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Fragmentation of a spin-1 mixture in a magnetic field
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We study ground-state quantum fragmentation in a mixture of a polar condensate and a ferromagnetic
condensate when subjected to an external magnetic field. We pay more attention to the polar condensate,
due to the fact that fragmentation of a polar condensate, which typically occurs only in a very weak magnetic
field, can occur in a mixture at higher magnetic fields, where both atom numbers and number fluctuations will
remain of a macroscopic magnitude, of the order of N . The role of the ferromagnetic condensate is to provide
a uniform and stable background which can delay the rapid shrinkage of the zero-component population and
make it possible to capture “superfragmentation.” Our method has potential applications in measurement of the
interspecies spin-coupling interaction by adjusting the magnetic field.
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I. INTRODUCTION

Recent experimental breakthroughs in spinor Boson-
Einstein condensates (BECs), such as sub-Poissonian spin
correlations generated by atomic four-wave spin mixing [1],
atomic squeezed states realized in spin-1 ultracold atomic en-
sembles [2], and antiferromagnetic spatial ordering observed
in a quenched one-dimensional spin-1 gas [3], are all in
connection with vacuum fluctuations and recall attention to the
finite-particle-number effect beyond the mean-field treatment.
Vacuum fluctuations become a significant subject in more and
more experimental topics, e.g., atomic quantum matter-wave
optics, atomic spin squeezing, and quantum information.
With the basic interaction form V (r) = (α + βF · F)δ(r), the
properties of such a three-component spinor condensate [4]
have been demonstrated experimentally [5], and two phases,
reflecting fundamental properties of spin correlation, identi-
fied: the so-called polar and ferromagnetic states for β > 0
(23Na) and β < 0 (87Rb) atomic condensates, respectively.
Mixtures of two spinor condensates with ferromagnetic and
polar atoms, respectively, show more attractive quantum
effects [6–15]. With the help of sympathetic cooling, BEC
mixtures of Na and Rb have been realized and it is interesting
to observe the interspecies-interaction-induced immiscibility
between the two condensates [15].

The ground state of the condensate with β > 0 has been
predicted to be either polar (n0 = N ) or antiferromagnetic
(n1 = n−1 = N/2) within the mean-field treatment, where the
condensate is usually described by a coherent state. However,
the many-body theory of Law, Pu, and Bigelow [16] points
out that the ground state of β > 0 atoms is a spin singlet
with properties (n1 = n0 = n−1 = N/3) drastically different
from the results predicted by the mean-field theory. Soon, Ho,
and Yip [17] show that this spin-singlet state is a fragmented
condensate with anomalously large number fluctuations and
thus has a fragile stability. The remarkable nature of this
superfragmentation is that the single-particle reduced density
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matrix gives three macroscopic eigenvalues (N/3) with large
number fluctuations, �n1,0,−1 ∼ N . Similar considerations
were also addressed by Koashi and Ueda [18–20]. The
signature of fragmentation is then referred to the anomalously
large fluctuations of the populations in the Zeeman levels.
This is a super-Poissonian correlation character, and the
large number fluctuations shrink rapidly when experimentally
adventitious perturbations exist, such as a magnetic field or
field gradient.

In this paper we report the influence of an external magnetic
field on a spinor condensate with β > 0, but on the premise of
doping many ferromagnetic atoms in it. An interspecies spin-
coupling interaction arises and we propose a valid procedure to
observe and control the fragmented states. If the ferromagnetic
atoms in the mixture are condensed, the ground state favors
all atoms being aligned along the same direction and provides
a uniform and stable background which can delay the rapid
shrinking of the number fluctuations when the interspecies
coupling interaction is adjusted. The back action from polar
atoms onto the more stable ferromagnetic atoms is negligible.
Doping ferromagnetic atoms into spin-1 polar condensates can
effectively influence the vacuum fluctuations and will have
potential applications for quantum information and quantum-
enhanced magnetometry.

II. HAMILTONIAN OF THE MIXTURE

We consider a mixture of two spinor condensates of
N1 ferromagnetic and N2 polar atoms, respectively. The
intracondensate atomic spin-1 interaction takes the standard
interaction form, Vk(r) = (αk + βkFk · Fk)δ(r), with k = 1,2.
The intercondensate interaction between ferromagnetic and
polar atoms is V12(r) = 1

2 (α + βF1 · F2 + γP0)δ(r), which is
more complicated because collisions can occur in the total
spin Ftot = 1 channel between different atoms [6,7]. The
parameters α, β, and γ are related to the s-wave scattering
lengths in the three total spin channels and the reduced
mass μ for atoms of different species, and P0 projects an
interspecies pair into a spin-singlet state. Within the single
spatial-mode approximation [16,21,22] for each of the two
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spinor condensates, the spin-dependent Hamiltonian for the
mixture finally reads

Ĥ = c1β1F̂2
1 + c2β2F̂2

2 + c12βF̂1 · F̂2 + c12γ

3
�̂

†
12�̂12, (1)

where F̂1 = â
†
i F1ij âj ( F̂2 = b̂

†
i F2ij b̂j ) are defined in terms of

3 × 3 spin-1 matrices with i(j ) = 1,0, − 1, and â
†
i (b̂†i ) creates

a ferromagnetic (polar) atom in the hyperfine state i. The
operator

�̂
†
12 = â

†
0b̂

†
0 − â

†
1b̂

†
−1 − â

†
−1b̂

†
1 (2)

creates a singlet pair with one atom each from the two species,
similar to

�̂
†
2 = (b̂†0)2 − 2b̂

†
1b̂

†
−1, (3)

for an intraspecies spin-singlet pair [17,18] when β2 > 0.
The interaction parameters are c1 = 1

2

∫
dr|�(r)|4, c2 =

1
2

∫
dr|	(r)|4, and c12 = ∫

dr|�(r)|2|	(r)|2, which can be
tuned through control of the frequency of the trapping
potential [7].

III. FRAGMENTATION IN A MAGNETIC FIELD

A. Number distributions in a magnetic field

When the interspecies scattering parameters are calculated
in the degenerate internal-state approximation [23–26], the
low-energy atomic interactions can be mostly attributed to the
ground-state configurations of the two valence electrons, and
the noncommutative term �̂

†
12�̂12 can be neglected [6,7,9].

The ground states are classified into four distinct phases—
FF, MM−,MM+, and AA—by three critical values: c12β =
− (2N−1)c2β2

N
, 0, and (2N−1)c2β2

N+1 [9].
In this paper we discuss the atom number distribution and

fluctuation in an external magnetic field. The spin-dependent
Hamiltonian in the magnetic field reads

Ĥ = c1β1F̂2
1 + c2β2F̂2

2 + c12βF̂1 · F̂2

− c1p1F̂1z − c2p2F̂2z, (4)

where only the linear Zeeman terms are considered. As the
SU(2) symmetry is broken in a spinor mixture, one cannot
eliminate the linear Zeeman effect through a spin rotation [27].
Meanwhile, the quadratic Zeeman energy, typically two orders
of magnitude weaker than the linear terms, is negligible in the
calculation of number distributions. For alkali atoms such as
23Na and 87Rb, in their subspace of hyperfine spin F = 1, both
the nuclear spins and the valence electron spins are the same for
the two species, and the linear Zeeman shifts are thus almost
equal. In the following discussion, we take p = c1p1 = c1p2

for simplicity.
We consider the direct product of the Fock states of the two

species |n1,n0,n−1〉1 ⊗ |n1,n0,n−1〉2 and do not restrict the
model in the subspace with zero total magnetization [9,10].
Instead, we consider the full space including all possible
system magnetization m = m1 + m2. Using the full quantum
approach of exact diagonalization, we can get the ground state
of the system and study the response of the two species to the
external magnetic field p for N1 = N2 = 40. The three critical
points for the phase boundaries are approximately c12β = −4,
0, and 4.

FIG. 1. (Color online) Dependence of atom numbers on p, at
fixed values of c1β1 = −1, c2β2 = 2, and c12β = 2.5. The total
numbers of the two species are N1 = N2 = 40, and we consider the
full space with total magnetization m a variable. Dashed black and
solid (red) lines denote the number distributions in the ferromagnetic
and polar condensate, respectively. All interaction parameters are in
units of |c1β1|.

The field dependence of the population is shown in Fig. 1
for the MM+ phase at c12β = 2.5, where polar atoms are
partly polarized in the direction opposite that for ferromagnetic
atoms [9]. We note that the ferromagnetic atoms (dashed black
lines) are very sensitive to the magnetic field, i.e., atoms
quickly redistribute in the n1 component and the magnetization
of the ferromagnetic condensate m1 = n1 − n−1 saturates
immediately. The ferromagnetic atoms actually form a stable
condensate and provide a uniform magnetic background in
the mixture. The polar atoms present a stepwise increase
(decrease) in the atom number distribution n1(n−1) when the
field increases. For small p and positive c12β, the system
favors a negative magnetization (m2 = n1 − n−1) of the polar
condensate, and m2 will reverse and tend to saturate for a large
magnetic field. We note that a special number distribution,
with n1 = n0 = n−1 = N

3 , remarkably arises around the value
of p = 100.

The situation becomes simples if the parameter c12β is
negative, that is, in the FF phase (or MM− phase), where polar
atoms are fully (partly) polarized in the same direction as

013628-2



FRAGMENTATION OF A SPIN-1 MIXTURE IN A . . . PHYSICAL REVIEW A 91, 013628 (2015)

ferromagnetic atoms. The enhanced ferromagnetic effect and
the external magnetic field jointly suppress the atom number
distribution n0 and n−1 of the polar condensate to 0 and, at
the same time, saturate n1 and the magnetization m2 without
magnetization reversal.

B. Retrieving the superfragmented state

According to the spin-space rotational-invariant Hamilto-
nian [17–20],

Ĥ0 = c2β2F̂2 = c2β2
[
N̂2

2 − �̂
†
2�̂2

]
,

the superfragmented state is named in [17] for the ground state
of a pure spin-1 condensate with c2β2 > 0. This ground state
is described by a many-body spin singlet with the form

|φsup〉 ∝ (�̂†
2)N2/2|0〉,

where �̂
†
2 creates a singlet pair formed by two identical spin-1

bonsons. For spin-1 particles with three hyperfine spin states
|f,fm〉 = b̂

†
m|0〉, the simplest spin singlet is formed by two

spin-1 particles and described as

|Ftot = 0,Fm = 0〉 =
∑

C|f1,fm1〉|f2,fm2〉, (5)

under the condition fm = fm1 + fm2 = 0, and with the re-
mainder corresponding to the Clebsch-Gordon coefficient C,
one can get

|Ftot = 0,Fm = 0〉 = 1√
3

(
b̂
†2
0 − 2b̂

†
1b̂

†
−1

)|0〉. (6)

A many-body spin singlet is constructed by applying �̂
†
2

as many times as needed to get the desired number of
particles [28]. The particle density matrix will be (ρ̂)mn =
〈b̂†mb̂n〉 = N

3 δmn, which fulfills the condition [29] that the
ground state can contain several condensates. The number fluc-
tuations, as the signature of fragmentation, can be calculated
algebraically [17,20] and satisfy 2�n1 = �n0 = 2�n−1, with

�n0 = 2
√

N2 + 3N

3
√

5
. (7)

Such a state with a polar interaction was not likely real-
ized in typical experiments due to its fragility towards any
perturbation-breaking spin rotational symmetry. For example,
if subjected to an external magnetic field, the ground state of
the system [17–20] will be

|φmag〉 ∝ (b̂†1)m2 (�̂†
2)(N2−m2)/2|0〉; (8)

one can see a rapid decrease in the spin-0 component
distribution n0 and the fluctuations �n1,0,−1 when m2 is
increased. The superfragmented state then reduces to a much
more generic fragmented state: a two-component number state
with essentially zero fluctuations,

|φnum〉 ∝ (b̂†1)(N2+m2)/2(b̂†−1)(N2−m2)/2|0〉. (9)

For a spin-1 polar condensate doped with many ferromag-
netic atoms, we can retrieve this superfragmented state in the
presence of an external field. For some special values of the
magnetic field, both the spin-0 component population and
the number fluctuations would not decrease but recover to

FIG. 2. (Color online) Dependence of atom numbers and fluctu-
ations on c12β and p at fixed values of c1β1 = −1 and c2β2 = 2. Only
the results of polar atoms with n0 and �n0 are shown. When the extra
magnetic field parameter p (in units of |c1β1|) increases, there are
serval critical points associated with c12β. All interaction parameters
are in units of |c1β1|.

macroscopic orders of N2. In Fig. 2, we illustrate the recovery
points for three interspecies coupling parameters c12β in the
MM+ phase (0 < c12β < 4). These recovery points are found
to move towards largers value of p as c12β increases.

As learned from previous studies [22], the mean-field treat-
ment is efficient for atomic interactions of the ferromagnetic
type. The much more stable ferromagnetic condensate in the
mixture can be formulated in the mean-field treatment as a
boson-enhanced effective magnetic field. This simplifies the
Hamiltonian, (4), to

Ĥ = c1β1
〈
F̂2

1

〉 + c2β2F̂2
2 + c12β〈F̂1〉 · F̂2

− c1p1〈F̂1z〉 − c2p2F̂2z

= c2β2F̂2
2 + AF̂2z + C, (10)

where 〈F̂1〉 = 〈F̂1z〉 = N1, A = c12βN1 − c2p2, and C =
c1β1N1(N1 + 1) − c1p1N1. The criterion for the emergence of
the superfragmented state is p = c12βN1, where the magnetic
field (p), the optical trapping frequency (c12), and the number
of doped ferromagnetic atoms (N1) are all adjustable. When
the magnetic field matches the condition that c12βN1 and c2p2

cancel each other, we may achieve the superfragmented state
in a magnetic field. The three critical points in Fig. 2 are found
to agree with the numerical results exactly. The special value
such as p = 100 in Fig. 1 can be predicted exactly here with
p = c12βN1 = 2.5 × 40 = 100.
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FIG. 3. (Color online) Dependence of atom number distributions
and number fluctuations in the polar condensate on the magnetic
coefficient p at fixed values of c1β1 = −1, c12β = 2.5, and c2β2 =
2. Total numbers of the two species are N1 = 20 and N2 = 100.
Solid black, dash-dotted (red), and dashed (blue) lines denote atom
numbers and fluctuations on the 1, 0, and −1 sublevels, respectively.
All interaction parameters are in units of |c1β1|.

Next, we turn to the situation with population imbalance
in the two species. Figure 3 illustrates the location of the
critical point when the interspecies coupling parameter c12β

is fixed at 2.5 and the atom numbers for the two species
are N1 = 20 and N2 = 100. As the mean-field picture works
well for ferromagnetic atoms, we still get the crucial point
p = 2.5 × N1 = 50 in Fig. 3. When equal populations n1 =
n0 = n−1 = N/3 occur for the polar condensate, the number
fluctuations also instantaneously reach macroscopic levels.
Our numerical results for the fluctuation relation (�n0 =
2�n±1) agree exactly with the algebraic results in [17]
for a pure polar condensate. With the emergence of equal
populations N/3 regarded as a sign of antiferromagnetic spin
interaction, the interspecies spin-coupling interaction c12β

can be estimated by the location of the critical magnetic
field.

C. AA phase in a magnetic field

When the interaction parameter c12β >
(2N−1)c2β2

N+1 , the
system spontaneously breaks into a high-symmetry state called
the AA phase. The AA phase is another superfragmented state
which has been predicted in the absence of magnetic fields [9].
It is also a many-body spin singlet, which requires exactly
the same atom number for the two species (N = N1 = N2)
and total spins of different species that are polarized in

opposite directions. In the notation of the angular momentum
representation,

|F1,F2,F,m〉 =
∑

C
F,m
F1,m1;F2,m2

|F1,m1〉|F2,m2〉, (11)

where the AA phase is denoted |φAA〉 = |N,N,0,0〉, with F1,
F2, and F the total spin quantum numbers of ferromagnetic
atoms, polar atoms, and the mixture and m1, m2, and m the
corresponding z components. The intraspecies angular mo-
mentum states involved in the AA phase, |N,m1〉 and |N,m2〉,
should obey the constraint m1 + m2 = 0. The interesting
feature of the AA phase is the equal distribution of atoms in the
six components (N/3) and the large number fluctuations. To
calculate the number distribution and the number fluctuation,
one has to expand the two species states |N,m1〉 and |N,m2〉
into Fock states [9,30], and the number fluctuations without a
magnetic field are calculated to be

�n
(1,2)
0 =

√
N2 + 9N

3
√

5
, �n

(1,2)
±1 = 2

√
N2 + 3N/2

3
√

5
. (12)

However, unlike the superfragmented state, we cannot give the
perfect creation operator description of the AA phase, due to
the more complicated symmetry originating from the collision
occurring in the total spin Ftot = 1 channel.

In this section, we numerically discuss the AA phase
(c12β > 4) subject to external magnetic fields using the full
quantum approach of exact diagonalization and compare the
results with the superfragmented state in the pure conden-
sate [17]. The features of these two typical fragmented ground
states, which belong to two special phases characterized by
typical values of the interaction parameter c12β = 4.5 and
c12β = 0, are illustrated in Fig. 4. First, we note that the
numerical results for the number distributions and fluctuations

FIG. 4. (Color online) Dependence of atom number distributions
n1,0,−1 and number fluctuations �n1,0,−1 of the polar condensate
on both c12β and magnetic field p at fixed values of c1β1 = −1
and c2β2 = 2. Total numbers of the two species are N1 = N2 = 40.
Solid black, dotted (red), and dash-dotted (blue) lines denote the
numbers (fluctuations) on the 1, 0, and −1 sublevels, respectively.
All interaction parameters are in units of |c1β1|.
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FIG. 5. (Color online) Dependence of the atom number distribu-
tion n0 and �n0 in the polar condensate on the magnetic coefficient
p and c12γ at fixed values of c1β1 = −1, c12β = 2.5, and c2β2 = 2.
Total numbers of the two species are N1 = N2 = 40. Dashed black
lines and solid (red) lines denote the value of n0 and �n0, respectively.
All interaction parameters are in units of |c1β1|.

agree exactly with the algebraic results for the special point
p = 0. The AA phase is as fragile as the pure polar singlet,
with the number fluctuations dropping rapidly [Fig. 4(d)]
and the number distributions finally decreasing to a generic
number state, (b†1)N2 |0〉. It is interesting that the responses of
the n0 component to the magnetic field are quite different.
For a pure polar condensate [Fig. 4(a)], as p is increased, the
zero-component distribution n0 [dashed (red) line] decreases
rapidly, which agrees with the algebraic results in [17]. For the
AA phase [Fig. 4(b)], we note that n0 does not decrease rapidly
in the beginning; instead, it increases first and remains at a high
value for a certain range of p. The applied external magnetic
field can be used to characterize these two spin singlets by
tracing the atom numbers of the n0 component of the polar
atoms.

D. The interspecies P0 effect

If we refer to a more general case beyond the degenerate
internal-state approximation, the γ term of Hamiltonian (1)
should be considered. We note that

[
F̂2

1,2,�̂
†
12�̂12

] �= 0, [F̂2,�̂
†
12�̂12] = 0, (13)

FIG. 6. (Color online) Dependence of atom numbers and fluctua-
tions on c12β,c12γ at fixed values of p = 0, c1β1 = −1, and c2β2 = 2.
This graph shows only the results for n0 and �n0, when the interaction
parameter c12γ equals −20. Total numbers of the two species are
N1 = N2 = 40 and we restrict the problem in full space without an
external magnetic field. Solid black lines and dashed (red) lines denote
the ferromagnetic and polar condensate, respectively. All interaction
parameters are in units of |c1β1|.

which means, in general, that they do not belong to a set of com-
mutative operators. However, we can numerically study the
phase transition through the order parameter 〈�̂†

12�̂12〉 [10].
To see more clearly the role played by the parameter c12γ

in fragmentation, we numerically diagonalize Hamiltonian (1)
with N1 = N2 = 40.

In Fig. 5, we illustrate the influence of a small c12γ �= 0
on the population n0 and �n0 of a superfragmented state
which has been retrieved in the MM+ phase. We find that
the crucial point is still located at p = 2.5 × N1, but a tiny
c12γ = 0.15 will increase the n0 component to a dominant
value and, meanwhile, suppress the n1 and n−1 components
to a lower level. A high occupation of n0 components is
evidence of the nematic order [2], and the signature of
fragmentation disappears. For c12γ = −0.15, on the contrary,
the n0 component is totally suppressed, with both n0 and
�n0 decreasing. Away from the critical point, the system
is dominated by the magnetic field, with the magnetization
m2 = n1 − n−1 increasing linearly.

A negative γ term encourages pairing two different types
of atoms in singlets [10]. In Fig. 6, the influences of a
negative singlet pairing coefficient c12γ on the numbers and
quantum fluctuations of the two species are illustrated. We
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note that the typical N/3 number distributions arise in both
the c12β < 0 and the c12β > 0 regions when c12γ reaches
−20. The number fluctuation 	n0 gives two steady values,
which represent two typical fragmented ground states: the
interspecies entangled fragmented state for c12β > 2 and
the pure species independent fragmented state for c12β < 0.
The fluctuations for these two states,

�n0 =
√

N2 + 9N

3
√

5
, c12β > 2,

�n0 = 2
√

N2 + 2N

3
√

5
, c12β < 0,

are found to match the numerical results in Fig. 6.

IV. CONCLUSION

To conclude, we have studied the ground-state properties of
a binary mixture of ferromagnetic and polar spinor condensates
in a magnetic field. Using the full quantum approach of
exact diagonalization, we can study the competition between
the magnetic linear Zeeman effect and the interspecies spin-
coupling interaction c12β. The large vacuum fluctuation of
number distributions on the three Zeeman levels in the
polar condensate is worthy of investigation. We point out
that the fragmentation properties of the polar condensate
can be adjusted through the magnetic field (p), trapping

frequency (c12), and number of doped ferromagnetic atoms
(N1). The ferromagnetic condensate is involved in providing
a uniform and stable background, which can delay the rapid
decrease in the large number fluctuations. We have illustrated
the influences of the magnetic parameter p and identified
two typical fragmented states with total spin 〈F̂2〉 = 0. A
positive interspecies spin-coupling interaction (c12β > 0) can
effectively entangle the different species, while for c12β < 0
the different species on their F = 1 manifold are essentially
independent. We propose a possible mechanism to effectively
measure interspecies spin-coupling interactions by applying
a magnetic field, as well as discriminate the two types of
many-body spin singlets. Our work highlights the significant
promise of experimental work on sodium and rubidium atomic
condensate mixtures and provides some useful information for
the study of photoassociation of heteronuclear molecules.
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