, the
parameters in the original BHM can be widely varied, e.g., by
controlling the lattice depth, the density of the gas, the trapping
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potential, and other external fields. Second, the parameters
in the GL action are controllable as well because they are
explicitly related to those in the original BHM [31]. Third, the
long relaxation time specific to cold-atom systems enables
one to study nonequilibrium dynamics in greater details.
Having these advantages in mind, we specifically investigate
dark solitary waves and barrier-potential effects in the SF
state described by the cubic-quintic NLSE. Notice that the
advantages mentioned above are relevant also to the recently
proposed cold-atom systems with local three-body interactions
if a mean-field approximation is applied to the corresponding
models [43–45].

Existence of solitary waves is one of the simplest but
most essential consequences due to nonlinearity. Bright [7]
and dark [8–10] solitons of atomic BEC in the GP regime
have been observed, and their basic properties have been well
understood [4,46]. To provide clear contrast to the GP solitons,
we analyze dark solitary-wave solutions of the two-component
cubic-quintic NLSE. Previous studies have shown that there
are two types of single dark solitary-wave solution of the
cubic-quintic NLSE [37]. One is a standard dark solitary wave
that is a nonlinear excitation of a ground-state SF. It has a
π -phase jump when it is at rest, as in the case of the GP dark
soliton. On the other hand, when the SF state is metastable,
there emerges a bubblelike solitary wave that has no phase
jump at zero velocity. For both types of solitary wave, we
analytically calculate the size and the inertial mass to show
that they diverge at the first-order SF-MI transition point.
On the basis of the direct connection between the inertial
mass and the phase jump of dark solitary waves [47,48], we
propose a way to observe the divergence of the inertial mass in
experiments.

The divergent behaviors of the solitary waves are remark-
able in the sense that they manifest criticality associated with
the first-order quantum phase transition, which is not exhibited
by linear excitations or thermodynamic quantities of uniform
SF states. We also stress the importance of our prediction of
such a heavy dark solitary wave in connection with a recent
experiment. The experimental group of Zwierlein at MIT has
reported the observation of a surprisingly heavy dark soliton
in the system of a SF Fermi gas near the unitarity limit and
triggered renewed interest in solitary waves of ultracold gases
[49]. Although it has turned out that the observed object was
not a dark soliton but a single vortex line [50], the experiments
have posed a simple but fundamental question of whether or
not a soliton can be so heavy in principle. The dark solitary
wave with a diverging mass predicted in this paper serves as
the first example of such a heavy solitary wave if it is observed
in experiments.

When a barrier potential is present in the SF state, we
find that a barrier potential stronger than a certain threshold
value disrupts the SF state that was metastable without the
barrier. The presence of the critical barrier strength leads to the
emergence of new criticality at the metastability limit of the SF
state, which is often referred to as surface critical phenomena
[33–35,51,52]. This criticality is equivalent to that of the dark
solitary waves with no barrier potential in the sense that it
accompanies the divergence of the size of the density dip.
We point out that although thermodynamic quantities, such

as the average density and the compressibility, exhibit the
critical behaviors near the barrier-induced metastability limit,
the signals are too weak to use for identifying the criticality
numerically or experimentally.

Another important effect on BEC appearing as a conse-
quence of nonlinearity is a supercurrent past a barrier potential,
which means that a BEC acquires the superfluidity thanks to
the nonlinearity. Previous studies on the GP equation have
derived the relation between the supercurrent and the phase
jump across the barrier potential and shown that it becomes
the celebrated Josephson relation [53] in the strong-barrier
regime [54–56]. In the case of the cubic-quintic NLSE, we
show that the current-phase relation also approaches to the
Josephson relation with increasing the barrier strength as long
as the current-free SF state in the absence of the barrier is
a ground state. In contrast, when the SF state is metastable,
the Josephson relation is not held any longer because of the
disappearance of the metastable state above the critical barrier
strength. Moreover, we calculate the critical current above
which a current-carrying state is unstable, in order to show
that its critical behavior near the barrier-induced metastability
limit gives a stronger signal than the thermodynamic quantities
and that it may be useful for experimental detection of the
criticality.

The remainder of the paper is organized as follows. In
Sec. II, we derive the two-component cubic-quintic NLSE
from the sixth-order GL action. Parameter regions in which
the GL action is valid are presented. In Sec. III, considering a
uniform potential and a uniform solution, we briefly review
how the first-order quantum phase transition is described
within the sixth-order GL theory. Dark solitary-wave solutions
of the cubic-quintic NLSE are analyzed in Sec. IV, where a
special emphasis is placed on the divergence of the size and
the inertial mass of the solitary waves. In Sec. V, we derive
analytical solutions of the cubic-quintic NLSE in the presence
of a barrier potential. On the basis of the solutions, we discuss
the barrier-induced criticality and the current-phase relation.
The results are summarized in Sec. VI.

II. SIXTH-ORDER GINZBURG-LANDAU THEORY

We consider a binary Bose mixture confined in a hypercubic
optical lattice. We assume a sufficiently deep lattice so that the
system is well described by the two-component BHM [57]

Ĥ =
∑

α

⎧⎨
⎩−

∑
j

d∑
σ=1

tα(b̂†α, j b̂α, j+eσ
+ H.c.)

+
∑

j

[
Uα

2
n̂α, j (n̂α, j − 1) − μα, j n̂α, j

]⎫⎬
⎭

+
∑

j

UABn̂A, j n̂B, j , (1)

where j ≡ ∑d
σ=1 jσ eσ denotes the site index, jσ is an integer,

and d is the spatial dimension of the system. eσ denotes
a unit vector in direction σ , where the directions σ = 1,2,

and 3 mean the x,y, and z directions. tα and Uα are the
hopping and the intracomponent onsite interaction for the
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component α ∈ {A,B}. The local chemical potential μα, j ≡
μα − εα, j consists of the global chemical potential μα and
the external potential εα, j . The intercomponent interaction is
denoted by UAB . Hereafter, we assume the symmetry with
respect to the exchange A ↔ B, i.e., tA = tB ≡ t,UA = UB ≡
U,μA, j = μB, j ≡ μj ,μA = μB ≡ μ, and εA, j = εB, j ≡ ε j .
This condition is nearly satisfied in a mixture of the two
hyperfine states |F = 2,mF = −1〉 and |F = 1,mF = 1〉 of
87Rb, where the scattering length between two atoms in the
former state is only 5% smaller than that in the latter state
[58,59]. The 87Rb mixture is advantageous also in the sense
that the intercomponent interaction is controllable with use
of the Feshbach resonances [60,61] or state-dependent optical
lattices [62]. The ground-state phases of the two-component
BHM at T = 0 are rather rich even in the A ↔ B symmetric
case and have been addressed in previous theoretical studies
[31,63–80]. It is well known that the transition from SF to
MI occurs when Zt/U decreases or when μ/U changes for
a small Zt/U , as in the case of the single-component BHM
[21]. Here, Z is the coordination number. When d � 2 and
χ < UAB/U < 1, the transition to MI with even fillings is first
order [67,78], where the lower bound for ν = 2 is evaluated
as χ � 0.68 within the Gutzwiller mean-field approximation
[78,80]. Here, ν denotes the filling factor.

In the previous work of the authors [31], it has been shown
that in the vicinity of the first-order transition points the system
is described by the following effective action of the sixth-order
GL form:

Seff =
∫

dτ

∫
ddx

⎧⎨
⎩

∑
α

[
i�K(x)ψ∗

α

∂ψα

∂τ
− �

2J (x)

∣∣∣∣∂ψα

∂τ

∣∣∣∣
2

− �
2

2m
|∇ψα|2+r(x)|ψα|2− u(x)

2
|ψα|4− w(x)

3
|ψα|6

]

−uAB(x)|ψA|2|ψB |2 − wAB(x)(|ψA|4|ψB |2

+|ψA|2|ψB |4)

⎫⎬
⎭ , (2)

where ψα(x,τ ) denotes the SF order-parameter field of
the component α at x ≡ a j and real time τ . In Eq. (2),
the continuum limit has been taken under the assumption
that the lattice spacing a is much smaller than the healing
length ξ . This effective action well describes the SF state when
|ψα|2ad � 1. In the case of a homogeneous system, i.e., μ j =
μ, the parameter region around ν = 2, in which the effective
action is approximately valid, is depicted as the gray shaded
area in Fig. 1(a). Although the validity region looks very small
along the chemical potential axis, it is not so small in terms
of the filling factor, e.g., 1.75 < ν < 2.16 at Zt/U = 0.1.
Indeed, the filling factor can be controlled and detected within
the fluctuation on the order of δν ∼ 0.1 in recent experiments
using optical-lattice microscope techniques [81]. Thus, binary
Bose mixtures prepared in the validity region may be realizable
in future experiments. As seen in Fig. 1(b), the first-order
phase boundary and the SF metastability limit obtained by the
GL theory agree well with those computed by the Gutzwiller
mean-field approximation in Refs. [78,80]. If the transition
is of second order and sufficiently far from the tricritical
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FIG. 1. (Color online) Phase diagrams of the two-component
BHM of Eq. (1) in the (Zt/U,μ/U ) plane computed by means
of the Gutzwiller mean-field approximation, where UAB/U = 0.9.
The thin-solid and thick-solid lines represent the phase boundaries
of the first- and second-order transitions. The dashed and dotted
lines represent the metastability limits of the SF and MI states.
The dots mark the TCPs. Those lines and dots are taken from
Refs. [78,80]. In (a), the dashed-dotted line represents the contour of
|ψA|2ad = |ψB |2ad = 0.25 and the gray shaded area roughly marks
the region where the sixth-order GL theory is validated for describing
the SF state. In (b), the thin-dashed-dotted and thin-dotted lines
represent the first-order phase boundary and the SF metastability
limit calculated by the sixth-order GL theory.

point (TCP), at which the first-order transition shifts to the
second-order one, the sixth-order terms in the action can be
ignored. Otherwise, the ignorance of those terms leads to a
qualitative failure of the action.

All the coefficients in the effective action are explicitly
related to the parameters in the BHM through a perturbative
expansion [31]. More specifically, they are the functions
of the filling factor of the MI state ν0, Zt/U, UAB/U ,
and μ j/U . Obviously, their position dependence stems
from that of the local chemical potential. Assuming that
δμ j/U � 1, one may approximate the coefficients other
than r(x) as their values at μ j = μMI, namely, K(x) �
K|μ j = μMI, J (x) � J |μ j = μMI, u(x) � u|μ j = μMI, uAB(x) �
uAB |μ j =μMI ,w(x) � w|μ j =μMI , and wAB(x) � wAB |μ j =μMI .
See Appendix A for concrete values of the coefficients. Here,
δμ j ≡ μ j − μMI and μMI denotes the chemical potential value
at the metastability limit of the MI state. As for the coefficient
r(x), since r|μj =μMI = 0, one needs to include the next-order
term as r(x) � Cδμ j , where the constant C is positive in the
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upper side of the Mott lobe while it is negative in the lower
side. We assume that the system is sufficiently far from the tip
of the Mott lobe, at which K = 0, and focus on low-energy
physics of the system. In such a situation, the J term can be

ignored. Hereafter, we take the unit of K = 1, and u,uAB,w,
and wAB denote the values at μ j = μMI.

Minimizing the action under the condition δSeff

δψα
= 0 leads

to the time-dependent GL equations

i�
∂ψA

∂τ
=

[
− �

2

2m
∇2 − r(x) + u|ψA|2 + uAB |ψB |2 + w|ψA|4 + wAB(2|ψA|2|ψB |2 + |ψB |4)

]
ψA, (3)

i�
∂ψB

∂τ
=

[
− �

2

2m
∇2 − r(x) + u|ψB |2 + uAB |ψA|2 + w|ψB |4 + wAB(2|ψA|2|ψB |2 + |ψA|4)

]
ψB, (4)

which describe dynamics of the SF order-parameter fields. From a mathematical perspective, they constitute a type of two-
component NLSE with cubic and quintic nonlinearities, which has been first introduced in the context of nonlinear optics [41].
Thanks to the quintic terms, the SF states described by Eqs. (3) and (4) have many peculiar properties that do not emerge
in the GP equation [4]. Notice that when the system is located in the vicinity of the tip of the Mott lobe, where K = 0, the
left-hand sides of Eqs. (3) and (4), namely i�

∂ψα

∂τ
, are replaced with −�

2J
∂2ψα

∂τ 2 . This means that one can create SF states obeying
the two-component nonlinear Klein-Gordon equations with cubic and quintic nonlinearities by tuning the parameters in BHM.
Nevertheless, we restrict ourselves to analyses of the former equations in this paper.

Substituting ψα(x,τ ) = φα(x) into Eqs. (3) and (4), the stationary part of the order parameter φα(x) obeys the time-independent
GL equations [

− �
2

2m
∇2 − r(x) + u|φA|2 + uAB |φB |2 + w|φA|4 + wAB(2|φA|2|φB |2 + |φB |4)

]
φA = 0, (5)

[
− �

2

2m
∇2 − r(x) + u|φB |2 + uAB |φA|2 + w|φB |4 + wAB(2|φA|2|φB |2 + |φA|4)

]
φB = 0. (6)

Next, we consider small fluctuations from the stationary solution as

ψα(x,τ ) = φα(x) + Uα(x)e−iωτ − V∗
α(x)eiω∗τ (7)

to obtain the Bogoliubov equations

M̂U = �ωU, (8)

where

U = (UA,UB,VA,VB)t, (9)

and M̂ is a 4 × 4 matrix whose elements are given by

M11 = −M33 = − �
2

2m
∇2 − r(x) + 2u|φA|2 + uAB |φB |2 + 3w|φA|4 + wAB(4|φA|2|φB |2 + |φB |4), (10)

M22 = −M44 = − �
2

2m
∇2 − r(x) + 2u|φB |2 + uAB |φA|2 + 3w|φB |4 + wAB(4|φA|2|φB |2 + |φA|4), (11)

M12 = (M21)∗ = uABφAφ∗
B + 2wAB

[
φ2

Aφ∗
Aφ∗

B + φAφB(φ∗
B)2] , (12)

M13 = −(M31)∗ = −uφ2
A − 2wφ3

Aφ∗
A − 2wABφ2

A|φB |2, (13)

M14 = −(M41)∗ = −uABφAφB − 2wAB

(
φ2

Aφ∗
AφB + φAφ2

Bφ∗
B

)
, (14)

M23 = −(M32)∗ = −uABφAφB − 2wAB

(
φAφ2

Bφ∗
B + φ2

Aφ∗
AφB

)
, (15)

M24 = −(M42)∗ = −uφ2
B − 2wφ3

Bφ∗
B − 2wAB |φA|2φ2

B, (16)

M34 = (M43)∗ = −uABφ∗
AφB − 2wAB

[
φA(φ∗

A)2φB + φ∗
Aφ2

Bφ∗
B

]
. (17)
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FIG. 2. (Color online) Condensate density n0 as a function of r0, where we set a = 1 and w+ = 10. The thick-solid, thin-solid, and dashed
lines represent the ground-state, metastable, and unstable solutions. The dotted line in (c) marks the first-order transition point.

Here, ω and U are the frequency and the amplitude of the
normal mode of the SF order-parameter fields. Stability of
a stationary state is analyzed by solving the Bogoliubov
equations. When normal modes with complex frequencies are
present, the modes grow exponentially in time. This means
that the state is dynamically unstable [4].

III. UNIFORM SOLUTIONS

In this section, we consider a uniform potential r(x) = r0

and a uniform solution φA(x) = φB(x) = √
n0 to analyze the

SF-MI transition of the two-component BHM on the basis
of the sixth-order GL theory. This theory is an established
method for analyzing first-order transitions in general [36],
and it has been applied to the same problem in previous works
[31,80]. We specifically aim to evaluate the state diagram of the
SF along the axis of a dimensionless parameter u+/(w+n0),
which has not been addressed before. Here, u+ = u + uAB

and w+ = w + 3wAB . We below assume that w+ > 0.
Substituting φA(x) = φB(x) = √

n0 into Eqs. (5) and (6),
one obtains ( − r0 + u+n0 + w+n2

0

)√
n0 = 0. (18)

There are two types of solution of Eq. (18). One is

n0 = 0, (19)

which corresponds to the MI state in the sense that the SF
order parameters vanish. The other type includes two SF states
(n0 > 0)

n0 =
−u+ +

√
u2+ + 4r0w+

2w+
, (20)

n0 =
−u+ −

√
u2+ + 4r0w+

2w+
, (21)

which are the solutions of

r0 = u+n0 + w+n2
0. (22)

When u+ � 0, at which the transition is of second order,
the two solutions of Eqs. (19) and (20) can satisfy the physical
requirement n0 � 0. When r0 < 0, the MI state is the ground
state and the SF state is forbidden by the condition n0 � 0.
When r0 > 0, the SF state is the ground state and the MI state
is energetically unstable. As seen in Figs. 2(a) and 2(b), when

r0 increases from the MI region, the second-order transition
occurs at r0 = 0, at which n0 starts to grow from zero. When
u+ > 0, the growth of n0 behaves as n0 ∼ r0 near the transition
point [21]. This critical behavior can be captured even when
the sixth-order terms are ignored. When u+ = 0, the transition
is tricritical and n0 ∼ r

1/2
0 [31] as shown in Fig. 2(b).

When u+ < 0, all the three solutions can satisfy n0 � 0.
The solution of Eq. (21) is present when rSF � r0 � rMI,
and it corresponds to a dynamically unstable SF state, where
rSF = −u2

+/(4w+) and rMI = 0 denote the metastability limit
of the SF and MI states. As illustrated in Fig. 2(c), the MI
state corresponding to the solution of Eq. (19) is the ground
state when r0 < rt, a metastable state when rt < r0 < rMI,
and an energetically unstable state when r0 > rMI. Here,

rt ≡ − 3u2
+

16w+
denotes the first-order transition point that can

be derived by means of Maxwell’s construction. The SF
state of Eq. (20) is the ground state when rt < r0 and a
metastable state when rSF < r0 < rt. The unstable SF state of
Eq. (21) connects the metastable SF with the metastable MI.
Substituting r0 = rt into Eq. (20), we evaluate the jump of n0

at the transition point as n0 = −3u+/(4w+). This means that
when the dimensionless parameter ū+ ≡ u+/(w+n0) varies,
the first-order transition occurs at ū+ = −4/3 ≡ ū+,t. In a
similar way, the metastability limit of the SF states is given by
ū+ = −2 ≡ ū+,SF. The state diagram of the SF along the axis
of ū+ is depicted in Fig. 3.

We next analyze normal modes of the uniform SF states
φA(x) = φB(x) = √

n0 in order to address dynamical stability.
Substituting Eq. (22) into Eq. (8) and solving the eigenvalue
problem, one obtains the dispersion relation

�ω±( p) =
√

ε̃( p)
[
ε̃( p) + 2u±n0 + 4w±n2

0

]
, (23)

where p denotes the momentum of a normal mode, ε̃( p) ≡ p2

2m

the single-particle dispersion, u− = u − uAB , and w− = w −
wAB . ω+( p) is the dispersion of in-phase modes while ω−( p) is

FIG. 3. (Color online) Mean-field state diagram for the SF de-
scribed by the sixth-order GL action along the dimensionless
parameter ū+ ≡ u+/(w+n0), where w+ > 0.
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that of out-of-phase modes. When the momentum is so small

that p �
√

4m(u±n0 + 2w±n2
0), the normal modes take the

form of phonon dispersion that is gapless and linear,

ω±( p) � c±p, (24)

where

c± ≡
√

u±n0 + 2w±n2
0

m
(25)

is the sound speed. Equation (25) tells us that when u+n0 +
2w+n2

0 < 0 or, equivalently ū+ < ū+,SF, the in-phase modes
at low momenta cause dynamical instability, leading to the
collapse of the SF state. On the other hand, when u−n0 +
2w−n2

0 < 0 or, equivalently u−/(w−n0) > −2 for w− < 0,
the out-of-phase modes at low momenta cause dynamical
instability that results in the phase separation of the two
components of the SF. Notice that w− < 0 is typically satisfied
in the sixth-order GL action near the first-order SF-MI
transition derived from the two-component BHM.

IV. DARK SOLITARY WAVES

A. One-dimensional treatment

For a dark solitary wave to be long lived, the motion of
the SF states described by the sixth-order GL theory should
be restricted only to one spatial direction, say, the z direction.
We explain in the following how one can prepare such a one-
dimensional situation. Let us consider the system of the two-
component BHM of Eq. (1) at d = 3 with a parabolic trapping
potential

ε j = �⊥
(
j 2
x + j 2

y

) + �‖j 2
z . (26)

We assume that the potential is elongated towards the z

direction, i.e., �‖ � �⊥, and that the filling factor at the trap

FIG. 4. (Color online) Schematic picture of a spatial shell struc-
ture of the states in the two-component Bose-Hubbard system with a
largely elongated trapping potential, where ρ = √

x2 + y2.

center νctr satisfies 2 < νctr < 3. In such a setup, as indicated by
the dark-shaded area in Fig. 4, there is a region of the SF state
with 2 < ν < 3 around the trap center, and it is surrounded by
the shells of MI at ν = 2, SF at 1 < ν < 2, MI at ν = 1, SF
at 0 < ν < 1, and vacuum (ν = 0). Such a shell structure of
the phases has been observed in experiments with trapped
single-component Bose gases in optical lattices [81–83].
We also assume the two conditions, namely νctr − 2 � 1 and
R⊥ � a, such that the SF state around the trap center can
be well approximated by the sixth-order GL theory, where
R⊥ denotes the size of the SF region in the radial direction.
The latter condition is necessary in order for the nature of the
transition between MI at ν = 2 and SF at 2 < ν < 3 to be three
dimensional.

When the radial size R⊥ is much smaller than the healing
length ξ , the radial motion of the SF of 2 < ν < 3 can be
regarded as frozen so that the order parameters are decomposed
as [4]

ψα(x,τ ) = ψ‖,α(z,τ )φ⊥(x,y), (27)

where

φ⊥(x,y) = 1√
πR⊥

e
− x2+y2

2R2⊥ . (28)

Multiplying Eqs. (3) and (4) by φ⊥(x,y) and integrating them
with respect to x and y, one obtains the time-dependent GL
equations in one dimension

i�
∂ψ‖,A
∂τ

=
[
− �

2

2m

∂2

∂z2
− r‖(z) + g|ψ‖,A|2 + gAB |ψ‖,B |2 + f |ψ‖,A|4 + fAB(2|ψ‖,A|2|ψ‖,B |2 + |ψ‖,B |4)

]
ψ‖,A, (29)

i�
∂ψ‖,B
∂τ

=
[
− �

2

2m

∂2

∂z2
− r‖(z) + g|ψ‖,B |2 + gAB |ψ‖,A|2 + f |ψ‖,B |4 + fAB(2|ψ‖,A|2|ψ‖,B |2 + |ψ‖,A|4)

]
ψ‖,B, (30)

where g = u/(2πR2
⊥), gAB = uAB/(2πR2

⊥), f = w/(3π2R4
⊥),

fAB = wAB/(3π2R4
⊥), r‖(z) = r0 − �ω⊥ − 1

2mω2
‖z

2, and ω‖ =√
2C�‖/(ma2). Notice that the saddle-point approximation of

the GL action, namely, the mean-field equation of motion,
is valid as long as the healing length is larger than the
mean spacing of condensed particles in the SF state [4], i.e.,
|ψ‖,α|2ξ > 1. In the same way, the one-dimensional version of
the time-independent GL equations (5) and (6), the Bogoliubov
equations (8), the state diagram of Fig. 3, and the dispersion
relation of Eq. (23) are derived by the replacement of
∇2 → ∂2

∂z2 , φα(x) → φ‖,α(z), U(x) → U‖(z), r(x) → r‖(z),
u → g, uAB → gAB , w → f , wAB → fAB , and n0 → n1D.
Here, we do not explicitly show those results to avoid
redundancy.

B. Analytical solutions

We analytically solve the time-independent GL equations
with a uniform potential to obtain dark solitary-wave solutions.
For this purpose, assuming ξ � R‖, we ignore the parabolic
potential in the z direction, i.e., we set r‖(z) = r0 − �ω⊥ ≡
r1D. We focus on a solution φ‖,A(z) = φ‖,B(z) ≡ φ(z), which is
symmetric with respect to the exchange A ↔ B, and under this
restriction the time-independent GP equations are simplified
as (

− �
2

2m

d2

dz2
− r1D + g+|φ|2 + f+|φ|4

)
φ = 0, (31)

where g+ = g + gAB and f+ = f + 3fAB . Dark solitary-
wave solutions of the single-component NLSE with
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cubic-quintic nonlinearity of Eq. (31) have been analyzed in
previous studies [37–40,84]. However, some specific proper-
ties of the dark solitary waves, including the size, the inertial
mass, and the relation between the velocity and the phase
jump, have not been explicitly described. Since the analytical
solutions are necessary to obtain those properties, we start
our calculations with a brief review of the derivation of
the solutions. Notice that the solitary-wave solutions will be
utilized also for investigating effects of a barrier potential in
Sec. V.

Let us find a solution with a single dark solitary wave under
the boundary condition

lim
z→±∞ φ(z) = √

n1Dei[q(z−zs)±ϕ/2] (32)

and

|φ(z)| <
√

n1D for all z, (33)

where zs and q denote the position of the soliton and the wave
number of a supercurrent. ϕ corresponds to the so-called phase
jump of solitary-wave solutions. The boundary condition of
Eq. (32) determines the relation between r1D and n1D as

r1D = g+n1D + f+n2
1D + �

2q2

2m
, (34)

which is an extension of Eq. (22) including the effect of the
supercurrent.

We express the order parameter as φ(z) = √
n1DA(z)eiS(z),

where the amplitude A(z) is real and positive, and the phase
S(z) is real. Substituting this into Eq. (31) leads to a set of
equations as(

− �
2

2m

d2

dz2
+ �

2q2

2m
A−4−r1D+g+n1DA2+f+n2

1DA4

)
A=0,

(35)

A2 dS

dz
= q. (36)

Equation (36) is the equation of continuity. Taking f+n2
1D

and ξf ≡ �/

√
mf+n2

1D as the units of the energy and length,
Eqs. (35) and (36) are rewritten in a dimensionless form(

−1

2

d2

dz̄2
+ q̄2

2
A−4 − r̄ + ḡ+A2 + A4

)
A = 0, (37)

A2 dS

dz̄
= q̄, (38)

where

z̄ = z

ξf

, r̄ = r1D

f+n2
1D

, ḡ+ = g+
f+n1D

, q̄ = qξf . (39)

Multiplying Eq. (37) by dA
dz̄

and integrating it with respect
to z̄, one obtains(

dA

dz̄

)2

= 2

3
A−2(1 − A2)2

(
−3

2
q̄2 + γA2 + A4

)
, (40)

where γ ≡ 2 + 3ḡ+/2. Integrating Eq. (40) again leads to an
analytical expression of the amplitude

A(z) =
√

α+ + α−[η(z)]2

β+ − β−[η(z)]2
, (41)

where

η(z) = tanh

(
z − zs

ξ

)
, (42)

α± = ±(−γ + 3q̄2) +
√

γ 2 + 6q̄2, (43)

β± = 2 + γ ±
√

γ 2 + 6q̄2. (44)

Notice that α± � 0 and β± � 0 as long as 1 + γ − 3
2 q̄2 � 0.

From this solution, one immediately sees that the healing
length is given by

ξ = �√
m�0 − �2q2

, (45)

where �0 = g+n1D + 2f+n2
1D. Once the amplitude A(z) is

determined, one can calculate the phase S(z) by converting
Eq. (36) as

S(z) − S(zs) =
∫ z

zs

dz
q

A2

= q(z − zs) + sgn(q) arctan

[√
α−
α+

η(z)

]
, (46)

where S(zs) is arbitrary due to the global U (1) symmetry of
the system, and we set S(zs) = 0.

From Eqs. (41) and (46), φ(z) is constructed as

φ(z)√
n1D

= AeiS =
√

α+ + i sgn(q)
√

α−η(z)√
β+ − β− [η(z)]2

eiq(z−zs). (47)

This solution represents a dark solitary wave standing at z =
zs with a background supercurrent vn1D in the condensate,
where v ≡ �q/m denotes the velocity of the supercurrent.
Since we have assumed a uniform potential, the frame in which
a solitary wave remains at rest can be transformed by the
Galilean transformation into the one in which the solitary wave
is moving at the velocity −v in the static condensate

ψ ′(z′,τ )√
n1D

= φ(z)e−iq(z−zs)

√
n1D

=
√

α+ + i sgn(q)
√

α−η(z′ + vτ )√
β+ − β− [η(z′ + vτ )]2

, (48)

where z′ ≡ z − vτ and ψ ′(z′,τ ) denote the position and the
order parameter in the latter frame. The solution of Eq. (48) has
been obtained in previous studies [37–40,84]. When ḡ+ � 1,
the solution of Eq. (48) is reduced to the celebrated dark-soliton
solution of the GP equation [85]

ψ ′(z′,τ )√
n1D

= v

cg

+ i

√
1 −

(
v

cg

)2

tanh

(
z′ + vτ

ξg

)
, (49)

where cg ≡ √
g+n1D/m and ξg ≡ �/

√
mg+n1D − �2q2 denote

the sound speed and the healing length at f+ = 0.
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FIG. 5. (Color online) Superfluid order parameter φ(z) at
ḡ+ = −1.3 (a) and ḡ+ = −1.4 (b), where q = 0 and ξ0 = �/

√
m�0.

The dashed lines mark the inflection points.

The structure of the solitary wave given by Eq. (48)
substantially differs depending on whether the SF state is a
ground state or a metastable state [37,38]. To see it clearly,
we consider the case that q = 0, in which the solitary wave is
at rest. When γ > 0 or, equivalently, ḡ+ > −4/3 ≡ ḡ+,t, the
SF state is a ground state and the solitary-wave solution of
Eq. (48) is simplified as

φ(z)√
n1D

= i
√

γ η(z)√
1 + γ − [η(z)]2

. (50)

In Fig. 5(a), we plot φ(z)/(i
√

n1D) at q = 0 and ḡ+ = −1.3.
This solitary wave has a π -phase jump at z = zs, where
the amplitude vanishes, and in this sense it is a topological
excitation. The topological property is the same as that for the
black soliton of the GP equation [4].

When −1 < γ < 0 or, equivalently, ḡ+,SF < ḡ+ < ḡ+,t, the
SF state is metastable and Eq. (48) is reduced to

φ(z)√
n1D

=
√

−γ

1 − (1 + γ )[η(z)]2
, (51)

where ḡ+,SF = −2. In Fig. 5(b), we plot φ(z)/
√

n1D at q = 0
and ḡ+ = −1.4. It is worth noting that there is no phase jump in
this solitary wave in contrast to the standard solitary wave with
a π -phase jump. Thus, the dark solitary wave of a metastable
SF is a nontopological excitation and is often called a bubble
[37,38].

When γ < −1 or, equivalently, ḡ+ < ḡ+,SF, the integration
of Eqs. (40) to (41) fails and the solution of Eq. (48) is
irrelevant. This is associated with the fact that in this region of
γ the SF state is dynamically unstable towards collapse.

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0
0

1

2

3

4

l  
  /

 
in

f

g  / ( f n   )1D

g   +,t

+ +

0

FIG. 6. (Color online) linf versus ḡ+ at q = 0. The dashed line
marks the first-order transition point.

In order to explain how the solitary-wave transforms from
the π -jumped shape to the bubble, we focus on a certain length
scale linf that quantifies the size of a solitary wave near the
transition point. When γ < 1

2 or, equivalently, ḡ+ < −1, there
emerge two additional inflection points in φ(z), which are
marked as the cross points with the green dashed lines in
Fig. 5. From the condition d2φ

dz2 = 0, the inflection points are
determined, and we define linf as the distance between the two,
which is given at q = 0 by

linf

ξ0
=

{
2 arctanh (1 − 2γ )

1
2 if ḡ+,t < ḡ+ < −1,

2 arctanh (1 − 2γ )−
1
2 if ḡ+,SF < ḡ+ < ḡ+,t,

(52)

where ξ0 ≡ �/
√

m�0 is the healing length at q = 0. In Fig. 6,
we plot linf as a function of ḡ+. When the transition point ḡ+ =
ḡ+,t is approached, linf diverges as linf/ξ0 � − ln |ḡ+ − ḡ+,t|.
This means that there is no solution satisfying the boundary
condition of Eq. (32) at the transition point and that this
singularity separates the two different types of solitary wave.

The same divergent behavior is seen also in the number [37]

Ndef =
∑

α

∫ ∞

−∞
dz[|ψ‖,α(z,τ )|2 − n1D], (53)

which represents the deficit of condensed particles due to the
density reduction around z = zs. Substituting Eqs. (50) and
(51) into Eq. (53), one obtains the deficit number at q = 0:

Ndef

n1Dξ0

=
{

−4
√

1 + γ arctanh (1 + γ )−1/2 , if ḡ+ > ḡ+,t

−4
√

1 + γ arctanh (1+γ )1/2 , ifḡ+,SF < ḡ+ < ḡ+,t.

(54)

In Fig. 7, we plot Ndef as a function of ḡ+. Near the
transition point, since the deficit corresponds to a hole with the
density −2n1D and the size linf , the deficit number diverges as
Ndef � −2n1Dlinf � 2n1Dξ0 ln |ḡ+ − ḡ+,t|.

The divergence of linf is interesting in the sense that it
indicates that some properties of nonlinear excitations exhibit
criticality associated with the first-order transition, which
does not appear either in any linear excitations or in any
thermodynamic quantities of the uniform SF state. However,
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FIG. 7. (Color online) Deficit of condensed particles Ndef at q =
0 as a function of ḡ+. The dashed line marks the first-order transition
point. The dotted line represents the asymptote of Ndef at ḡ+ → ∞.

since the divergence is logarithmic, it seems rather hard to
observe in experiments. We therefore show that the inertial
mass of the solitary wave msol exhibits a stronger divergence
near the first-order transition. The inertial mass is defined as

msol = 2
∂

∂(v2)
�E, (55)

where

�E ≡ Esol − E0 (56)

represents the surplus of the energy of the SF state due to the
presence of the dark solitary wave [47,48]. The energy of the
SF state for a given ψ‖,α(z,τ ) is

E =
∫ ∞

−∞
dz

[ ∑
α

(
�

2

2m

∣∣∣∣∂ψ‖,α
∂z

∣∣∣∣
2

− r‖|ψ‖,α|2 + g

2
|ψ‖,α|4 + f

3
|ψ‖,α|6

)
+ gAB |ψ‖,A|2|ψ‖,B |2

+fAB(|ψ‖,A|4|ψ‖,B |2 + |ψ‖,A|2|ψ‖,B |4)

]
. (57)

Esol and E0 in Eq. (56) mean the energies for the solitary-wave solution of Eq. (48) and the uniform solution ψ‖,α = √
n1D,

respectively. The analytical expression of �E is given by

�E = f+n3
1Dξf√
6

[
(4γ + γ 2 − 6q̄2)arctanh

(√
β−
β+

)
+

√
1 + γ − 3

2
q̄2(2 − γ )

]
. (58)

Substituting Eq. (58) into (55), one obtains the inertial mass, and its analytical expression for v � c+ is written as

msol

mn1Dξ0
=

{
−4

√
1 + γ arctanh (1 + γ )−1/2 − 4 − 4

γ
, if ḡ+ > ḡ+,t

−4
√

1 + γ arctanh (1 + γ )1/2 − 4 − 4
γ
, if ḡ+,SF < ḡ+ < ḡ+,t.

(59)

In Fig. 8, we plot msol at v → 0 as a function of ḡ+. When the
transition point is approached, the inertial mass diverges as

msol

mn1Dξ0
� − 8

3(ḡ+ − ḡ+,t)
. (60)
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FIG. 8. (Color online) Inertial mass of the dark solitary wave msol

at q = 0 as a function of ḡ+. The dashed line marks the first-order
transition point. The dotted line represents the asymptote of msol at
ḡ+ → ∞.

Since the divergence of this form is stronger than the
logarithmic one, the inertial mass is advantageous over the
other quantities linf and Ndef for experimental observation of
the divergent behavior.

A possible way for observing the divergence of the inertial
mass is to measure the relation between the velocity v and the
phase jump ϕ of the solitary wave because the inertial mass is
directly connected with dϕ

dv
through the equation [47,48]

msol = mNdef + 2�n1D
dϕ

dv
. (61)

To derive the relation between v and ϕ, let us express the phase
S(z) of Eq. (46) at a distance far from z = zs:

lim
z→±∞ S(z) = q(z − zs) ± sgn(q) arctan

(√
α−
α+

)
. (62)

Comparing Eq. (62) to the boundary condition of Eq. (32), one
immediately obtains

ϕ = 2 sgn(q) arctan

(√
α−
α+

)
. (63)

Since in cold-atom experiments the velocity v is measured after
the phase jump ϕ is created with the use of phase-imprinting
techniques [10,49], it is convenient to express v as a function
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FIG. 9. (Color online) Soliton velocity v as a function of the
phase jump ϕ.

of ϕ by solving Eq. (63) with respect to v = �q/m. When the
SF state is a ground state (ḡ+ > ḡ+,t), one obtains

v

c+
=

⎧⎪⎪⎨
⎪⎪⎩

√
cos2 ϕ+γ+cos ϕ

√
cos2 ϕ+2γ+γ 2

2(1+γ ) , if 0 < ϕ < π

−
√

cos2 ϕ+γ+cos ϕ
√

cos2 ϕ+2γ+γ 2

2(1+γ ) , if − π < ϕ < 0.

(64)

In the limit of ḡ+ → ∞, Eq. (64) reduces to the velocity-phase
relation of the dark soliton of the GP equation [4]

v

cg

=
{

cos ϕ

2 , if 0 < ϕ < π

− cos ϕ

2 , if − π < ϕ < 0.
(65)

When the SF state is metastable (ḡ+,SF < ḡ+ < ḡ+,t),

v

c+
=

⎧⎪⎪⎨
⎪⎪⎩

√
cos2 ϕ+γ±cos ϕ

√
cos2 ϕ+2γ+γ 2

2(1+γ ) , if 0 < ϕ < ϕmax

−
√

cos2 ϕ+γ±cos ϕ
√

cos2 ϕ+2γ+γ 2

2(1+γ ) , if− ϕmax < ϕ< 0

(66)

where ϕmax = arcsin(1 + γ ). In Fig. 9, we plot v as a function
of ϕ for several values of ḡ+. When ḡ+ > ḡ+,t, v is a one-
valued function of ϕ. As ḡ+ decreases towards the transition
point, the value of v in the region of π/2 < |ϕ| < π is
significantly suppressed, which is indicated by the dashed and
thin-solid lines in Fig. 9. When the transition point is crossed, v
abruptly changes to a two-valued function of ϕ and the domain
of ϕ is shrunk to 0 < |ϕ| < ϕmax (see the dotted and thick-solid
lines in Fig. 9).

Differentiating Eq. (63) with respect to v leads to

dϕ

dv
= − −2(γ + γ 2 + 3q̄2)

√
1 + γ

c+(γ 2 + 6q̄2)
√

1 + γ − 3
2q2

, (67)

and taking the limit of v → 0, one obtains

dϕ

dv
= − 2

c+

(
1 + 1

γ

)
. (68)

Thus, the quantity dϕ

dv
exhibits the divergence of the form that

dϕ

dv
∼ (ḡ+,t − ḡ+)−1, reflecting the divergence of the inertial

mass. Hence, the divergence of the inertial mass may be

-2.0 -1.6 -1.2 -0.8
0

0.2

0.4

0.6

0.8

Im
[h

   
] /

0 g  / (f n  ) = -4- -

-3
-2.5
-2.1

-2

10 0.5-3
10-2 10-1

10-1

10-2

10-3

10-4

10-5

g  / (
f n  ) =

 -4

-
-

-3

-2.5 -2.1

-2

(a) (b)
g   +,t

g  / ( f  n   )1D+ + (g - g  ) / ( f  n   )1D+ +,t +

Im
[ h   ] /

0

FIG. 10. (Color online) Imaginary part of the frequency of the
most dominant unstable mode in the dark solitary-wave solutions as
a function of ḡ+. In (b), data are shown in a log-log scale.

observed through the measurement of the relation between
v and ϕ.

C. Stability analysis

For experimental observation of the dark solitary waves,
it is important to be aware of whether or not the solitary
waves are dynamically stable and, if not, whether or not
its lifetime is long enough for measurement of the solitary
waves. To answer these questions, we perform a linear stability
analysis by numerically solving the Bogoliubov equations
(8) with the solitary-wave solutions of Eqs. (50) and (51)
at q = 0. Unfortunately, we find that the solitary waves are
dynamically unstable at any values of ḡ+ and g−/(f−n1D),
where g− = g − gAB and f− = f − fAB . In Fig. 10, we plot
the imaginary part of the frequency Im[ω] of the most dominant
unstable mode, whose inverse corresponds to the lifetime of the
solitary wave. In the bubblelike solitary wave of a metastable
SF state (ḡ+,SF < ḡ+ < ḡ+,t), the unstable mode is an
in-phase mode, and the lifetime does not depend on
g−/(f−n1D). Notice that the dynamical instability of a bub-
blelike solitary wave has been pointed out in previous studies
[37,38]. On the other hand, in the standard dark soliton
of a ground-state SF (ḡ+ > ḡ+,t), the unstable mode is an
out-of-phase mode, which is specific to the two-component
system, and the lifetime is longer for smaller g−/(f−n1D). In
both cases, when the first-order transition point (ḡ+ = ḡ+,t)
is approached, Im[ω] decreases towards zero, meaning that
the lifetime becomes infinitely long. Thus, the lifetime of
the solitary wave can be sufficiently long for experimental
realization near the transition point.

V. BARRIER POTENTIAL

In Sec. IV, we have seen that some properties of dark
solitary waves exhibit critical behaviors in the vicinity of the
first-order transition point. However, since the solitary waves
are dynamically unstable excited states, it is better if there is
a certain system that exhibits the same criticality in a stable
equilibrium state. In this section, we investigate effects of a
barrier potential on the SF state described by the sixth-order
GL theory to predict that the SF state with a barrier potential
exemplifies such a system. Specifically, we consider a barrier
potential of a δ-functional form located at z = 0,

r‖(z) = r1D − V δ(z), (69)
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where V > 0 is a barrier strength. Notice that while we
continue to adopt the one-dimensional situation for consis-
tency with Sec. IV, discussions in this section are valid in
three-dimensional (3D) systems with a barrier potential in the
axial direction and a uniform potential in the radial direction,
namely,

r(x) = r0 − V δ(z). (70)

We assume that the condensate possesses a supercurrent Q

that flows through the barrier potential. In such a situation, the
order parameters satisfy the boundary conditions of Eqs. (32)
and (33). Since there is no external potential except at z = 0,
one can obtain the solution of the time-independent GL
equations by using almost the same procedure described in
the previous section:

A(z) =
√

α+ + α−[η̃(z)]2

β+ − β−[η̃(z)]2
, (71)

S(z) = qz + sgn(qz)

{
arctan

[√
α−
α+

η̃(z)

]
− θ0

}
, (72)

and

φ(z)√
n1D

= ei[qz−sgn(qz)θ0]
√

α+ + i sgn(qz)
√

α−η̃(z)√
β+ − β− [η̃(z)]2

, (73)

where

η̃(z) = tanh

( |z| + z0

ξ

)
, (74)

and

θ0 = arctan

[√
α−
α+

η̃(0)

]
. (75)

In Eq. (72), we have set S(0) = 0. The only one major
difference from the previous case is that the constant z0 has to
be determined by the boundary condition at z = 0:

dA

dz

∣∣∣∣
z=+0

= dA

dz

∣∣∣∣
z=−0

+ 2mV

�2
A(z = 0). (76)

Notice that the solution of Eqs. (71) and (72) obviously satisfies
the other boundary conditions at z = 0:

A(z = +0) = A(z = −0), (77)

S(z = +0) = S(z = −0), (78)

dS

dz

∣∣∣∣
z=+0

= dS

dz

∣∣∣∣
z=−0

. (79)

Substituting Eq. (71) into (76) leads to

4
√

2
3

(
1 + γ − 3

2 q̄2
)3

(γ 2 + 6q̄2){η̃(0) − [η̃(0)]3}
= V̄ {α+ + α−[η̃(0)]2}{β+ − β−[η̃(0)]2}, (80)

where V̄ = V/(f+n2
1Dξf ). Solving Eq. (80) for given values of

ḡ+, q̄, and V̄ , one determines z0 [or equivalently η̃(0)], which
fixes the solution of Eq. (73). In Figs. 11(a) and 11(b), we
plot A(z) and S(z) for ḡ+ = −1.3, q̄ = 0.01, and V̄ = 1.2 as
an example. Typically, there are two solutions. The one with
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FIG. 11. (Color online) Amplitude A(z) and phase S(z) of the
order-parameter field φ(z) in the presence of a barrier potential. We
set ḡ+ = −1.3, q̄ = 0.01, and V̄ = 1.2. The solid and dashed lines
represent the stable and unstable solutions.

a smaller phase jump has a smaller energy and is stable. In
the limit of V → 0, it becomes a solution with a flat density,
i.e., φ(z) = √

n1Deiqz. The other with a larger phase jump
is dynamically unstable and becomes the dark solitary-wave
solution of Eq. (47) at V → 0.

A. Critical barrier strength

We consider the case that the condensate is at rest in order
to show that a barrier potential destroys a metastable SF
state when V exceeds a certain critical value. When the SF
state is metastable (ḡ+,SF < ḡ+ < ḡ+,t) and q = 0, Eq. (80) is
simplified as

�ms [η̃(0)] = 0, (81)

where

�ms(x) = V̄ −
√

2
3 (1 + γ )3x − V̄ (1 + γ )x2

+
√

2
3 (1 + γ )3x3. (82)

In Fig. 12, we plot the function �(x) for three different values
of V̄ . As indicated by the dashed-dotted line in Fig. 12, when
V is smaller than a certain threshold value, say Vc, Eq. (81)
has two solutions in the range of 0 � η̃(0) � 1. In contrast,
when V > Vc, there is no solution of Eq. (81) at 0 � η̃(0) � 1
(see the dotted line in Fig. 12). This happens because of the
bubblelike structure of the dark solitary wave in the metastable
SF state. Since the density minimum of the bubblelike solution
of Eq. (51) is always finite, i.e., A(zs) > 0, the metastable SF
state can not hold a sufficiently deep density dip that is favored
for a strong barrier potential. From Eq. (81), one can derive an
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FIG. 12. (Color online) Function �ms(x) of Eq. (82) at
ḡ+ = −1.467. The dotted, solid, and dashed-dotted lines correspond
to V̄ = V̄c + 0.3, V̄c, and V̄c − 0.3, where V̄c = 0.3487.

analytical expression of the critical barrier strength

Ṽc =
√

8 − 20γ − γ 2 −
√

−γ (8 − γ )3

8(1 + γ )
(83)

�
{

1 − √
3(ḡ+,t − ḡ+), if ḡ+ � ḡ+,t

1√
3
(ḡ+ − ḡ+,SF), if ḡ+ � ḡ+,SF

(84)

where Ṽc = Vc/(�0ξ0). In Fig. 13, we plot the critical barrier
strength of Eq. (83) by the solid line. Notice that when
the δ-function potential is attractive, i.e., V < 0, there is
not such a threshold value of the potential strength for the
presence of a stable SF solution. The absence of solutions
at V > Vc indicates that the strong barrier potential destroys
the metastable SF state, leading to the disruption of the SF
(see Appendix B for more details).

When the SF state is a ground state (ḡ+ > ḡ+,t), the SF state
is stable for any strength of the repulsive barrier and there is
no critical barrier strength. In this case, Eq. (80) at q = 0 is
reduced to

�gs [η̃(0)] = 0, (85)

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0
0.0

0.5
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2.0

V 
/(Δ

   
 )

0

g  / ( f  n   )1D+

g   +,t

0

FIG. 13. (Color online) State diagram in the (ḡ+,Ṽ ) plane at
q = 0. The solid line represents the critical barrier strength of
Eq. (83).

where

�gs (x) =
√

2

3
(1 + γ )3x − V̄ (1 + γ )x2

−
√

2

3
(1 + γ )3x3 + V̄ x4. (86)

Equation (85) has a trivial solution η̃(0) = 0, which implies
z0 = 0. Such a solution is equivalent to the dark solitary-wave
solution of Eq. (50) standing at z = 0. Moreover, there
is always another solution that satisfies 0 � η̃(0) � 1. For
instance, when V̄ � 1, the latter solution is η̃(0) � 1/Ṽ ,
where Ṽ = V/(�0ξ0), and it obviously exists even up to the
limit of V → ∞.

B. Barrier-induced criticality

The fact that the critical barrier strength terminates at a
finite value (Ṽc = 1) in the limit of ḡ+ ↗ ḡ+,t means that the
line of the metastability limit represented by the solid line
in Fig. 13 switches to the line of ḡ+ = ḡ+,t above Ṽ = 1 as
indicated by the dotted line in Fig. 13. At the metastability
limit resulting from the barrier, the size linf of the density dip
around the barrier diverges logarithmically in the same way
as the divergence of linf of the dark solitary waves seen in
Sec. IV. We recall that linf is defined as the distance between
the two inflection points of A(z), and the one for ḡ+ > ḡ+,t in
the presence of the repulsive barrier is given by

linf

ξ0
= 2 arctanh(1 − 2γ )1/2 − z0

ξ0
. (87)

To gain simple analytical insights, let us consider the region of
Ṽ � 1, where z0/ξ0 � 1/Ṽ � 1 and the second term in the
right-hand side of Eq. (87) can be ignored. In this case, it is
easy to see that when r1D is varied from the ground-state SF
side to the transition point r1D,t, the density-dip size diverges
logarithmically as linf � −ξ0 ln( r1D

r1D,t
− 1). This logarithmic

divergence survives even out of the region of Ṽ � 1 as long
as Ṽ � 1.

At a glance, it seems that the first-order SF-MI transition
shifts to a second-order one associated with the switch of the
metastability limit line. However, this is only true in the strict
limit of L → ∞, and the transition is weak first order at a large
but finite system [35,51,52]. To explain this, we evaluate the
energy of the SF state in the presence of a barrier potential and
compare it with the energy of the MI state that is zero within
the mean-field approximation. Substituting Eq. (73) into (57)
at ḡ+ > ḡ+,t,q = 0, and Ṽ � 1, one obtains

E � f+n3
1DL

{
−2

3
γ + ξf√

6L
[(4γ + γ 2)arctanh(1 + γ )−

1
2

+
√

1 + γ (2 − γ )]

}
. (88)

The condition E = 0 leads to the first-order transition point in
the presence of the barrier potential

ḡ+,∗ � ḡ+,t + 2ξ0

3L
. (89)

Thus, the shift of the transition point ḡ+,∗ − ḡ+,t is on the
order of ξ0/L, which vanishes in the strictly thermodynamic
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limit. From Eq. (89), the size of the density dip at the shifted
transition point ḡ+ = ḡ+,∗ is given by linf � ξ0 ln L

ξ0
. This

means that the first-order transition precedes the divergence
of linf , and the critical regime near the metastability limit can
not be reached if one looks only at ground states. However,
since the SF state is stable anyway up to the metastability
limit, one can approach the critical region by starting from a
ground-state SF and changing the parameter ḡ+ towards the
metastability limit.

The divergence of the density-dip size leads to the emer-
gence of criticality in thermodynamics quantities, such as
the averaged density nave = Ntot/L and the compressibility
κ = 1

nave

∂nave
∂μ

∝ ∂nave
∂r1D

. Here, the total number of condensed
particles Ntot is given by

Ntot =
∑

α

∫
dz|ψ‖,α(z,τ )|2. (90)

Substituting Eq. (73) at γ > 0 and q = 0 into Eq. (90), one
obtains

nave = 2n1D

{
1 − 2

ξ0

L

√
1 + γ

[
arctanh

(
1√

1 + γ

)

− arctanh

(
η̃(0)√
1 + γ

)]}
(91)

� 2n1D

[
1 + ξ0

L
ln

(
r1D

r1D,t
− 1

)]
. (92)

The compressibility exhibits a stronger signature of the criti-
cality as κ ∝ ξ0

L
( r1D
r1D,t

− 1)−1. However, the divergent behavior
of κ is prominent only at a tiny region r1D

r1D,t
− 1 � ξ0/L,

and such precise control of the parameter is unrealistic in
experiments. As we will see in the following, a critical behavior
of the critical current emerges in a much wider range of the
parameter.

C. Current-phase characteristics

Applying the boundary condition of Eq. (32) to the solution
of Eq. (73), one obtains the relation between the phase jump
ϕ and the current Q = �q/m:

ϕ = 2 sgn(q)

[
arctan

(√
α−
α+

)
− θ0

]
. (93)

In Figs. 14(a) and 14(b), we depict the current-phase relation
at ḡ+ = −1.2 > ḡ+,t. When V̄ increases, it asymptotically
approaches the Josephson relation [53]

Q

n1Dc+
≡ Q̃ � γ

2(1 + γ )Ṽ
sin ϕ, (94)

which is indicated by the dashed-dotted (V̄ = 5) and thin-solid
(V̄ = 20) lines in Fig. 14(b). In the region of ḡ+,SF < ḡ+ <

ḡ+,t, topology of the current-phase relation is different. As seen
in Fig. 14(c), Q is a two-valued function of ϕ, which forms
a loop structure. This peculiar behavior stems from the fact
that the dark solitary wave at q = 0 is nontopological. When
V̄ increases, the loop shrinks, and it vanishes at V = Vc.

For given values of ḡ+ and Ṽ , there is the critical current Qc,
above which a stable SF state is absent. The critical currents of
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FIG. 14. (Color online) Current Q as a function of the phase
jump ϕ at ḡ+ = −1.2 (a) and (b), and ḡ+ = −1.467 (c). The
dashed-dotted (V̄ = 5) and thin-solid (V̄ = 20) lines represent the
Josephson relation of Eq. (94).

a moving SF through a barrier potential have been measured
in experiments [13,15–18]. When ḡ+ > ḡ+,t and Ṽ � 1, one
can derive the critical current from Eq. (94):

Q̃c � γ

2(1 + γ )Ṽ
. (95)

At the limit of ḡ+ → ∞, the critical current is given by
Q̃c � 1/(2Ṽ ), which agrees with the previous result for the GP
equation [55,86]. Equation (95) implies that the critical current
vanishes as Q̃c ∝ ḡ+ − ḡ+,t ∝ r1D

r1D,t
− 1 when the metastability

limit at Ṽ � 1 (ḡ+ = ḡ+,t) is approached. In Fig. 15, we plot
Q̃c as a function of ḡ+ for several values of Ṽ . The dashed
(Ṽ = 1), dashed-dotted (Ṽ = 2), and thin-solid (Ṽ = 5) lines
indeed exhibit the linear dependence in a reasonably wide
range near the transition point, in contrast to the thermody-
namic quantities. This property is useful for identifying the
criticality in experiments. In Fig. 16(a), we plot the critical
current as a function of the barrier strength. When Ṽ increases,

013630-13



IPPEI DANSHITA, DAISUKE YAMAMOTO, AND YASUYUKI KATO PHYSICAL REVIEW A 91, 013630 (2015)

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

g  / ( f  n   )1D+ +

Q
 / 

(n
   

c 
)

1D
+

c

V = 0.1

0.5

1 2

5

~

g   +,t

FIG. 15. (Color online) Critical current Qc as a function of the
barrier strength V for several values of ḡ+ across ḡ+ = ḡ+,t.

Q̃c monotonically decreases and its asymptotic behavior at
Ṽ � 1 agrees well with Eq. (95).

In the case of the metastable SF state (ḡ+,SF < ḡ+ < ḡ+,t),
assuming that ḡ+ − ḡ+,SF � 1, q̄ � 1, and V̄ � 1, one can
analytically solve Eq. (80) to obtain a useful expression

Q̃c �
√

1 −
( √

3Ṽ

ḡ+ − ḡ+,SF

)2/3

. (96)
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FIG. 16. (Color online) Critical current Qc as a function of ḡ+ for
several values of Ṽ . In (b), the dotted line represents the approximated
value of Eq. (96).
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FIG. 17. (Color online) GL parameters along the metastabil-
ity limit of the MI state at ν = 2, as functions of μ/U for
UAB/U = 0.7 (a), 0.8 (b), and 0.9 (c). The solid, thick-dotted,
thick-dashed-dotted, thick-dashed, and thin-dashed lines represent
u/(adU ), uAB/(adU ), w/(a2dU ), wAB/(a2dU ), and K , respectively.
The thin-dashed-dotted and thin-dotted lines mark the TCPs and the
μ value that gives the maximum hopping.

In the vicinity of the metastability limit, Eq. (96) implies that
Q̃c ∝ √

ḡ+ − ḡ+,c for a fixed V while Q̃c ∝
√

Ṽc − Ṽ for a
fixed ḡ+, where ḡ+,c and Ṽc denote the values of ḡ+ and Ṽ at the
metastability limit. In Fig. 15, the square-root dependence of
the critical current is corroborated by the thick-solid (Ṽ = 0.1)
and dotted (Ṽ = 0.5) lines near ḡ+ = ḡ+,c. In Fig. 16(b), Q̃c

versus Ṽ is plotted and we see that the expression of Eq. (96)
represented by the dotted line well agrees with the precise
numerical solution (the dashed-dotted line). All the data at
ḡ+,SF < ḡ+ < ḡ+,t exhibit the square-root dependence near
V = Vc. Thus, in terms of the critical current, the barrier-
induced criticality at Ṽ � 1 that is linear with respect to ḡ+ −
ḡ+,t is clearly distinguishable from the criticality at Ṽ < 1.

VI. CONCLUSIONS

We have studied superfluid (SF) Bose-Bose mixtures
in optical lattices assuming that the hopping energy, the
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intracomponent interaction, and the chemical potential for the
two species are equal. On the basis of the sixth-order Ginzburg-
Landau (GL) theory, we have shown that the SF state near
the first-order quantum phase transition to the Mott insulator
(MI) is described by the two-component nonlinear Schrödinger
equation (NLSE) with cubic and quintic nonlinearity. We
analyzed dark solitary-wave solutions of the cubic-quintic
NLSE with a uniform potential to show that some properties
of the solitary waves, such as the size and the inertial mass,
exhibit critical behaviors near the first-order SF-MI transition.
This criticality may be identified in experiments by measuring
the velocity-phase relation.

Using the dark solitary-wave solutions, we have obtained
the solution of the cubic-quintic NLSE with a barrier potential
of δ-function form. For the SF state that was metastable without
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FIG. 18. (Color online) Dynamics of the SF state in response to
the linear ramp of the barrier potential. We set q = 0, ḡ+ = −1.6,

ḡ− = 6, Vmax = 0.5Vc, and τrp = 10�/�0. In (a), (b), and (c), the
time evolutions of the barrier potential, the density at z = 0, and the
density distribution are depicted. In (d), the density distribution at
τ = τf = 50�/�0 is plotted.

the barrier, we have found critical barrier strength above which
the SF state is destabilized towards disjunction. Moreover, we
discussed criticality near the new metastability limit induced
by the strong barrier. We have derived the critical behavior of
the critical current, which may be measured in experiments.
We also obtained the current-phase relation, and in particular
we found its peculiar behavior for metastable SF states.

While we have focused on the dark solitary waves and
barrier-potential effects in this paper, the cubic-quintic NLSE
may be used to analyze other diverse effects and phenomena,
including the formation of BEC droplets [87,88] and nonlinear
excitations in higher dimensions [37,38,42]. In this sense,
this work has opened up new possibilities for the studies
of exotic nonlinear effects and phenomena in optical-lattice
systems.
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FIG. 19. (Color online) Dynamics of the SF state in response to
the linear ramp of the barrier potential. We set q = 0, ḡ+ = −1.6,

ḡ− = 6, Vmax = 2Vc, and τrp = 40�/�0. In (a), (b), and (c), the time
evolutions of the barrier potential, the density at z = 0, and the density
distribution are depicted. In (d), the density distribution at τ = τf =
200�/�0 is plotted.
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APPENDIX A: COEFFICIENTS IN
THE GINZBURG-LANDAU ACTION

In this Appendix, we show specific values of the coefficients
K,u,uAB,w, and wAB in the Ginzburg-Landau action of
Eq. (2). To evaluate these quantities, we use the analytical
expression given in Ref. [31]. In Fig. 17, we plot the
coefficients at the metastability limit of the Mott insulating
state μ = μMI, where ν = 2.

APPENDIX B: DYNAMICS OF THE DISRUPTION
OF A SUPERFLUID

In this Appendix, we corroborate that the δ-function
repulsive potential at V > Vc completely disrupts the SF that
was metastable in the absence of the potential, as we have
already stated in Sec. V A. For this purpose, we compute
real-time dynamics of the metastable SF state subject to a

linear ramp of the barrier potential

V (τ ) =
{
Vmax

τ
τrp

, 0 � τ < τrp

Vmax, τ > τrp
(B1)

by solving the time-dependent GL equations of Eqs. (3) and
(4). Here, Vmax and τrp denote the maximum value of V (τ )
and the ramp time of the barrier. Specific forms of V (τ ) used
in our calculations are illustrated in Figs. 18(a) and 19(a).
In the following calculations, we assume the periodic bound-
ary condition and take ḡ+ = −1.6, g−/(w−n1D) = −6, and
L = 100ξ0, where L denotes the system size in the z direction.
At this value of ḡ+, the critical barrier strength is Ṽc = 0.3036.

Let us first analyze the case that Vmax < Vc. In Fig. 18,
we show the results for Vmax = 0.5Vc and τrp = 10�/�0. As
seen in Figs. 18(b)–18(d), the density around the barrier is
suppressed in response to the repulsion by the barrier, and the
density distribution remains almost steady after τ = τrp. This
exemplifies the fact that the metastable SF state is compatible
with a barrier potential as long as V < Vc.

We next consider the case that Vmax > Vc. In Fig. 19, we
show the results for Vmax = 2Vc and τrp = 40�/�0, where τrp

is taken such that the ramp rate is the same as the previous
case. In Figs. 19(b) and 19(c), before V (τ ) reaches Vc, the
density around the barrier exhibits a nearly linear suppression
as in the previous case. However, after Vc is exceeded,
the density suppression is dramatically accelerated until the
density around the barrier vanishes. The vanishing density
means that the barrier potential of V > Vc completely disrupts
the SF as illustrated in Fig. 19(d).
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London)
429, 277 (2004).

[28] R. Balakrishnan, I. I. Satija, and C. W. Clark, Phys. Rev. Lett.
103, 230403 (2009).

[29] I. Danshita and D. Yamamoto, Phys. Rev. A 82, 013645 (2010).
[30] E. Demler and A. Maltsev, Ann. Phys. (NY) 326, 1775 (2011).
[31] Y. Kato, D. Yamamoto, and I. Danshita, Phys. Rev. Lett. 112,

055301 (2014).
[32] V. L. Ginzburg and A. A. Sobyanin, J. Low Temp. Phys. 49, 507

(1982).
[33] R. Lipowsky, Phys. Rev. Lett. 49, 1575 (1982).
[34] R. Lipowsky and W. Speth, Phys. Rev. B 28, 3983 (1983).
[35] D. Sornette, Phys. Rev. B 31, 4672 (1985).
[36] K. Binder, Rep. Prog. Phys. 50, 783 (1987).
[37] I. V. Barashenkov and V. G. Makhankov, Phys. Lett. A 128, 52

(1988).
[38] I. V. Barashenkov, A. D. Gocheva, V. G. Makhankov, and I. V.

Puzynin, Phys. D (Amsterdam) 34, 240 (1989).
[39] L. Gagnon, J. Opt. Soc. Am. A 6, 1477 (1989).
[40] Y. S. Kivshar and B. Luther-Daviews, Phys. Rep. 298, 81 (1998).
[41] A. Maimistov, B. Malomed, and A. Desyatnikov, Phys. Lett. A

254, 179 (1999).
[42] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt.

B 7, R53 (2005).
[43] P. R. Johnson, E. Tiesinga, J. V. Porto, and C. J. Williams,

New J. Phys. 11, 093022 (2009).
[44] K. W. Mahmud and E. Tiesinga, Phys. Rev. A 88, 023602 (2013).
[45] D. S. Petrov, Phys. Rev. Lett. 112, 103201 (2014).
[46] D. J. Frantzeskakis, J. Phys. A: Math. Theor. 43, 213001 (2010).
[47] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari,

Phys. Rev. Lett. 106, 185301 (2011).
[48] L. P. Pitaevskii, arXiv:1407.8081.
[49] T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S.

Bakr, and M. W. Zwierlein, Nature (London) 499, 426 (2013).
[50] M. J. H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W.

Cheuk, T. Yefsah, and M. W. Zwierlein, Phys. Rev. Lett. 113,
065301 (2014).

[51] R. Lipowsky and G. Gompper, Phys. Rev. B 29, 5213 (1984).
[52] R. Lipowsky, Ferroelectrics 73, 69 (1987).
[53] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[54] A. Baratoff, J. A. Blackburn, and B. B. Schwartz, Phys. Rev.

Lett. 25, 1096 (1970).
[55] I. Danshita, N. Yokoshi, and S. Kurihara, New J. Phys. 8, 44

(2006).
[56] G. Watanabe, F. Dalfovo, F. Piazza, L. P. Pitaevskii, and

S. Stringari, Phys. Rev. A 80, 053602 (2009).
[57] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).

[58] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[59] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall,
P. Hannaford, and A. I. Sidorov, Phys. Rev. A 87, 053614
(2013).

[60] A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch,
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