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An ultralow-temperature binary mixture of Bose-Einstein condensates adsorbed at an optical wall can undergo
a wetting phase transition in which one of the species excludes the other from contact with the wall. Interestingly,
while hard-wall boundary conditions entail the wetting transition to be of first order, using Gross-Pitaevskii
theory we show that first-order wetting as well as critical wetting can occur when a realistic exponential optical
wall potential (evanescent wave) with a finite turn-on length A is assumed. The relevant surface excess energies
are computed in an expansion in A /&;, where &; is the healing length of condensate i. Experimentally, the wetting
transition may best be approached by varying the interspecies scattering length a;, using Feshbach resonances. In
the hard-wall limit, A — 0, exact results are derived for the prewetting and first-order wetting phase boundaries.
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I. INTRODUCTION AND PURPOSE

In a previous Letter [1] the possibility of wetting phase
transitions [2—4] in mixtures of Bose-Einstein condensates
(BECs) adsorbed at an optical wall was predicted based
on Gross-Pitaevskii (GP) mean-field theory, in the limit of
zero temperature (7 =0). In a wetting phase transition,
illustrated in Fig. 1, a partial wetting state characterized by
a thermodynamic contact angle or Young-Laplace angle 6
undergoes a qualitative change in the limit & — 0. In that
limit a macroscopic layer of one of the two adsorbed phases,
called the wetting phase, intrudes between the other phase and
the wall, leading to complete wetting.

If we denote the excess (free) energy per unit area of the
contact of condensate 1 (2) with the wall by y,,, (v,,) and the
interfacial tension between condensates 1 and 2 by y,,, Young’s
law of mechanical equilibrium of a three-phase contact line
reads [5]

7/Wl = yWZ + ylZ COSO’ (1)

where 6 is the thermodynamic contact angle (Fig. 1). Let us
assume that condensate 2 has a lower surface energy than
condensate 1, i.e., y,, < ¥,,. In this case we ask to what
extent condensate 2 “wets” the wall. The condition for partial
wetting (PW) then reads

le < yWZ + yll’ (2)

and that for complete wetting (CW), also called Antonov’s
rule, is given by (after thermodynamic equilibrium has been
reached)

Ywr = Y2 T Vi (3)

A wetting transition may occur in which 6 — 0, i.e., a surface
phase transition from PW, for which (2) holds, to CW, for
which (3) is valid.

Conversely, in case y,,, < ¥,,. the roles of the condensates
are interchanged, and we ask to what extent condensate 1
“dries” the wall. This change of terminology from wetting
to drying is purely a matter of convention. It is inspired by
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a situation in adsorbed classical fluids, in which fluid 2 is a
liquid and fluid 1 its vapor. In our BEC mixture, there is no
physical distinction between wetting and drying. The terms
merely alert us to the fact that for 6 > 90° the physical roles
of labels 1 and 2 are interchanged.

When studying the wetting transition using Young’s law a
major simplification in the calculations can be implemented.
The three relevant surface energies can be calculated using a
one-dimensional geometry, such as in Fig. 1 (right), which is
translationally invariant in both directions parallel to the wall.
Knowledge of the surface energies allows one to deduce the
contact angle through Young’s law, without having to realize
a two-dimensional inhomogeneity, such as in Fig. 1 (left). The
two-dimensional problem depicted in Fig. 1 (left) can also
be studied, for example, by applying an interface displacement
model [4,6]. This would allow one to obtain the structure of the
so-called three-phase contact line and its tension (energy per
unit length), but this is outside the scope of the present work.

Itis also worth mentioning that Young’s law applies to every
situation in which three phases are in mechanical equilibrium
and in which surface excess energies (7' = 0) or surface excess
free energies (7' > 0) can be defined, regardless of the nature
of the microscopic forces. Young’s law has been applied
successfully not only to soft condensed-matter systems, but
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FIG. 1. (Left) Partial wetting. The interface between the two
phases consisting of pure Bose-Einstein condensates 1 and 2 makes a
finite contact angle 6 with the optical wall. (Right) Complete wetting.
A macroscopic layer of pure phase 2 intrudes between the optical wall
and pure phase 1.
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also to hard condensed matter including ferromagnets and
superconductors [3,4,6]. In all these applications one has to
keep in mind that 6 is a “thermodynamic” angle defined on a
macroscopic scale [5].

The wetting transition in adsorbed BEC binary mixtures
was shown to be of first order, with a discontinuity in the first
derivative of the grand potential at the transition [1]. A number
of extraordinary features emerged: (i) The grand potential
is degenerate at wetting so that wetting layers of arbitrary
thickness all have the same energy on the wetting phase
boundarys; (ii) the prewetting transition, being the continuation
of the first-order wetting transition off of bulk two-phase
coexistence, is critical (of second order) and corresponds to
the nucleation of an infinitesimal prewetting film, whereas
the prewetting transition is normally expected to be of first
order, at least close to the first-order wetting point; and (iii)
the prewetting line does not meet the bulk coexistence line
tangentially at the wetting point, but under a finite angle, also
at variance with expectations but nevertheless consistent with
thermodynamics [1].

Experimental verification of this wetting transition was
called for, especially in view of the fact that all the main phys-
ical parameters of the problem can be accurately controlled by
applying an optical hard wall combined with a conventional
harmonic trap to confine the particles to a half space and by
applying an additional magnetic field to tune the interparticle
forces through Feshbach resonances [7]. Besides the report
presented in [1], a pedagogical discussion of these findings
can be found in [6].

Our main purpose in this paper is to show that the GP
theory, for T = 0O, predicts that the character of the wetting
transition can change from first-order to critical when the
hard-wall boundary condition is relaxed to a softer confining
potential. In experiments this can be done using an exponential
wall potential, with a turn-on length A that is larger than the
microscopic scattering length a (typically 5 to 10 nm) but
smaller than, or at most comparable to, the typical length
scale associated with the spatial variation of the density
profile, being the healing length &£. The assumption of a hard
wall has been a reasonable starting point for describing a
setup with a surface trap, corresponding to an evanescent
electromagnetic wave emerging from a prism. However, an
exponential wall potential represents the optical wall more
realistically than a hard wall. The turn-on length A of the
exponential is (at most) of the order of the wavelength of
visible light divided by 4. In practice, this amounts to A & 50
nm. It is important to assess whether this length is still small
compared to the two lengths that are relevant in the GP
density-functional theory of BECs in a trap. Compared to
the characteristic harmonic-oscillator length associated with
the magnetic trap, L, which is of the order of 5 um or more, the
turn-on length of the optical wall is small. Compared to the
healing length &, which is the characteristic width of surface
or interface inhomogeneities in the condensate fraction, and
which is typically 200 to 400 nm, the length A is, however, not
negligible. Therefore, it is important to refine the previous cal-
culations by allowing for a softer wall. In sum, the length scales
of our problem typically satisfy the following inequalities:
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The results we present are partly based on unpublished
work [8] and make use of analytical calculations of the
interfacial tension between two condensates and an exact
expression for the first-order wetting phase boundary in the
hard-wall limit [9]. The paper is organized as follows. In
Sec. I we recall the mean-field GP description of the spatially
varying condensate order parameters. Section III deals with the
stability of bulk phases as a function of chemical potential and
interaction strength. The excess grand potentials per unit area
associated with the wall tensions and the interfacial tension
are defined in Sec. IV. Section V is devoted to the derivation
of the phase diagram for nucleation, wetting, and prewetting
for the case of a hard-wall boundary condition. Our main
new results are presented in Sec. VI, which treats the wetting
transitions encountered when the hard wall is replaced with a
more realistic softer wall. Section VII treats the experimental
relevance of our expressions for the surface tensions and our
results for the wetting transitions. Some aspects of the presence
of a harmonic trap are discussed in Sec. VIII and Sec. IX closes
the paper with a conclusion and outlook.

II. MEAN-FIELD THEORY FOR BEC BINARY MIXTURES

When attempting to realize macroscopically phase-
segregated phases in Bose-Einstein systems, one tends to
consider first the possibility of phase separation between a
(partially) condensed and a fully noncondensed state of a single
Bose gas. This, however, does not exist for ideal gases [10,11],
nor does it exist for weakly interacting ones due to the absence
of a coexistence point between a condensed and a fully normal
phase. Therefore, spatial segregation is only possible through
the application of an external potential [10,11]. In view of this,
our attention shifted [1] to the investigation of possibilities for
phase separation in binary mixtures of BECs.

Since the experimental observation of weakly phase-
segregated binary Bose-Einstein systems at the beginning of
this century [12-17], strong phase separation has been realized
more recently by at least six research groups [18-22] and
even in a thermal mixture [23], while many more degenerate
Bose mixtures were produced in which phase separation is
possible [24-26]. The physics of multicomponent condensates
is well explained in Refs. [27,28], both focusing on theory
and experiments. While the statics and dynamics of phase-
separated BECs have been extensively studied in Refs. [29—
41], the phenomenology associated with the interface in Bose
mixtures was explored in Refs. [42—48] and the phase diagram
at finite temperature was investigated in Refs. [49-51].

The GP formalism provides us with a mean-field equation
of state for Bose gases at T =~ 0. It is generally used for
dilute, weakly interacting gases at ultralow temperatures. In
the following, we consider two condensates present in a
volume V at chemical potentials ) and u,, respectively. An
appropriate mean-field energy functional is found by applying
a Bogoliubov approximation [52,53] that reduces the particle
field operators v;(r) to a sum of their ground-state mean value
and a fluctuation term: ;(r) = ¥;(r) + §v;(r) (i =1,2).
Here |/;(r)|? equals the (local) mean density n;(r) of the Bose
condensed atoms of species i. Due to the ultralow temperature,
the potential of the particle interactions can, for calculational
purposes, be replaced with a contact potential (also called
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Fermi pseudopotential) V;;(r —r’) = 8(r — r') G;;. Expand-
ing the full second-quantized grand potential to zeroth order
in §v; (i = 1,2), one obtains [52]

h2
Q= Z /vdr{wi*(r)[_Z_mivz — Wi + Ui(l‘):|1//i(r)

i=1,2

Gi;
- TIwi(r)l“} +Glzfvdl'|1//1(l')|2|1ﬁ2(l‘)|2, )

where U; is the external trapping potential of species i and
the coupling constants G;; are linear in the s-wave scattering
lengths a;; and depend on the particle masses through the
identity G,’j = 2nh2aij(l/mi + l/mj), with l,] =1, 2. The
use of fixed chemical potentials instead of fixed particle num-
bers is justified since our semi-infinite system can be viewed as
an open system which is in direct contact with “bulk reservoirs”
of condensate, so that the number of atoms can change without
affecting the thermodynamical properties of the system as a
whole. Moreover, it can readily be checked that Young’s law
and consequently the phase diagrams for wetting at a hard
wall are the same in the canonical ensemble (CE) and the
grand canonical ensemble (GCE). Indeed, the surface excess
energies and the interfacial tension defined in the GCE are
equal to 4 times their counterparts in the CE [8,9]. These
counterparts are related but physically distinct quantities.

In the absence of particle flow, one chooses the order
parameters to be real valued. Demanding the first variation
of the energy functional to vanish leads us then to the coupled
GP equations

2

h
ﬂvzwl = (U — p)¥1 + Gy + Gy, (6a)
1

h2
5.~V = (U2 = )Y + Go¥3 + Goyivs. (6b)
2
The equilibrium pressure for a pure and homogeneous
phase of species i with U;(r) =01is (i = 1,2)
0%2;
vV |y

S=n;

_ M
2G;;’

i (7
where €2; is the grand potential of pure species i and n; is its
homogeneous density. If present as a pure phase, species 1 hasa
densityn; = ny = u1/Gq;. Eachvalue of 1) can be associated
with a value of the chemical potential for species 2, defined by
My = 114/ G2/ Gy, so that at two-phase coexistence (when
P, = Py), uy = [1,. Define then also the density n1, = 1w,/ Gos.
We rescale now the order parameters v/, and v/, and define the
normalized wave functions i, and vr, and densities 7] and 72,:

Ui =y /N = V=V, (8a)
U = Y/ = o fy = Vi, (8b)

Note that the normalization is with respect to the bulk den-
sities of pure phase 1 and of pure phase 2 at coexistence with
phase 1. This is mathematically convenient, but implies that
while the scaled order parameter for a pure and homogeneous
phase 1 equals 1, this is not the case for phase 2, except
at two-phase coexistence. These definitions are convenient
whenever (at least) phase 1 is stable in bulk, which we will
always assume.
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The quantum nature of the system results in zero-point
motion; this determines the typical length scale for density
modulations and therefore also the thickness of surface
inhomogeneities at the boundaries, the vortex-core size, and
the size of solitonlike structures in the interior. This quantum
effect is embodied in the gradient (or Laplacian) terms in the
nonlinear Schrodinger equation (6). The resulting lengths are
the healing lengths & and &,, which are defined as

h h
fl=—— and £ = ©)
: A 2my : N 2mapn

Again for our convenience, an auxiliary healing length &, for
species 2 is defined in terms of the chemical potential of species
2, when species 2 is at two-phase coexistence with species 1:

- h

£, = = B, (10)

V2maji, [

The interparticle interaction strength G, is only relevant in
comparison with the geometric mean of G, and G,;,. Hence,
we define K = G,/+/G11G2. Both K and &,/£ can be
expressed in terms of the atomic masses and the scattering
lengths,

mp+my ap = midaig
K = and &,/ =9—— (11)
2/mimy Jajiaxn 251 mady)

where also the latter relation does not assume two-phase
coexistence, by virtue of how we defined &, by means of 1,
instead of w,. Finally, after rescaling space r = &F, the GP
Egs. (6) reduce to

VA = (Ui = )V /i + 7+ K9P, (120)

[E2/6° V2 = (Uz = w2)Vo/Fo + V3 + K ¥, (12b)
For the special case of hard-wall boundary conditions,
implying U; = 0 when ¢; # 0, and assuming the presence of
pure and homogeneous phase 1 somewhere in the considered

volume (e.g., far from the optical wall), the first integral of the
GP equations is

(VU2 + [E2 /6 PV 4 U2 + [ /T 102
v v

W W k- (13

1

2 2 2’
where the constant 1/2 results from the observation that far
from the wall, for z — 00, the order parameters reach their
bulk values ¢ = 1 and ¥, = 0 (and their derivatives vanish).
Equivalently, the constant can be evaluated at the hard-wall
boundary, at z = 0, in the presence of condensate 1 alone.
Then, the derivative of /; at z = 0 takes the value 1/4/2 and

¥1(0) = 0.

III. THERMODYNAMICS OF BEC MIXTURES

Our presentation in this section introduces no new physics
beyond what was found before (see especially [34]), but
recapitulates the bulk properties of BEC mixtures in a way
suitable for our further purpose.

Experimentally, the number of particles in a condensate
is finite and fixed (neglecting losses) and this calls for a
description in a CE. Theoretically, it is more practical to
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work in a GCE, invoking hypothetical reservoirs or “baths”
at fixed chemical potential. The two descriptions are related.
Both allow one to define quantities with the dimension of
excess energy per unit area. The surface excess energy that
we calculate grand canonically differs by a factor of 4
from its Legendre-conjugated quantity in the CE [1,8,52].
Consequently, for the application of Young’s law this fac-
tor of 4 drops out, and we are free to work with either
definition.

We clarify now the equilibrium bulk “phases” found when
putting two species in a volume V in contact with two baths
which are at fixed chemical potentials: The ground states are
either one of the two pure phases or the mixed phase, where
the latter has by definition nonzero densities for both species.
The parameter 1/K turns out to play a role analogous to that
of the temperature 7 for ordinary liquid mixtures (with fixed
microscopic interactions) in the sense that for a small value
of 1/K (or temperature T for ordinary, classical liquids) the
species tend to demix, whereas for a value larger than 1 /K = 1
(or T greater than some consolute temperature 7, for classical
binary liquid mixtures) they mix.

A volume V containing pure and homogeneous phase i has
a grand potential 2; = —P;V, where the pressure P; is given
by (7). Since the grand potential of the vacuum is zero, the
pure phase can constitute the ground state whenever G;; >
0 (repulsive interactions). Now assume for a moment that
P, > P,. When the relative interaction parameter K satisfies
—1 < K < /ity = / P2/ Py, the mixed phase (M) mini-
mizes the grand potential (i.e., Q2 < ; for i = 1, 2) since
the grand potential of a volume V of mixed phase is found to
be

— K 2
QMI—PMV with PM=P1[1—%}

(14)

K=G, //G,G,

Q 10 WALy B, 3 g
_PZV tttt e 'E ---- Oeavnepeozenssst ™l
-PV + - -75 - PURE

£ " e= Ground State
N = = PurePhase 1
=+ PurePhase 2

/ """" Mixed Phase

FIG. 2. The grand potential of the three possible bulk states
(and the vacuum at 2 = 0) as a function of the relative interaction
parameter K when u, < t,. The ground-state grand potential is
indicated by the thick line. For —1 < K < u,/1t,, the ground state
coincides with the mixed phase and for u, /1, < K, it coincides with
pure phase 1. The first derivative of €2 is continuous in this transition
(second-order phase transition), as is evidenced by the mathematical
continuation of the energy of the mixed phase (curved dotted line).
When K > [,/ 1, the mixed phase is an unstable state (ascending
dotted line).
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and the associated densities for the species are (K # 1)

| — Klpo/IE

T m(%) (152)
o, — K

e ﬁ2<%> (15b)

When K exceeds the value u,/ft,, pure phase 1 is the
ground state. Its grand potential is indicated by the horizontal
thick line in Fig. 2. It is clear from expression (14) that the
grand potentials of pure phase 1 and the mixed phase coincide
when K = wu,/1t,; however, at that very point nyy, vanishes
and, therefore, there is no two-phase coexistence. Instead, the
transition from pure phase 1 to the mixed phase is critical,
with continuous first derivative of the grand potential, as can
be seen from the curved dotted line in Fig. 2, which is the
mathematical continuation of the grand potential of the mixed
phase. A mixed phase does not exist in the interval u, /@, <
K < m,/pn,, which can be seen from inspection of the signs
of the densities in (15). Furthermore, when K > ,/u,, a
mixed state (line with closely spaced dots) in Fig. 2 can again
be identified, but it is unstable, as is easily derived from a
stability analysis. Its grand potential is even higher than that
of the metastable pure phase 2.

Consider now the case of bulk two-phase coexistence
> = W,. Then, the two open dots indicated in Fig. 2 merge
at K =1 so that pure phases 1 and 2 coexist whenever
K > 1 [34]. A remarkable transition occurs at K = 1: First,
when going from u, # &, to (o = [,, the character of the
demixing transition changes from critical to first order. Second,
an infinite degeneracy occurs due to a rotational symmetry in
the GP equations,

A+ =1, (16)

as is readily seen by taking K =1 in Eq. (12).! We stress
this degeneracy at K = 1, because further on, when studying
wetting transitions, we find a similar degeneracy for inhomo-
geneous systems at wetting and for K > 1.

In Fig. 3, we give the bulk (x,u,/,,K) phase diagram,
where x =7, /(i1; +7,) denotes the density fraction’ of
species 1. This phase diagram is analogous to the more familiar
(x, P,/ P;,T) phase diagrams for ordinary binary mixtures of
fluids. The thick lines and the hatched regions denote the
ground states. Bulk coexistence occurs between pure phases 1
and 2 when u, = 1, and K > 1 and three-phase coexistence
of two pure phases (x =0 and x = 1) and a mixed phase
(x = 0.5) occurs when uy = , and K — 1. We conclude that
wetting by a pure phase can be studied for K > 1. Note that
for the mixed phase, stability is possible even for negative G,
down to —v/G11 Gy, corresponding to K = —1.

"Moreover, an SU(2) invariance arises when working with the field
operators [54].

2Note that x indicates the concentration at each point of the volume
and not the volume fraction; we work at fixed chemical potentials
instead of fixed particle numbers.
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FIG. 3. Bulk phase diagram as a function of K, u,/it,, and the
fraction x = 71y /(1| + 7). Hatched are the ground states. Pure phase
1 (2) constitutes the ground state whenx = 1 (x = 0)and K > u, /1,
(K > W,/ u2). Hence, pure phases 1 and 2 coexist for u, /ix, = 1 and
K > 1. Upon approach of the “triple point” K =1 and p,/u, =
1, pure phases 1 and 2 and the mixed phase with x = 0.5 coexist.
Moreover, the triple point itself possesses an infinite (continuous)
degeneracy in that x can take all real values between 0 and 1.

IV. SURFACE ENERGY EXCESSES

For a semi-infinite system with translational symmetry in
the x — y plane, in which the atoms of species i are bounded
by the trapping potential U;(Z) centered about 7 = 0, we now
define the excess quantities. We assume that a steep “wall” is
present at 7 ~ 0, which confines the particles mainly toZ > 0.
However, this need not be a hard wall and some particles may
be found at 7 < 0. In the GCE there exists, up to a constant
term, only one definition for the excess grand potential per
unit area, y. Assuming the presence of pure phase 1 in our
system for 7 — o0, it is obtained by subtracting from the total
grand potential 2 the grand potential of a half space (7 > 0)
filled with pure phase 1, both divided by the area of the x-y
surface. With use of the GP equations (12) this yields

. LoV U
Vi = lim | —2P§ f dz + ~|—le lﬂ2
L—oo — 0 2 2

L
+ P / dz]. (17)
0

This expression allows us to define the surface tension or
wall tension y,,, of condensate 1 against a wall as the excess
grand potential per unit area (17) for a semi-infinite system
with translational symmetry in the x-y direction, for which
the following boundary conditions are satisfied:

V(7= —00) =0, yY1(Z—> 00)=1;

Ua(Z = —00) = ¥a(Z — 00) = 0.

(18a)
(18b)

Note that (17) only picks up (finite) surface and interface
contributions, since the contributions from bulklike regions
cancel. Also note that, with this definition, y,,, can be negative
(e.g., for a steep wall positioned at some 7 < 0), however,
without leading to any instability. Likewise, we define the
surface tension or wall tension of pure phase i as the following
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excess energy per unit area,

L L
Vwipwe = 1M |:—P1€1/ d?&?"‘Pigl/ d3:|, (19)
L—oo —00 0
where the prefactors P& and P;&; are consistent with the
scalings of ¢ and z introduced in Sec. II. For this excess
energy the following boundary conditions and bulk condition
are assumed (with i #£ j):

Vi(T = —00) =0, ¥;(7— 00)=1;

V(2 =0. (20)

At bulk two-phase coexistence of pure phases 1 and 2 (P} =
P,), we can define also the interfacial tension y,, as the excess
grand potential per unit area (17), but with the lower limit of
the second integral in (17) extended to —oo, for an infinite
system with translational symmetry in the x-y direction, for
which the boundary conditions are

¥1(Z = —00) = §(Z7 — 00) =0,

U1(Z = 00) = P(T — —00) = 1.

(21a)
(21b)

V. WETTING AT A HARD WALL

We focus first on the standard wetting geometry for two
BEC species first studied in [1]; i.e., the bosonic atoms
are allowed to move freely in the half space 7 > 0 but are
blocked at 7 = 0 by a hard wall. The hard wall gives rise to
Dirichlet conditions 1, (0) = 0 and ¥»(0) = 0. Also, infinitely
far from the wall, at 7 — 0o, we impose pure phase 1. For
examining wetting, it suffices to consider densities that are
inhomogeneous only in the direction perpendicular to the
wall, so that ¥r; and v, depend only on the coordinate Z.
The boundary conditions for PW states are’

U1(0)=92(0)=¥2(Z = 00)=0 and (T — 00)=1.
(22)

Note that for CW states the boundary conditions are different
in that pure phase 2 extends from 7 = 0 to co. Nevertheless,
beyond this phase a 2-1 interface is “inserted” so that the
ultimate bulk phase is again pure phase 1, as in (22).

The essential quantities determining the wetting behavior
are the surface tensions. One can easily obtain the hard-wall
tension y,, .. and find that it is linear in &;. Indeed, consider
the half space 7 > 0 to be filled with condensate i. The GP
Egs. (12a) and (12b), together with a Dirichlet boundary
condition at z = 0 (hard wall) yield, respectively, the profiles

i z i K2 Z
=tanh [ — |, = |— h{— ). (23
yi=tan (ﬁ%'l ) & Mo an ( V2&, > )

From expression (19), the associated hard-wall tension y,,, .
is [52]

Vi = 4V2PE /3, (24)

3In the following, we tacitly assume that gravity affects the
condensate only on a much larger length scale than the heal-
ing length. Indeed, by a rescaling of the Schrodinger equation
(h?/2m)d*yr/dz> = —mgzyr with g the gravitational constant, one
arrives at the length of variation A,, = [A?/(2gm*)]'/. For rubidium
A ~ 10° A > & ~ 4000 A [55].
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which is mathematically similar to the tension of a normal-
superconducting interface in the limit of strongly type I
superconductors [56].

At bulk two-phase coexistence (P; = P,), preferential
adsorption of species 2 therefore arises when y,, < y,, or,
equivalently, when &, < &;. For this reason, one can think of
&1/& — 1 as being the surface field, which, when positive,
favors species 2. Note that the healing lengths composing the
surface field are themselves actually bulk parameters, as is
clear from (9).

A. The expected behavior

We assume the mixture is at bulk two-phase coexistence.
The interfacial tension y,, depends strongly on K and one may
distinguish the following four regimes.

(A) In the limit of strong segregation or 1/K — 0, the
two species will have only a small spatial overlap so that
Y = Yy + Vu,. Itcanreadily be checked that this inhibits CW
since under these circumstances the inequality y,,, < ¥,,, + V.,
(PW) cannot become an equality.

(B) When again 1/K — 0 and in addition &/& — 0
(strong surface field), in such a way that (&, /Sl)\/f remains
finite, one finds that Yo =V +Vur — 4Pl$2g([§2/él]ﬁ),
where the positive dimensionless function G typically takes
values of order unity [9]. The condition for PW becomes
Yur > 2P16:G([£2/E11V/K), from which one may conclude
that a transition from PW to CW is possible provided G takes
the value Zﬁ/ 3 for some value of its argument. Thus, we
anticipate that the wetting phase boundary is parabolic for
1/K — 0, in the manner

1/K « [&/& 1% (25)

(C) Closeto the demixing point where K =~ 1, the interface
is characterized by large interspecies penetration depths A; =
& /~/ K — 1. It was found in Refs. [34,57-59] that, therefore,
the interfacial tension scales as P€+/K — 1. The vanishing of
¥, when K — 1 indicates that CW is unavoidable and that
the wetting transition occurs, according to Young’s equation,
when

K —1oc(1—&/&), (26)

with a proportionality constant of order unity, implying
a parabolic phase boundary about K =1 and &,/§ = 1.
Actually, what happens near the (degenerate) triple point
K =1 is reminiscent of “critical-point wetting,” with 1/K
playing the role of temperature, due to the vanishing of y,, for
K — 1.

(D) In the case & /& > 1, species 1 is preferentially
adsorbed at the wall. Then, assuming pure phase 2 as the
bulk phase, the condition for complete drying (CD) becomes

Ywr = Ywr T Vi 27)

Fully analogously to cases (A), (B), and (C), one finds that
partial drying (PD) is expected when K — oo and CD when
K — 1 and the transition from PD to CD occurs in the
region where (25) and (26) apply, however, with & and &,
interchanged.
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FIG. 4. Wetting phase diagram in the plane of surface field
&1/& — 1 (represented here by the ratio &,/&)) and reciprocal
interaction strength 1/ K, at bulk two-phase coexistence. A first-order
phase boundary or wetting line (WL) separates partial wetting (PW)
from complete wetting (CW) for &, /&, < 1. For &, /&, > 1 the roles
of the condensates are interchanged and one may use “drying” in
place of “wetting.” For example, for &, /&, > 1, Partial wetting (see
figure) signifies partial drying, and CW is replaced with CD. The
phase boundary is parabolic in 1/K and 1/K — 1 as a function of
& /& and &, /&) — 1, respectively, near the points (0,0) and (1,1).

B. Phase diagram at bulk two-phase coexistence

In Fig. 4, we show the exact wetting phase diagram at bulk
two-phase coexistence as a function of 1/K and &,/&;. This
figure confirms all expectations expressed in (A) through (D)
of the foregoing subsection. We now argue that at bulk coex-
istence, roughly speaking two surface regimes are possible in
equilibrium: Either an infinitely thick (macroscopic) layer of
the wetting species 2 is adsorbed or no atoms of that species
are adsorbed. The parameter regimes in the (1/K,&, /&) plane
where PW and CW occur turn out to be separated by a
first-order wetting line (WL), which at each point has an
infinite degeneracy [1,8]. This degeneracy can to some extent
be thought of as a “continuation to inhomogeneous states” of
the degeneracy at the bulk triple point K = 1. We also show
that WL (for &,/&, < 1) is exactly given by the analytical
expression (see also the second paper of [9])

V2T 1
«/K—l:—|:——§/§:|. (28)
3 L&y
First of all, as a function of the wall tensions (24) and the
wave functions of a 1-2 interface, ¥ and y,, which obey
boundary conditions (21a) and (21b), the condition for PW
can be rewritten with use of Eq. (13):

e ~ ~ 2
f d3(¢f+[§2/$1]21ﬁ22)>%_(1—52/51)- (29)

Remarkably, all constituents of this condition, even the profiles
Yy and ¥, are fully determined by K and &,/ [see GP
Egs. (12)]. By numerical integration, we have verified that
the inequality (29) becomes an equality (i.e., Antonov’s rule,
valid for CW) for values of K and &,/&;, which satisfy the
exact relation (28).

What kind of behavior can one expect close to this wetting
transition line? One possibility is that films of finite thickness
appear as premonitory surface states initiating the interface
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delocalization or “wetting” transition. Such films may be
nucleated as infinitesimal films through a critical nucleation
transition. In order to study this possibility we linearize
Eq. (12b) in terms of the wave function ¥, about v, = 0.
This allows one to study exactly the infinitesimal nucleation
of species 2 when species 1 occupies the entire half space:

[E2/6 70, = —Vr + K tanh2(Z/V2)¥n.  (30)

The solutions for 1/~/2 must fulfill the boundary conditions (22)
and we find that they decay exponentially for large z. They
correspond to films of thickness (decay length) equal to
half the previously introduced penetration depth, A,/2 =
& /(2+/ K — 1). (The factor 1/2 comes from squaring the wave
function for obtaining the density.) The wave functions are
exactly given by (see Appendix A)

¥ = e tanh(Z/v/2)[cosh(Z/~V/2)VE/A (31

where € is by assumption an infinitesimal amplitude. As
explained in Appendix A, nucleation of this kind can only exist
when condition (28) is satisfied. Consequently, in the wetting
phase diagram, at bulk two-phase coexistence, the nucleation
line for infinitesimal adsorbed films coincides with the wetting
phase boundary WL. This is extraordinary. Moreover, at each
point on WL, not only do nucleated infinitesimal films and
layers of infinite thickness solve the GP equations, but also
layers of arbitrary finite thicknesses exist as solutions, all at
the same value of the grand potential.

This degeneracy of the grand potential corresponds to a
one-parameter family of minima that form a “gutter” in the
[¥1(x),¥>(x)] function space, when the grand potential is
plotted as a function of that parameter [i.e., the adsorption
defined later in (35)], and a second, independent parameter.

2,63

1.88

1.65 1 : ,
1 1
&./%, Kb,
FIG. 5. (Left) The excess grand potential per unit area y in units
of P,&, against the ratio of lengths inherent to the surface field, &, /£,
for fixed K = 1.5, at bulk two-phase coexistence. We vary & and
keep &, fixed. The ground-state energy is indicated by the thick line.
Clearly, the wetting transition at & /& = 0.5 is of first order: The
excess energy of pure phase 1 adsorbed at the wall cuts the excess
energy of a system in which an infinite layer of species 2 wets the wall.
(Right) The excess grand potential per unit area y in units of P&
of a prewetting film, which is nucleated with infinitesimal amplitude
at N and becomes macroscopically thick at C. The energy is shown
for £,/& =2/5 and K = 1.5 as a function of the field variable,
which can be used to measure the deviation from bulk two-phase
coexistence, i,/ t,. The thick line denotes the ground-state energy.
The prewetting transition is critical: At the nucleation point (N) an
infinitesimal film of species 2 is nucleated at the wall.

0.5
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Note that the decay length of nucleated infinitesimal films,
Ay/2, diverges when K — 1 since it is proportional to
1/+/K — 1. Therefore, there appears to be a connection
between the degeneracy of bulk phase densities encountered at
the bulk triple point [see (16)] and the degeneracy found here
for the limiting densities of inhomogeneous states for7 — oo.

The crossing of the excess energies of PW and CW states,
conspicuous in Fig. 5 (left), proves that the wetting phase
boundary WL in Fig. 4 is a first-order line. One can ask
which obvious physical quantity displays a jump across this
line. To answer this, we imagine traversing WL in Fig. 4 at
constant surface field &, /&, and varying K. We consider the
first derivative of the excess grand potential with respect to
K and readily observe, using, e.g., (17), that this quantity
corresponds to the overlap of the condensate densities of the
two species,

ay
0K

Upon approach of the wetting phase boundary from the PW
regime the overlap is zero (because species 2 is absent),
whereas the overlap is finite (assuming K < oo) when the
same point on the wetting phase boundary is approached from
the CW regime. To calculate the overlap in the CW regime, it
suffices to consider the interface between phases 1 and 2. We
conclude that the density overlap is a good order parameter for
elucidating the first-order nature of this wetting transition.

= 2P / dZ Y3, (32)

C. Phase diagram off of coexistence

As one decreases the chemical potential , from its value
at two-phase coexistence [,, pure phase 2 is no longer a
bulk ground state (2, = —P,V increases due to the minus
sign). Nevertheless, while pure phase 1 is stable in bulk, the
surface can still be prewetted by films of finite thickness of
species 2. In what follows, we show that, contrary to common
expectations, the first-order wetting transition at coexistence
has an extension in the form of a critical transition off of
coexistence; moreover, the resulting prewetting line coincides
with the nucleation line for infinitesimal films of species 2.

We start from the examination of nucleation for a system
at given 5 /Jt,, &,/&), and K. Extending Eq. (30) to general
values for the chemical potentials, one obtains

[E2/6 PV = —[1a/ TP + K tanh®(Z/V 20, (33)

This can be readily transformed into the form of Eq. (30)
and one concludes that, off of bulk coexistence, infinitesimal
nucleation occurs when K, &, /&, and 1, /1, are confined to
the surface,

— _ V2[w/m
\/K—— = _|: — — ] 34
W2/ Ty 3 | 5,8 £§2/61 (34)
which, of course, reduces to Eq. (28) for u, =u,. Nu-
cleated films have a typical thickness (decay length) of
§2/2VK — pa/1ty).

The nucleation constraint (34) provides all necessary
information for drawing the prewetting phase diagram. A
representative section is presented in Fig. 6, calculated for fixed
£,/€; = 1/3. The prewetting line (PreWL) indicates the onset
of nucleated infinitesimal films, as given by expression (34).
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FIG. 6. The prewetting phase diagram for &,/& =1/3 as a
function of the deviation from bulk coexistence wu,/i, —1 and
the relative interaction parameter K = G15/+/G11G2. Prewetting
(PreW) is found above the prewetting line (PreWL) and below the bulk
coexistence line (CL). Physically, at fixed K > 1, moving vertically
from a point on PreWL to a point on CL means going from a nucleated
to an infinitely thick adsorbed film. For K < 1, upon entering the
region of bulk mixed phase (MIX) from the PreW region, the growth
of the wetting layer of species 2 is preempted by the bulk nucleation
of species 2. That is, bulk phase 1 becomes unstable before wetting
is achieved. See Fig. 7 for more detail and various scenarios.
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The transition is critical. In the prewetting region (PreW in
Fig. 6), thin films grow thicker upon approach of the bulk
coexistence line (CL). Importantly, we find numerically that
prewetting films are energetically favorable as compared to
states with no prewetting film. This is exemplified by the case
&,/& =2/5and K = 1.5, for which we show the excess grand
potential per unit area y in Fig. 5 (right). Clearly, y drops
below the energy y,, (no film of phase 2) at the nucleation
point (N) and continues to decrease until the point of bulk
coexistence (C) is reached (macroscopic wetting layer of phase
2). Moreover, one notices that the departure of the excess
energy y away from the value y,, takes place via a critical
transition.

Inspection of (34) shows that the line PreWL starts at
point M (see Fig. 6), where u,/, = [£,/& 1> and where
PreWL tangentially meets the second-order bulk demixing line
U2/, = K (cf. Fig. 2). In point M of Fig. 6 there is (critical)
nucleation of phase 2 in bulk. At the other end, in contrast
with what is commonly expected [60], but nevertheless in full
accord with surface thermodynamics, the line PreWL cuts the
line CL in point V under a nonzero angle [1].

For low values of the surface field, that is, when &, /& 1 1,
the PreWL of Fig. 6 shrinks and shifts upwards towards the
bulk triple point at K = 1. For high values of the surface field

R

(S}

>
0 5 ~
Z
003 1 2 3 1 1 VA
K /_ ~ ~
— VY —-Y
v v,
- — 4—4 >
0 5 0 S
Z Z
T}ﬁl
© .
v,
10%
Z

FIG. 7. Prewetting states for £,/ = 1/3. Panels (A)—(D) display profiles of the condensate wave functions for the approach to CW along
the trajectory at K > 1 (vertical dashed line) indicated in the top left prewetting diagram. Note that panel (D) corresponds to a CW state in
which an infinitely thick layer of phase 2 is present between the hard wall and bulk phase 1. Profiles (E)-(H) depict the wave functions of
condensates 2 [marked by the circles with letters (E)—(H)] and 1 (indicated by the arrows emanating from the circles) along the trajectory at
K < 1 (vertical dashed line) indicated in the bottom left prewetting diagram. State (E) corresponds to a prewetting film; this film continuously
grows up to the point where the bulk transition to the mixed phase is reached [state (F)]. Note that this film remains microscopically thin and
does not become a wetting layer. From the profiles in state (G) one sees that there appears a nonzero bulk density of species 2. Finally, for
higher values of u,/x,, the bulk density of species 2 increases [state (H)].
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FIG. 8. The numerically obtained logarithmic increase of the
adsorption of species 2 [see (35)], associated with the prewetting film,
as a function of 1 — u, /1, = 1 — «/P,/ P}, which is proportional to
the pressure difference P, — P, when we are close to two-phase
coexistence (P, = P,). The approach to CW at bulk coexistence is
accomplished for three different pairs of values of K and &/, in
the prewetting regime.

(for &,/&, | 0), the PreW region of Fig. 6 grows as the points
V and M move apart and away from the bulk triple point.

One can understand the anomalous first-order character
of the wetting transition, featuring an infinite degeneracy at
bulk coexistence, by taking a closer look at the second-order
prewetting transition. Indeed, as seen from Fig. 6, the range
over which u,/, varies between onset of nucleation and
divergence of the prewetting layer on a trajectory of constant
K vanishes upon approach of the point V. Since prewetting
states are energetically favorable, and all thicknesses must be
realized in a prewetting segment of vanishing length (in the
variable w,/t,), a continuous degeneracy of film thicknesses
must follow in the point V.

We depict in Fig. 7 the density profiles which are observed
upon approach of the line CL along a prewetting path at K > 1
[panels (A)—(D)] and a path at K < 1 [profiles (E)-(H)].
A suitable measure of the thickness of the wetting layer is
obtained through the (dimensionless) adsorption, which is
proportional to the derivative of the surface excess energy with
respect to the chemical potential. The adsorption of species 2
is defined as*

r:/ a7, (35)
0

For large values of I', the wetting layer thickness is propor-
tional to I". The film thickness diverges logarithmically upon
approach of bulk two-phase coexistence, as we show in Fig. 8.
This slow divergence is expected for the approach to CW in
systems with short-range interactions [4].

Finally, in Fig. 9, the prewetting phase diagram is drawn
as a function of £,/£; and the deviation from two-phase
coexistence w,/i, — 1 for K = 1.5. For & /&, < 1 (positive
surface field), phase 2 is favored near the wall and the line

“Here we ignore the distinction between (1, and Ti,, since we are
interested in the behavior of the adsorption (very) close to bulk two-
phase coexistence.
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FIG. 9. The prewetting phase diagram as a function of &,/&,
and the deviation from bulk two-phase coexistence u,/t, — 1 for
K = 1.5. Prewetting (PreW) occurs in the shaded region on the left,
whereas “predrying” (PreD) (adsorption of species 1 at the wall with
pure phase 2 in bulk) occurs in the shaded region on the right. Upon
crossing the prewetting line (PreWL), or the predrying line (PreDL),
a second-order surface transition occurs.

PreWL, which connects the points (52 /&1, 1,/ 1p) = (0.5, 1)
and (0,0), bounds a region (PreW) where prewetting by
phase 2 occurs when phase 1 constitutes the bulk phase. For
& /& > 1 (negative surface field), the situation can be seen to
be identical after interchanging the two species: At the point
(2, 1), being the reciprocal of (0.5, 1), a predrying line (PreDL)
starts which bounds a predrying (PreD) region. In this region
a film of finite thickness of species 1 is adsorbed at the wall,
while phase 2 constitutes the bulk phase.

VI. WETTING AT A SOFT WALL

In this section we assume that the BEC mixture is at
bulk two-phase coexistence. In order to study wetting for an
experimentally relevant setup, we relax the hard wall. We do
this by taking the confining potential of species i to be a “soft
wall,” i.e., an exponentially decaying potential along the z
direction,

Ui(z) = Uige /™, (36)

where U;y > 0. One recovers a hard wall for A; /& — 0.

A. Surface excess energies at a soft wall

Before capturing the essence of a two-species semi-infinite
system, confined on one side by the soft potentials (36), we
first consider only species i near the softened walls. We argue
that for small A;/&; it is justified to model the soft wall by a
shifted hard wall. _

In the hard-wall limit A; /§; — 0, the wave function ¥/; has
a tanh profile; relaxation of A;/&; (away from zero) therefore
affects the wave function only in the vicinity of 7 = 0. One can
prove that a surface potential with a small onset ratio A;/&;,
gives rise to a surface tension, derived in Appendix B,

= Vo + ¥y + O /&), (37)

yW i,pure
where

Vo = 4V2PE[3, v, = PA;, (38)
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FIG. 10. Illustration of the two condensate wave functions con-
fined on one side by a soft wall. The exponential surface potentials are
indicated by the thin gray lines. For the configuration above, one can
see that the relative trap displacement satisfies A < 0, since phase 2
is shifted to the left. As a consequence, phase 2 is more favored by the
surface than it already was for the (unshifted) hard-wall configuration,
given that & < &;.

and we define

A; = 2{In([Uio/p, 1[1i /&%) + 1.154 — 3.205[2; /&1%).
(39)

Note that y,, and all higher-order contributions vanish for the
case of a hard-wall boundary. This is consistent with the fact
that y,, coincides with the hard-wall surface tension given in
Eq. (24). The calculation reveals that the three terms in (39)
arise because of the shift of the tanh profile, while the fifth-
order term in (37) also expresses the corrections due to wave-
function distortions away from the tanh profile. Provided that
the fifth-order term can be neglected, the wave function ;
again acquires the form of a tanh profile, however, shifted
away from the origin 7 = 0 over a length A;. Consequently,
one can model the soft wall by a shifted hard wall. In case both
particle species are present near the soft walls, one can prove
that it is again justified to replace the soft walls by hard walls
which are shifted over lengths A; as defined in expression (39).
Therefore, the shifts are not affected by the presence of an
additional species. Figure 10 illustrates the notion of a shifted
hard-wall boundary for the wave functions of two condensates
adsorbed at soft walls.

B. Phase diagram for soft walls

In the previous section, we found out that shifted hard
walls can replace the softer walls (36) whenever A; /§; < 1. By
taking the length A; (>0) small compared to the healing length
&, we argue further that only one parameter (instead of the
initial four: U,o, Uy, A1 and A,) is sufficient to characterize
the system. Moreover, the sign of this parameter plays an
important role in determining whether the wetting transition
is of first order or critical. Taking the new origin z/ = 0 at the
position of the shifted hard wall of species 1 (z = A;), the
relative trap displacement

A=A, — A (40)

expresses the new position 7/ = A of the shifted hard wall for
species 2 (z = Ap).

PHYSICAL REVIEW A 91, 013626 (2015)

One may now ask what are the modifications to the wetting
phase diagram at two-phase coexistence (Fig. 4) after softening
the wall. Since the 1-2 interfacial tension is independent of the
confining surface potential, the condition for CW is easily
found from Egs. (29), (37), (38), and (40) to be (y; and yr, are
the wave functions of the 1-2 interface)

Y12 =/_ d?(%z + [éz/ﬁ]zl;zz)

V2 A

= =1 - - =

3 (I —&/&) 2z,

Consider the case A > 0. The nucleation of species 2

is determined by Eq. (30), with 7 — 7/, together with the
boundary condition,

Uz = A) = P(z’ — 00) =0, (42)

(41)

where the solution ¥, is given in Eq. (A1) of Appendix A.
On the other hand, for A < 0, nucleation of adsorbed species
2 is solved for by matching the extrapolation lengths of the
nucleated density profiles of species 2 at 7' = 0; we know
that when 7 < 0, ¥, o sin[(z' — A)/&,], while for 7’ > 0, the
solution is given in expression (Al). Using expression (A3),
one straightforwardly calculates that at nucleation,

_\/§F[(A‘+1)/2]1"[(1+A+)/2]_ cot (é)
T[A+/2]T[A~/2] C&/&E1\&)

where A% is defined in expression (A2) and I' is the gamma
function (not to be confused with the adsorption).

These considerations are combined with numerical analysis
in order to obtain the phase diagram for wetting at soft
walls at bulk two-phase coexistence. In Fig. 11 we draw the
wetting phase boundaries for three values of the relative trap
displacement. If the relative trap displacement is set to zero,
i.e., A =0, we recover the case of wetting at a hard wall as

(43)

_\‘I\’V

Ale =01
— Al£,=0

CW

g
S}
(&)}

PW Ale =-01

1- . . . .
1 3 5

K

FIG. 11. Wetting phase diagram at bulk two-phase coexistence
for soft walls, in the plane of relative interaction strength K and &, /&,
for different values of the relative trap displacement A, defined in
expression (40). For A = 0, we reproduce the first-order wetting line,
found earlier in the wetting phase diagram of Fig. 4. Displacement of
species 2 closer to the surface, implied by A < 0, makes it possible
that the wetting transition turns to critical wetting (which it does at
least for K ~ 2). Furthermore, the parameter region in which CW
occurs, broadens. On the other hand, for A > 0, the PW region
broadens and the first-order character of the wetting transition is
found to persist (at least for K ~ 2).
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FIG. 12. The excess grand potential per unit area y, at bulk two-
phase coexistence, in units of & P, against the ratio & /&, for K =
2 for relative trap displacement A = —0.1&; (left) and A = 0.1&,
(right). Note that we vary &, while keeping & fixed. (Left) A critical
transition to a CW state takes place at point 7'. Point L is the critical
nucleation point for the thin film of species 2. (Right) For A = 0.1&,,
a first-order transition to CW occurs at point 7.

studied in Sec. V B, where we found that the wetting line is
described exactly by the relation (28).> This first-order phase
boundary separates the CW regime from the PW regime. For
A = —0.1&;, i.e., the wall of species 2 is shifted to the left
(i.e., into the half-space z < 0), species 2 tends to be more
favored by the wall, which is reflected in the wetting diagram
by an enlargement of the CW region. The phase boundary
(light gray line) which marks the wetting transition is, at
least in part, critical. Indeed, we have found that a critical
wetting transition is possible, whereas for the hard-wall case
only first-order wetting occurs. To illustrate the nature of the
transition occurring for A = —0.1£; and fixed K = 2, we plot
in Fig. 12 (left) the excess grand potential y as a function of
&1/&. It is conspicuous that a critical wetting transition takes
place at or very near point 7.

Note that a purely numerical analysis is insufficient for
proving the existence of a continuous wetting transition. The
transition might still be very weakly first order. However,
the behavior of the adsorption, defined in (35), displaying
a logarithmic divergence approaching the wetting transition
point T, is strongly indicative of critical wetting (for a system
with short-range forces). Figure 13 shows the computed
adsorption of species 2 upon approach of the wetting transition.

Consider now the wetting transition for A =0.1§; as
indicated in Fig. 11 by the upper (medium gray) line. This
wetting phase boundary, or at least a part of it, is of first
order. This is exemplified by Fig. 12 (right), in which the
discontinuity of the slope of the ground-state excess grand
potential per unit area y is conspicuous, when the system goes
over to a CW state at point 7.

We may conclude that in case the two shifted hard walls
coincide, i.e., when A = 0, one recovers (to a good approxima-
tion, with an error of order [; /£;1° in the spreading coefficient)
the extraordinary wetting scenario of Sec. V B found for a hard
wall. The associated fist-order wetting transition may turn into
a critical one for A < 0, whereas a first-order transition may
persist for A > 0. We have not studied the precise extent of the
regions of first-order and critical wetting in the phase diagram.

SNote that the diagram of Fig. 11 is drawn as a function of & /&,
and K, which are the reciprocal variables of the ones used in Fig. 4.
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FIG. 13. The adsorption of species 2, I" [see Eq. (35)], versus the
surface field “distance” to the wetting transition &,/& — (&,/&).,
on a semilog plot. The critical wetting point consistent with the
apparent logarithmic divergence of the adsorption is located at
(&1/&). = 2.3227 [point T in Fig. 12 (left)]. The line is a linear
fit to the leftmost ten points on the curve.

We have not investigated the order of the critical wetting
transition, nor have we studied the possibility of tricritical
wetting or other phenomena that might be present. We come
back to these issues in the Conclusion and Outlook section.

VII. EXPERIMENTAL RELEVANCE

The two ingredients that are essential for the experimental
realization of our setup are the ability to adjust the wetting
parameters, which depend on the atomic constants, and the
“hard-wall” potential. We now argue that both are accessible
and can be manipulated in state-of-the-art experiments.

Ultracold atomic gases possess the exceptional feature
that both the sign and the strength of the interactions can
be altered [61-64]. A dramatic variation in the scattering
length is observed near the matching of the energy of two
free atoms with the energy of their bound state. The matching
can be performed since an externally applied magnetic field
induces different Zeeman shifts for the bound state on the
one hand and for the free atoms on the other hand. Recent
observation of these Feshbach resonances in multicomponent
systems [64] proved the ability of independently regulating any
one of the three present scattering lengths a;;, ax, and ay;.
For the experimental exploration of our surface system, we
suggest a tuning of the interspecies scattering length ay,. This
is adequate, first, because a;, linearly probes the parameter
K ; second, because varying the parameters a;; and a,; would
influence both K and &, /&, [see expression (11)]; and third,
because variation of aj, limits the loss of atoms in the
condensate (by three-body collisions) to the interfacial zone.

The hard walls introduced here are more than just a
textbook example; by means of blue-detuned evanescent wave
atomic mirrors, current experiments are able to produce steep
walls [62,63,65-71]. The evanescent electromagnetic wave is
entailed at the surface of a dielectric prism from total internal
reflection of a linearly polarized blue-detuned laser beam. The
“blue detuning” means that the externally applied frequency
is higher than an atomic resonance frequency which causes
the induced dipole to be out of phase with the applied signal.
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If the amplitude of the potential caused by the evanescent
wave is sufficiently high (max,[U(z)]) > w;), the atoms are
not attracted by the van der Waals potential very close to the
prism but feel a repulsive barrier which has the form

U(z) = Upe />, (44)

The amplitude U, is proportional to the inverse frequency de-
tuning from resonance [70]. The decay length X of the potential
is chiefly determined by the wavelength of reflected light and
is as small as 50 nm in several systems of experimental interest
(see further). This length must be compared with the healing
length of the BEC, which typically is in the range from 200 to
400 nm, but as argued before, it can be tuned by a Feshbach
resonance. Finally, to confine the atoms near to the wall, one
may use a conventional harmonic trap for z > 0, which needs
to be sufficiently flat bottomed at the center.

The relative trap displacement A, defined in (40), depends
on various physical parameters and it is not evident how it
can be varied experimentally and whether it can be varied
independently of varying the surface field &;/&, — 1 or the
interaction strength K. To shed some light on this, we consider
the case of a mixture of two species consisting of the same
atoms and the same isotopes, but different hyperfine states.
For such mixtures, assuming a single wavelength (single laser)
generating the evanescent wave emanating from a prism,
and provided the detuning of the laser frequency from the
atomic resonance frequency is large compared to the frequency
corresponding to the hyperfine splitting, we can simplify our
discussion and consider wall potentials characterized by

A=A =4,
Uip = Uy = Up.

(45a)
(45b)

Since u; é}i_z, we obtain, using (39), the simple expres-
sion

A=Ay — Ay 232051 (/&) = [A/ED) (46)

to leading order in A/&;. From this result we learn that
the relative trap displacement is largely controlled by the
individual healing lengths &; and that it is possible to leave
A as well as the surface field & /& — 1 unchanged, when
we vary K by manipulating only the mixed scattering length
ay», by making use of the Feshbach resonance technique, for
example [see Eq. (11)].

Another important piece of information provided by the
result (46), concerns the sign of A. It is conspicuous, since
we assume that phase 2 is preferentially absorbed at the wall
(& < &)), that A is a negative quantity. This implies that for
BEC mixtures of the same isotope adsorbed at an optical wall
critical wetting is a possibility (cf. the wetting phase diagram
discussed in the previous section).

We now ask whether we can predict the value of A
reliably for experimentally relevant systems. Since our main
result (39) is a truncated expansion in the ratio A;/§;, our
approach is only meaningful for systems in which this ratio
is significantly smaller than unity. In several experimental
systems this condition is fulfilled, indeed. Calculating A using
the well-known expression for the decay constant of the
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evanescent wave, given in, e.g., [66], we retrieve

A= hL (47)

drr/n2sin2p — 1
where X is the laser wavelength, n the index of refraction of
the surface coating of the prism and ¢ the angle of incidence.
This leads to the values A = 43 nm [62], 47 nm [68], 48 nm
[69], 56 nm [65-67], and 70 nm [63]. On the other hand,
the healing length is typically 200 to 400 nm. For example,
for 22Na 200 nm has been reported [72]; 400 nm has been
reported for the widely used 8’Rb [55]. This means that for
the experimental systems considered, our supposedly small
parameter A/& ranges from 0.1 to 0.3. Therefore, if we
compare the correction term of order [A /§]2 in (39) to the
preceding constant (1.154), we obtain a relative correction
of 3% to 25%. This signifies that, for some systems of
experimental relevance, our expansion in A /£ is useful. Finally,
we recall that in order to obtain a quantitative estimate for A it
is also important to take into account that the amplitudes Uy;
depend sensitively on the frequency detunings, which may
differ considerably for the different species, even for the same
isotopes (unless the detuning is large compared to the hyperfine
splitting). Note that the detunings implemented experimentally
vary from fractions of a GHz to about 100 GHz [62,65-67,69].

VIII. WETTING IN A TRAP

Assume now that, as proposed before, we contain a binary
BEC in a harmonic trap and we introduce a hard surface which
cuts the trap in two (see Fig. 14). A natural question is then
whether the wetting characteristics vary along the hard wall
when the species are at two-phase coexistence along the wall.
The answer is negative: Since both the condition (29) and the
wave functions 1’/7,- only depend on the variables K and &, /£
and these can be expressed in terms of the scattering lengths
and the masses alone [see Eq. (11)], the wetting properties do
not depend on the position.

The underlying assumption here is that the characteristic
harmonic oscillator length L associated with the (harmonic)
magnetic trap Up,m i large compared to the healing length
[see condition (4)]. This implies that locally, at position r,
the effective chemical potential p; can be replaced by a local

Phase 1

@ Phase 2
Blue Prism Prism
detuned 1;1‘ ‘L-(‘
laser
light

FIG. 14. Possible experimental setup for observing the wetting
transition in a trap: Atoms are contained by a (anisotropic) harmonic
confinement and are held up by an evanescent wave prism. The figures
show cross sections of PW (left) and CW (right) configurations for a
trapped binary mixture at bulk two-phase coexistence. As argued in
Sec. VIII, the wetting characteristics do not depend on the position
along a hard wall.
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chemical potential ©; — Unam(r) (see also the discussion in
Sec. III of the first article of Ref. [9]). This is akin to the local
density approximation to the chemical potential (Sec. 12.5
in [53]).

On the other hand, when working with a soft-wall potential,
one must look at expression (41) which is the condition for
CW. This condition, as well as the wave functions themselves
depend on the parameter A /&;, the position dependence of
which goes as A /& o v/it1 — Unarm(r) for a harmonic trap.
Thus, whereas the wetting properties at a hard wall are position
independent, they may be position dependent for a soft wall.

IX. CONCLUSION AND OUTLOOK

In this paper we have predicted, based on the GP theory
for binary mixtures (species 1 and 2) of BECs at T = 0, that
wetting and prewetting phase transitions are possible when the
mixture is adsorbed at an optical wall. The optical wall consists
of an evanescent wave emanating from a prism in which laser
light is totally internally reflected. The wall is represented by
an external potential acting on the condensates, which turns on
exponentially with a decay length A that is small compared to
the healing length £ of a condensate. We have revisited the limit
A — 0 (hard wall) for which wetting and prewetting transitions
were predicted in our foregoing Letter [1]. For this limit we
provide the exact expressions for the first-order wetting phase
boundary and for the prewetting surface in the global phase
diagram.

Our main results pertain to the more realistic softer wall, at
finite A/&. We provide useful expansions in this ratio for all
relevant surface excess quantities. We find that, provided that
we may truncate the expansions at order [A/£], the soft-wall
problem can be captured by introducing two hard walls, one
for each condensate, shifted in space by an amount that can be
calculated perturbatively and that depends in a simple manner
on the soft-wall parameters and the condensate healing lengths.

In the hard-wall limit the wetting transition is of first
order [1]. We have demonstrated that for soft walls, this needs
no longer be so. Indeed, for a range of soft-wall parameters,
we have found that the wetting transition is critical. It is
characterized by a continuous, logarithmic, divergence of the
wetting layer thickness and by a continuous first derivative
of the spreading coefficient at wetting. In particular, for an
adsorbed BEC mixture consisting of identical isotopes but
different hyperfine states, which is a case of great experimental
relevance, critical wetting is possible. We have also established
that in other regions of the parameter space, the wetting
transition is of first order. We have illustrated the experimental
usefulness of our computations by identifying several cases
for which our expansion variable A /£ is indeed smaller than
unity. We argue that for exploring the wetting phase diagram
experimentally, it would suffice to manipulate primarily the
mixed scattering length aj,, which can be done with the
Feshbach resonance technique. This parameter directly affects
the strength of the interspecies atomic repulsion.

What remains to be investigated is the precise extent of the
regions of first-order and critical wetting in the global phase
diagram for soft walls. In particular, the separatrices between
the first-order and critical regimes have to be identified. Is
the crossover governed by a tricritical wetting transition, or is

PHYSICAL REVIEW A 91, 013626 (2015)

there a critical endpoint scenario [4]? More interestingly still,
does the global phase diagram feature infinite-order wetting
transitions and/or nonuniversal critical wetting, for which the
critical exponent of the spreading coefficient depends on the
ratio of two lengths [73]? For our system these two lengths
are the decay lengths of the order parameters towards their
bulk values in the wetting phase, which is pure phase 2 in
our setup. Consequently, the relevant lengths are, on the one
hand, the healing length &, of condensate 2 and, on the other
hand, the penetration depth & /4/K — 1 of condensate 1 (into
condensate 2). The critical exponents at wetting may depend
continuously on the ratio of these two lengths. Alternatively,
it is also possible that the critical wetting transition is the
universal second-order wetting transition. These scenarios are
not mutually exclusive. Both possibilities can be realized.
These fascinating questions will be the subject of future
research on this problem.
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APPENDIX A: NUCLEATION—ANALYTIC SOLUTION

Here we prove that (31) solves Eq. (30) together with the
boundary conditions (22), only when relation (28) is satisfied.
The problem is equivalent to the Schrodinger bound-state
problem in a potential V(Z) = —1/ cosh?(%/ V/2). The solution
to Eq. (30) that remains finite for Z — oo is [74]

F{A*, A= (A* + A=+ 1)/2;[1 — tanh(Z/~/2)]/2}

(D)= cosh(Z/+/2)Y26 /61 VE=] ’
(AD)
with F the hypergeometric function and
1 JV2(K -1 1+38 2K
< 1 ( ):I: V1+8[&/&1] (A2
2 [62/1] 2
The Dirichlet boundary condition yields [75]
~ a (AT + A™ + 1)/2]
70 = 7 Pl _o a3

[(AT + D/2IT[(A~ + 1)/2]

with T the gamma function. Since A* > 0, the only pos-
sibilities for satisfying the boundary condition are given by
A"+ 1=-2sfors =0,1,...sothat

VEK=T1 V2&/6172—1—3s —2s?)
[&/61 3+4s '

The integer s counts the number of nodes of the nucleated
wave function v, and one can check that for s > 0, all curves
in the & /&) — K plane which are determined by relation (A4),
lie in the CW region of Fig. 4. This is shown in Fig. 15.
Therefore, for physical nucleation only the solution withs = 0
is relevant, which yields expressions (28) and (31). Note
that recently analogous solutions were found in Ref. [76]
representing bound solutions of a single BEC within an
identical geometrical setup.

(A4)
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1/K

FIG. 15. Wetting phase diagram in the plane of inverse relative
interaction parameter 1/K and surface-field-related parameter &, /&;.
The lines numbered with the integer s correspond to the solutions (A4)
and indicate the loci where excitations (with s nodal planes) of zero
energy exist [8]. Below each of these lines these excitations have a
negative energy. The s = 0 line is the wetting phase boundary, which
coincides precisely with the nucleation line for infinitesimal films of
phase 2. The lines with s = 1,2, ... lie in the CW regime and have
no physical significance, since the equilibrium state in this regime is
a macroscopic wetting layer of species 2.

APPENDIX B: DERIVATION OF THE SURFACE TENSION
FOR THE SOFT WALL

Starting from the system with one single condensate near
a hard wall, we can continuously soften the wall by turning
a confining length X, to a nonzero value when we assume the
surface potential to be of the form

U(z)=U,e /. (B1)

We calculate in the following the resulting excess energy per
unit area. First we rescale the z coordinate to —z&, = —z +
A, In[U, /] so as to get for the GP Eq. (12)

121’ = J‘(—l + 672/[)”/51'] + le)_ (Bz)

We change the coordinate Z to the variable x,, which we define
as

Xi — [)V,'/éi]ze_?/[)\i/&L

Again, as was the case for the 1-2 interface at strong
segregation, the relaxation of A, introduces two effects: First,
the tanh profile will shift, and, second, the wave function will
be distorted over the length 2, /&,. To separate the part of the
wave function ¥, which is modified due to the surface potential
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from the shifted tanh profile, we rewrite 17], in the form,

Ji = ¢i0 + [kl/sl](‘gplo - Ip,(()]) + [)‘1/%_,]3(&11 - &IUI) +eee
After arescaling of the spatial coordinate 7 = %[, /£,], we can
define ¥, ¢, and ¥ by

P = OE + 6, + [, /T8,
(A, /E1GE + 8, + [, /&]281)}
V2
= [ JEIS + D JETY0 + -

We substitute all in the GP Eq. (B2), which to first and second
order yields

‘(Z-/'U +Xil/\}i() = 1},‘05 X[‘(Z}[] +X[21/\}il = _IZ/IO +X/‘(Z‘[1’
where the overdot denotes the derivative with respect to .
Note that, as opposed to the equations found in Refs. [77-79],

we arrive at a linear equation, the reason for which lies in the
boundary conditions. The solution for v, is

i, = V2K,2%),
with K, the modified Bessel function of the second kind
and when 7 — oo, we find that 17/1.0(2) =Z+ 80)/\/5, with
8, = —2(n[X, /& ]+ A), where A =0.577..., the Euler-
Mascheroni constant. By a numerical calculation of 1/7“ , We
alsofoundthat, = 3.205. ... One can then expand the surface
tension [8,9] as

X tanh [

Vi = Yo + Valb JE1+ valh JET + v [0 6T + -
and calculations lead to the result
42
Yo = 3~ &
= PEM(U, /i1, /1) + 1.154},
v, = —3.205P¢,

Lo L (% by 4
o= tim —pg [“gtazepg [ 5
L—o0 o ! 5 4

—12.028 P£ .

The first-order and third-order terms in A, /&, result from a
shift of the tanh profile and the fifth-order term arises from
distortions of the wave function. In fact, the fifth-order term has
an additional contribution arising from the fifth-order shift of
the tanh which can be calculated by introducing a higher-order
correction to the wave function v/,.
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