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Spontaneous symmetry breaking in a spin-orbit-coupled f = 2 spinor condensate
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We study the ground-state density profile of a spin-orbit-coupled f = 2 spinor condensate in a quasi-one-
dimensional trap. The Hamiltonian of the system is invariant under time reversal but not under parity. We identify
different parity- and time-reversal symmetry-breaking states. The time-reversal symmetry breaking is possible
for degenerate states. A phase separation among densities of different components is possible in the domain
of time-reversal symmetry breaking. Different types of parity- and time-reversal symmetry-breaking states are
predicted analytically and studied numerically. We employ numerical and approximate analytic solutions of a
mean-field model in this investigation to illustrate our findings.
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I. INTRODUCTION

Since the first experimental realization of the spinor Bose-
Einstein condensate (BEC) with a gas of 23Na atoms trapped
in an optical trap [1], a lot of theoretical and experimental
studies have been done on these systems [2,3]. On the
theoretical front, mean-field theories have been developed
both for f = 1 [4,5] and f = 2 spinor BECs [6,7]. In our
previous work [8], we studied the ground-state structure of
an f = 1 spin-orbit (SO) coupled spinor BEC with fixed
magnetization in a quasi-one-dimensional (quasi-1D) trap [9]
within the framework of the mean-field theory. In this paper, we
study an SO coupled f = 2 spinor condensate in a quasi-1D
trap. The SO coupling, which relies on the generation of the
non-Abelian gauge potentials coupling the neutral atoms [10],
can be experimentally realized by controlling the atom-light
interaction. A variety of SO couplings can be engineered
by Raman dressing the hyperfine states. The parameters
of the atom-light interaction Hamiltonian, and hence those
of coupling, can be controlled independently [11]. The SO
interaction with equal strengths of Rashba [12] and Dressel-
haus [13,14] couplings has been achieved recently [15,16].
The experimentalists employed a pair of Raman lasers to
create a momentum-sensitive coupling between two internal
atomic states of 87Rb [15,16]. This has lead to a flurry of
other experiments on SO-coupled pseudospinor BECs [17].
The generation of SO coupling involving the three hyperfine
spin components of an f = 1 spinor condensate using Raman
dressing has also been studied theoretically [18,19]. Recently,
SO coupling has been experimentally realized in degenerate
Fermi gases of 40K and 6Li [20].

Wang et al. [21] studied theoretically the ground states of a
pseudo-spin-1/2 two-component BEC with SO coupling and
of a three-component f = 1 spinor BEC. In the presence of SO
coupling, the ground states of all spinor BECs—pseudo-spin-
1/2 [22], f = 1 [23], and f = 2 [24]—may exhibit different
types of nontrivial density distribution. In the presence of a
uniform magnetic field, the ground states of f = 1 [4,5,25,26]
and f = 2 [2,7,27] spinor BECs exhibit interesting behavior
including the possibility of a phase separation [15,26] among
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different spin components. There have also been different static
and dynamic studies in SO-coupled BECs, such as Josephson
oscillation [28], intrinsic spin-Hall effect [29], solitons [30],
force on a moving impurity [31], chiral confinement [32], and
superfluidity [33].

In this paper, we investigate the ground state of an SO-
coupled f = 2 spinor BEC in a quasi-1D trap for an arbitrary
magnetization. The Hamiltonian of this system is invariant
under time reversal T but not under parity. Consequently,
different types of parity-breaking states are found. Time-
reversal symmetry-breaking states are found in the presence
of degeneracy. In the absence of degeneracy, the states
preserve time-reversal symmetry. The five spin-component
wave functions of the f = 2 spinor condensate satisfy a
coupled mean-field Gross-Pitaevskii (GP) equation with three
interaction parameters: c0 ∝ (4a2 + 3a4)/7, c1 ∝ (a4 − a2)/7,
and c2 ∝ (7a0 − 10a2 + 3a4)/7, where a0,a2, and a4 are the s-
wave scattering lengths in total spin ftot = 0,2, and 4 channels.
The whole c1 versus c2 parameter space can be divided into
subspaces with distinct symmetry properties of the densities
of spinor components. We have the ferromagnetic phase for
c1 < 0 and c2 > 20c1, antiferromagnetic phase for c2 < 0 and
c2 < 20c1, and cyclic phase for c1 > 0 and c2 > 0. In the
ferromagnetic phase, increasing magnetization lowers energy,
whereas in the antiferromagnetic phase, the lowest energy is
attained for zero magnetization. Miscible configuration for five
component densities of an SO-coupled spinor BEC is obtained
for c2 < 20c1 and a phase separation is possible for c2 > 20c1.
We find that for sufficiently strong spin-orbit coupling, the
SO-coupled spinor condensate has atoms only in mf = 2 and
−2 states. Time-reversal symmetry is preserved for states only
in the antiferromagnetic phase, and can be broken in other
phases. As parity is not a good quantum number, it is broken in
all domains. We use the numerical solution of the generalized
mean-field GP equation [34] for this investigation.

The paper is organized as follows. In Sec. II, we describe
the coupled GP equations used to study the SO-coupled
f = 2 spinor BEC in a quasi-1D trap. From an analytic
consideration of energy minimization, we predict the expected
density profiles for different sets of parameters. Specifically,
we predict the parameter space, where a phase separation can
take place. We also predict different types of parity-breaking
states. In Sec. III, we numerically study the SO-coupled
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spinor BEC in a quasi-1D trap. We identify the different
types of symmetry-breaking states and phase-separated states
in different parameter domains. We conclude by providing a
summary of this study in Sec. IV.

II. MEAN-FIELD MODEL FOR AN SO-COUPLED BEC

Spin-orbit coupling can be generated for the hyperfine
states of neutral atoms by suitably controlling the atom-light
interaction. The idea was realized experimentally by Lin
et al. [15] for two hyperspin components of the 87Rb hyperfine
state 5S1/2 employing two counterpropagating Raman lasers of
wavelength λr oriented at an angle βr . This lead to the SO cou-
pling with strength γ = �kr/m, where kr = 2π sin(βr/2)/λr

and m is the mass of an atom. However, here we consider
the SO coupling among the five spin components of the f =
2 state, e.g., |f = 2,mf = 2〉,|f = 2,mf = 1〉,|f = 2,mf =
0〉, |f = 2,mf = −1〉, and |f = 2,mf = −2〉, where mf is
the z projection of f . By generalizing the method discussed
in Ref. [19], this SO coupling among the five hyperfine
spin components can be generated by engineering a suitable
atom-light interaction Hamiltonian as in Ref. [15].

In order to realize a quasi-1D SO-coupled spin-2 BEC
along the x axis, we consider a trapping potential with angular
frequencies along y and z axes much larger than that along the
x axis. The resultant strong transverse confinement ensures
that the dynamics is frozen along y and z axes. Then, the
single-particle quasi-1D Hamiltonian of the system under
the action of a strong transverse trap of angular frequencies
ωy and ωz along y and z axes, respectively, can be written
as [15,35]

H0 = p2
x

2m
+ γpx�z + ��x, (1)

where px = −i�∂x is the momentum operator along the x

axis, � is the Rabi frequency [15,16], and �z and �x are the
irreducible representations of the z and x components of the
spin-2 matrix, and are given by

�z =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞
⎟⎟⎟⎠ , (2)

�x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

A. Mean-field model in a quasi-1D trap

If the interactions among the atoms in the BEC are taken
into account, in the Hartree approximation, using the single-
particle model Hamiltonian (1), a quasi-1D [9] spin-2 BEC
can be described by the following set of five coupled mean-
field partial differential GP equations for the wave-function

components ψj [2,34]:

i�
∂ψ2

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ2 − 2i�γ

∂ψ2

∂x

+ c1(F−ψ1 + 2Fzψ2) + (c2/
√

5)�ψ∗
−2 + �ψ1,

(4)

i�
∂ψ1

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ1 − i�γ

∂ψ1

∂x

+ c1(
√

3/2F−ψ0 + F+ψ2 + Fzψ1)

− (c2/
√

5)�ψ∗
−1 + �[ψ2 + (

√
3/2)ψ0], (5)

i�
∂ψ0

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ0

+ c2√
5
�ψ∗

0 +
√

6

2
c1(F−ψ−1 + F+ψ1)

+
√

3

2
�(ψ1 + ψ−1), (6)

i�
∂ψ−1

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ−1 + i�γ

∂ψ−1

∂x

+ c1(
√

3/2F+ψ0 + F−ψ−2 − Fzψ−1)

− (c2/
√

5)�ψ∗
1 + �[(

√
3/2)ψ0 + ψ−2], (7)

i�
∂ψ−2

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ−2

+ 2i�γ
∂ψ−2

∂x
+ c1(F+ψ−1 − 2Fzψ−2)

+ (c2/
√

5)�ψ∗
2 + �ψ−1, (8)

where V (x) = mω2
xx

2/2 is the 1D harmonic trap; c0 =
2�

2(4a2 + 3a4)/(7ml2
yz); c1 = 2�

2(a4 − a2)/(7ml2
yz); c2 =

2�
2(7a0 − 10a2 + 3a4)/(7ml2

yz); a0,a2, and a4 are the s-wave
scattering lengths in the total spin ftot = 0,2, and 4 channels,
respectively; ρj = |ψj |2 where j = 2,1,0,−1,−2 are the
component densities; ρ(x) = ∑2

j=−2 ρj is the total density;

and lyz = √
�/(mωyz) with ωyz = √

ωyωz is the oscillator
length in the transverse y − z plane and

F+ = F ∗
− = 2(ψ∗

2 ψ1 + ψ∗
−1ψ−2) +

√
6(ψ∗

1 ψ0 + ψ∗
0 ψ−1),

Fz = 2(|ψ2|2 − |ψ−2|2) + |ψ1|2 − |ψ−1|2,

� = 2ψ2ψ−2 − 2ψ1ψ−1 + ψ2
0√

5
.

Here F = (Fx,Fy,Fz) is the spin-density vector; F± = Fx ±
Fy. The normalization condition is

∫ ∞
−∞ dxρ(x) = N, where N

is the total number of atoms. In order to transform Eqs. (4)–(8)
into dimensionless form, we use the scaled variables defined
as

t̃ = ωxt, x̃ = x

l0
, φj (x̃,t̃) =

√
l0√
N

ψj (x̃,t̃), (9)
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where l0 = √
�/(mωx) is the oscillator length along the x axis.

Using these dimensionless variables, the coupled mean-field
Eqs. (4)–(8) in dimensionless form are

i
∂φ2

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ2 − 2iγ̃

∂φ2

∂x̃

+ c̃1(F̃−φ1 + 2F̃z̃φ2) + (c̃2/
√

5)�̃φ∗
−2 + �̃φ1,

(10)

i
∂φ1

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ1 − iγ̃

∂φ1

∂x̃

+ c̃1(
√

3/2F̃−φ0 + F̃+φ2 + F̃z̃φ1) − (c̃2/
√

5)�̃φ∗
−1

+ �̃[φ2 + (
√

3/2)φ0], (11)

i
∂φ0

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ0 + c̃2√

5
�̃φ∗

0

+
√

6

2
c̃1(F̃−φ−1 + F̃+φ1) +

√
3

2
�̃(φ1 + φ−1),

(12)

i
∂φ−1

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ−1 + iγ̃

∂φ−1

∂x̃

+ c̃1(
√

3/2F̃+φ0 + F̃−φ−2 − F̃z̃φ−1)

− (c̃2/
√

5)�̃φ∗
1 + �̃[(

√
3/2)φ0 + φ−2], (13)

i
∂φ−2

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ−2 + 2iγ̃

∂φ−2

∂x̃

+ c̃1(F̃+φ−1 − 2F̃z̃φ−2) + (c̃2/
√

5)�̃φ∗
2 + �̃φ−1,

(14)

where Ṽ = x̃2/2, γ̃ = �kr/(mωxl0); �̃ = �/(�ωx); c̃0 =
2Nl0(4a2 + 3a4)/(7l2

yz); c̃1 = 2Nl0(a4 − a2)/(7l2
yz); c̃2 =

2Nl0(7a0 − 10a2 + 3a4)/(7l2
yz); ρ̃j = |φj |2 with j = 2,1,0,

−1,−2; and ρ̃ = ∑2
j=−2 |φj |2 and

F̃+ = F̃ ∗
− = 2(φ∗

2φ1 + φ∗
−1φ−2) +

√
6(φ∗

1φ0 + φ∗
0φ−1),

F̃z̃ = 2(|φ2|2 − |φ−2|2) + |φ1|2 − |φ−1|2,

�̃ = 2φ2φ−2 − 2φ1φ−1 + φ2
0√

5
.

The normalization condition satisfied by φj is
∫ ∞
−∞ ρ̃(x̃)dx̃ =

1. One of the aims in the present paper is to find the ground
state of an f = 2 spinor condensate with a fixed magnetization,
which is defined by

M =
∫ ∞

−∞
F̃z̃dx̃. (15)

Depending on the values of c̃1 and c̃2 the system in the absence
of magnetic field and SO coupling can have a variety of ground
states [2]. For the sake of simplicity of notations, we will
represent the dimensionless variables without a tilde in the
rest of the paper.

B. Uniform BEC: Analytic consideration

The energy of a uniform (trapless) spinor BEC in the
presence of SO coupling and magnetic field is [2,34]

E = N

∫ ∞

−∞

⎧⎨
⎩

1

2

2∑
j=−2

∣∣∣∣dφj

dx

∣∣∣∣
2

− iγ

2∑
j=−2

jφ∗
j

dφj

dx

+ (c0ρ
2 + c1|F|2 + c2|�|2)/2 + �[φ∗

2φ1 + φ∗
1φ2

+ φ∗
−1φ−2 + φ∗

−2φ−1 + (
√

3/2)(φ∗
1φ0 + φ∗

0φ1

+ φ∗
0φ−1 + φ∗

−1φ0)]

⎫⎬
⎭ dx. (16)

First we consider the formation of spatially separated
nonoverlapping (phase-separated) states from a consideration
of energy minimization. As in the case of a f = 1 spinor
BEC [8], the energy term proportional to c0 in Eq. (16)
cannot lead to a phase separation as it contains terms
Nc0

∫
(ρ2

j /2 + ρ ′2
j /2 + ρjρ

′
j )dx, where j,j ′ = 2,1,0,−1,−2

and j �= j ′, and hence corresponds to a situation where
inter- and intraspecies interactions are of equal strength. The
situation is analogous to a binary BEC with a a12 = √

a11a22,
where a11 and a22 are intraspecies and a12 is the interspecies
scattering lengths. Such a binary BEC has equal strengths of
inter- and intraspecies nonlinearities and is always miscible in
the presence of a 1D harmonic trap [36,37]. The interaction
energy of the f = 2 spinor condensate in the absence of
SO coupling and magnetic field (γ = � = 0) can be written
as

Eint = N

∫ (
c1

2

{
4ρ2

2 + ρ2
1 + ρ2

−1 + 4ρ2
−2 + 6ρ0(ρ1 + ρ−1) + 8

√
ρ1ρ2ρ−1ρ−2 cos(θ−1−2 − θ21)

+ 12ρ0
√

ρ1ρ−1 cos(θ0−1 − θ10) + 4
√

6[ρ−1
√

ρ−2ρ0 cos(θ−1−2 − θ0−1) + √
ρ−1ρ−2ρ0ρ1 cos(θ−1−2 − θ10)

+√
ρ2ρ1ρ0ρ−1 cos(θ21 − θ0−1) + ρ1

√
ρ2ρ0 cos(θ21 − θ10)] + 8ρ2ρ1 + 8ρ−1ρ−2 − 4ρ2ρ−1 − 8ρ2ρ−2 − 2ρ1ρ−1

− 4ρ1ρ−2
} + c2

10

{
4ρ2ρ−2 + 4ρ1ρ−1 − 8

√
ρ2ρ1ρ−2ρ−1 cos(θ21 − θ−1−2)

+ 4ρ0[
√

ρ2ρ−2 cos(θ20 − θ0−2) − √
ρ1ρ−1 cos(θ10 − θ0−1)] + ρ2

0

})
dx, (17)

where the wave-function component φj is written as φj = √
ρj exp(iθj ) with θj the phase. The phase difference between the ith

and j th components is written as θij = θi − θj .
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TABLE I. Parity-breaking states with different choices of α±2. The third column defines the parity of the real and imaginary parts of φ±2,
whereas the fourth column shows the relations between the real and imaginary parts of φ2 and φ−2.

α2 α−2 Parity property of φ±2 Relation between φ2 and φ−2

±1√
2

±1√
2

R[φ±2(x)] = R[φ±2(−x)], I[φ±2(x)] = −I[φ±2(−x)] R[φ2(x)] = R[φ−2(x)], I[φ2(x)] = −I[φ−2(x)]
±1√

2
∓1√

2
R[φ±2(x)] = R[φ±2(−x)], I[φ±2(x)] = −I[φ±2(−x)] R[φ2(x)] = −R[φ−2(x)], I[φ2(x)] = I[φ−2(x)]

±i√
2

±i√
2

R[φ±2(x)] = −R[φ±2(−x)], I[φ±2(x)] = I[φ±2(−x)] R[φ2(x)] = −R[φ−2(x)], I[φ2(x)] = I[φ−2(x)]
±i√

2
∓i√

2
R[φ±2(x)] = −R[φ±2(−x)], I[φ±2(x)] = I[φ±2(−x)] R[φ2(x)] = R[φ−2(x)], I[φ2(x)] = −I[φ−2(x)]

i√
2

±1√
2

R[φ2(x)] = −R[φ2(−x)], R[φ−2(x)] = R[φ−2(−x)], R[φ2(x)] = ±I[φ−2(x)], I[φ2(x)] = ±R[φ−2(x)]

I[φ2(x)] = I[φ2(−x)], I[φ−2(x)] = −I[φ−2(−x)]
±1√

2
i√
2

R[φ2(x)] = R[φ2(−x)], R[φ−2(x)] = −R[φ−2(−x)], R[φ2(x)] = ±I[φ−2(x)], I[φ2(x)] = ±R[φ−2(x)]

I[φ2(x)] = −I[φ2(−x)], I[φ−2(x)] = I[φ−2(−x)]

To understand the phase separation and spontaneous sym-
metry breaking of the states, we consider the stationary
eigenvalue problem of the lowest-energy state of a uniform
noninteracting system with SO coupling while Eqs. (10)–(14)
become

Eφj (x) = N

[
−1

2

∂2

∂x2
− ijγ

∂

∂x

]
φj (x). (18)

The two independent solutions of Eq. (18) for the lowest-
energy state are φ±2 = α±2 exp(∓2iγ x) with normalization
|α2|2 + |α−2|2 = 1 and φ±1 = φ±0 = 0 with energy E ≡
Emin = −2Nγ 2. The components j = ±1,0 have higher
energies. The analytic solutions of Eq. (18) are very useful
to understand many features of the actual numerical solution.
It is clear from Eq. (18) that these plane-wave solutions will
lead to smooth density profiles in the presence of a trap
while their real and imaginary parts will, in general, have
oscillating behavior. In the presence of a trap and interactions,
in the actual numerical calculation, for a sufficiently large SO
coupling γ only the components j = ±2 survive. In this case,
the interaction energy (17) becomes

Eint = 2N

∫ [
c1(ρ2 + ρ−2)2 + c2 − 20c1

5
ρ2ρ−2

]
dx. (19)

In Eq. (19), only the product term ρ2ρ−2 controls the phase
separation between components ±2. A repulsive (positive)
product term will facilitate a phase separation, as the energy
can then be minimized by reducing the overlap between the
components. This will happen for c2 > 20c1.

In the presence of SO coupling the Hamiltonian is invariant
under time reversal T but not under parity. Hence, parity is
not a good quantum number. Different types of simple parity-
breaking states are found. The nondegenerate states should
possess time-reversal symmetry. However, a pair of degenerate
states, which transform into each other when operated upon by
T , break time-reversal symmetry. For a sufficiently large γ ,
when only the components j = ±2 survive, the time-reversal
symmetry is broken for the phase-separated profiles, whereas
the miscible profiles preserve time-reversal symmetry. Next
we consider different types of symmetry-breaking states.

First we consider different overlapping parity-breaking
but nevertheless time-reversal symmetric states. The parity
property of φ±2 and the relations between the real and
imaginary parts, denoted by R and I, respectively, of φ2

and φ−2 for some of these parity-breaking and time-reversal
symmetric states are listed in Table I. In these examples the real
and imaginary parts of the wave function may have definite
parity, but not the total wave function, as parity is not a
good quantum number. However, no such simple relation is
obtained for a general α±2, where neither the real part nor
the imaginary part of the wave-function components have a
definite parity. Also, similar symmetry-breaking states are
expected for the j = ±1 component states when they are
nonzero. These types of symmetry-breaking states were found
in the actual numerical calculation in the presence of trap and
interaction terms.

Now we consider some examples of time-reversal
symmetry-breaking states in the presence of SO coupling.
These states are phase-separated (nonoverlapping). There
could be a complete phase separation between the j = ±2
components when the two components symmetrically move
to two sides of x = 0. In that case, suppose the components
j = ±2 are centered at x = ±x0, then there will be no definite
parity of the real and imaginary parts, but one can have prop-
erties, such as R[φ2(x − x0)] = ±R[φ−2(x + x0)], I[φ2(x −
x0)] = ∓I[φ−2(x + x0)], or R[φ2(x − x0)] = ±I[φ−2(x +
x0)], R[φ−2(x + x0)] = ±I[φ2(x − x0)]. In these cases the
densities break the symmetry of the trapping potential: ρj (x) �=
ρj (−x). There could be another type of phase separation
where one of the components, say j = −2, stays at the
middle and the other component j = 2 breaks into two parts
and stays symmetrically on both sides of origin. In this
case, the real and imaginary parts of the middle component
(j = −2) have opposite parities, and the real and imaginary
parts of the outer component (j = 2) either map into each
other or have opposite parities: R[φ2(x)] = ±I[φ2(−x)] or
±R[φ2(−x)] and I[φ2(x)] = ∓I[φ2(−x)]. In these cases, the
symmetry of the trapping potential is reflected in the densities:
ρj (x) = ρj (−x).

For a moderate SO coupling, in the trapped system φ0 = 0
and interesting conclusions can be reached analytically in
such a case. In the limit |φ0| → 0, the interaction energy
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is

Eint = N

∫ {
c1

2
[4(ρ2 + ρ1 + ρ−1 + ρ−2)2 − 3(ρ1 + ρ−1)2

+ 8
√

ρ2ρ−2ρ1ρ−1 cos(θ−1−2 − θ21) − 12ρ2ρ−1

− 16ρ2ρ−2 − 4ρ1ρ−1 − 12ρ1ρ−2] + c2

10
[4ρ2ρ−2

+ 4ρ1ρ−1 − 8
√

ρ2ρ−2ρ1ρ−1 cos(θ21 − θ−1−2)]

}
dx.

(20)

The positive terms in Eq. (20) involving a product of different
density components should enhance a phase separation, as
they can be minimized by making the overlap between the
component wave functions zero. For the extremum values of
cos(θ−1−2 − θ21) = ±1, the energy of Eq. (20) can be written
as

Eint = N

2

∫ {
4c1(ρ2 + ρ1 + ρ−1 + ρ−2)2 − 12c1ρ2ρ−1

− 12c1ρ1ρ−2 + 4

5
(c2 − 20c1)[

√
ρ2ρ−2 ∓ √

ρ1ρ−1]2

− 3c1(ρ1 − ρ−1)2 ∓ 24c1
√

ρ2ρ−2ρ1ρ−1

}
dx. (21)

Let us in addition consider zero magnetization:
∫

dxρj =∫
dxρ−j ,j �= 0. For c1 > 0,c2 > 20c1, the crossed terms in

density involving ρj and ρ−j are positive and those involving
ρ±2 and ρ∓1 are negative. Hence a stable state with energy
minimization will correspond to a phase separation between
components ±2 and between ±1 while maintaining overlap
between components 2 and −1 and between −2 and 1. In
case of this phase separation, the term ∓24c1

√
ρ2ρ−2ρ1ρ−1

will contribute zero. Similarly, for c1 > 0 and c2 < 20c1, the
dominating contribution of the terms in Eq. (21) involving
a product of densities is negative, and can be minimized
by increasing the overlap between components, and one can
never have a phase separation. For c1 < 0 and c2 > 20c1, the
dominating contribution of the terms in Eq. (21) involving
a product of densities is positive, and can be minimized by
accommodating all the atoms in phase-separated mf = 2 and
−2 components. All the atoms in mf = 2 and −2 components
also ensure the minimum contribution from the −3Nc1

∫
(ρ1 −

ρ−1)2/2dx term. Finally, for c1 < 0,c2 < 20c1, the crossed
terms in density involving ρj and ρ−j are negative and those
involving ρ±2 and ρ∓1 are positive. Hence if a phase separation
occurs it will be between components 2 and −1 and between
−2 and 1 while maintaining overlap between components
±2 and between ±1. However, a consideration of minimiza-
tion of the repulsive contribution −3Nc1

∫
(ρ1 − ρ−1)2/2dx

to energy (21) for overlapping ±ρj requires ρ1 =
ρ−1 = 0, which will exclude the possibility of a phase
separation.

There are several known phases of this spin-2 system. For
c1 < 0,c2 > 0, the state of largest magnetization corresponds
to the lowest-energy state and such states are termed ferro-
magnetic. Even in the absence of SO coupling these states
violate time-reversal symmetry. For c1 > 0,c2 < 0, the state
of zero magnetization has the lowest energy corresponding

to the antiferromagnetic, or polar, or nematic phase. These
states with M = 0 preserve time-reversal symmetry in the
absence as well as presence of SO coupling. The ferromagnetic
and antiferromagnetic phases also extend to the domain—
c1 < 0,c2 < 0—however, separated by the line c2 = 20c1. For
c1 > 0,c2 > 0 neither ferromagnetic nor antiferromagnetic
property prevails and a new phase termed cyclic emerges. A
separation of phase is expected for ferromagnetic material and
not for antiferromagnetic material. In this domain of cyclic
phase, the time-reversal symmetry is broken in the absence
of SO coupling. In the presence of a sufficiently strong SO
coupling, when only the components j = ±2 survive, the time-
reversal symmetry is broken in the phase-separated domain,
i.e., c2 > 20c1, while it is preserved in the miscible domain,
i.e., c2 < 20c1. It is interesting that the present analytic
discussion from a consideration of energy minimization could
predict the line c2 = 20c1 separating the ferromagnetic and
antiferromagnetic phases corresponding to phase-separated
and overlapping states, respectively.

In the following section, by numerically solving the coupled
Eqs. (10)–(14), we will show that, for c2 > 20c1, |φ0| →
0 is a sufficient but not necessary condition for a phase
separation.

III. NUMERICAL SOLUTION OF THE COUPLED
GP EQUATION

We study the ground-state structure of the spinor BEC
by solving the coupled Eqs. (10)–(14) numerically using a
split-time-step Crank-Nicolson method [34,38]. The spatial
and time steps employed in this paper are δx = 0.05 and
δt = 0.000125. In order to find the ground state, we employ
imaginary time propagation. The imaginary time propagation
neither conserves the normalization nor the magnetization as
the (imaginary) time evolution operator is not unitary. To fix
the normalization, and consequently preserve magnetization,
we suggest the following approach [39].

A. Calculation of the normalization constants

The minimization of energy given by Eq. (16) under
the constraints of fixed normalization (equal to 1) and
magnetization (M) can be implemented by minimizing the
functional

K = E − μ

⎛
⎝∫ 2∑

j=−2

|φj |2dx − 1

⎞
⎠ − λ

(∫
Fzdx − M

)
,

(22)

where μ and λ are the Lagrangian multipliers and are functions
of φj . The imaginary time equivalent of Eqs. (10)–(14) using
this functional can be written as

−∂φj (x,τ )

∂τ
= δE

δφ∗
j (x,τ )

− (μ + jλ)φj (x,τ ). (23)

This coupled set of equations is also termed as continuous
normalized gradient flow equations [40] for an f = 2 spinor
BEC. Applying the first-order time splitting to Eqs. (23), we
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break up this equation into two parts,

−∂φj (x,τ )

∂τ
= δE

δφ∗
j (x,τ )

, (24)

−∂φj (x,τ )

∂τ
= −(μ + jλ)φj (x,τ ), (25)

which have to be solved one after the other. The solution of
Eq. (25) at τ = τ + δτ is analytically known:

φj (x,τ + δτ ) ≡ djφj (x,τ )

= exp

[∫ τ+δτ

τ

(μ + jλ)dτ

]
φj (x,τ ). (26)

Using this definition of dj , one can derive the following
relations [39]:

d1d−1 = d2
0 , (27)

d2d−2 = d2
0 , (28)

d2d
2
−1 = d3

0 . (29)

Now, the constraints on norm and magnetization can be
written in terms of the normalization constants Nj of the
wave-function components as

d2
2N2 + d2

1N1 + d2
0N0 + d2

−1N−1 + d2
−2N−2 = 1, (30)

2d2
2N2 + d2

1N1 − d2
−1N−1 − 2d2

−2N−2 = M, (31)

where Nj = ∫ |φj (x,τ )|2dx. Equations (27)–(31) lead to the
following set of nonlinear algebraic equations:

u4N2 + vu3N1 + v2u2N0 + v3uN−1 + v4N−2 = 1, (32)

2u4N2 + vu3N1 − v3uN−1 − 2v4N−2 = M, (33)

where u = d2
1 and v = d2

0 . We use the Newton-Raphson
method [41] for a nonlinear system of equations to solve
Eqs. (32) and (33) after each iteration in imaginary time
to determine d1 and d0 and hence the remaining projection
operators using Eqs. (27)–(29).

B. Numerical results

We consider 10 000 atoms of 23Na (in an f = 2 hyperfine
spin state) in a trapping potential with ωx/(2π ) = 20 Hz and
ωy/(2π ) = ωz/(2π ) = 400 Hz. The oscillator lengths with
this set of parameters are l0 = 4.69 μm and lyz = 1.05 μm. In
numerical calculation it is found that all over the ferromagnetic
domain of Fig. 1 the density profiles are qualitatively the same,
always leading to a phase separation. In the antiferromagnetic
domain the density profiles also remain similar without a
phase separation. In the cyclic domain the density profiles
are different for c2 > 20c1 and c2 < 20c1, the former leading
to a phase separation and the latter leading to a miscible
configuration. We will consider these distinct domains in
the presentation of results. In addition, in different domains
we have different types of symmetry-breaking states, which
we will also illustrate.

The background s-wave scattering lengths of 23Na in
total spin ftot = 0,2, and 4 channels are a0 = 34.9aB,a2 =
45.8aB , and a4 = 64.5aB [2,7], respectively, where aB is
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FIG. 1. (Color online) The c2 − c1 phase plot illustrating fer-
romagnetic, antiferromagnetic, and cyclic phases. The c2 = 20c1

line separating the ferromagnetic and antiferromagnetic phases as
obtained from the present analytic consideration is shown. Separated
phase is possible above this line and miscible phase is possible below
this line.

the Bohr radius. With these values of scattering lengths, we
have c0 = 242.97,c1 = 12.06 > 0, and c2 = −13.03 < 20c1,
corresponding to the antiferromagnetic domain in Fig. 1. In
the absence of SO and Rabi couplings, and magnetization,
γ = � = M = 0, there are more than one degenerate ground
states [2]. In Figs. 2(a)–2(c), three such degenerate ground
states are illustrated. These states are obtained with different
initial choices for the wave-function components in imaginary
time propagation. For these states, some of the wave-function
components have zero values. One can also have a state where
the two components j = ±1 are populated with identical
density (not illustrated here) as in Fig. 2(c), which can be
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FIG. 2. (Color online) Component densities of a 23Na spinor
BEC of 10 000 atoms for � = 0 and c0 = 242.97,c1 = 12.06 > 0,

and c2 = −13.03 < 20c1. The parameters used are (a) γ = M = 0,
(b) γ = M = 0, (c) γ = γ ′,M = 0, and (d) γ = γ ′,M = 0.5; here
γ ′ can have any arbitrary real value including zero, and hence denotes
any arbitrary strength of SO coupling. Time-reversal symmetry is
broken in (d). In this and following similar figures all quantities are
dimensionless and only the nonzero density components are shown.
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FIG. 3. (Color online) Same as in Fig. 2 for c0 = 242.97,c1 =
12.06 > 0, and c2 = 65.76 < 20c1. The parameters used are (a) γ =
M = 0, (b) γ = 0,M = 0, (c) γ = 1,M = 0, and (d) γ = 1,M =
0.5. Time-reversal symmetry is broken in all cases.

generated by a suitable rotation of the state of Fig. 2(c) in
spin space [2]. In the presence of a nonzero SO coupling
(γ �= 0,� = M = 0), the degeneracy between the various
ground states is removed and only the nondegenerate state
of Fig. 2(c) with the components j = ±2 survives. In this
case there is no phase separation as concluded analytically
in Sec. II B. The degeneracy is also removed for nonzero
magnetization (γ = � = 0,M �= 0). In this case too, there is
only one ground state involving components j = ±2, whose
density profile does not change with the introduction of SO
coupling as is shown in Fig. 2(d). Hence, the degenerate ground
states exist only for zero magnetization in the absence of SO
coupling.

To obtain c1 > 0 and 0 < c2 < 20c1, we consider a0 =
52.35aB , a2 = 45.8aB , and a4 = 64.5aB , leading to c0 =
242.97,c1 = 12.06 > 0, and c2 = 65.76 < 20c1. This cor-
responds to the cyclic domain with miscible states. For
M = 0, the ground-state solution in the absence of the
SO coupling (γ = 0) is shown in Fig. 3(a), which can
be written as (φ2,φ1,φ0,φ−1,φ−2)T = √

ρ(1,0,i
√

2,0,1)T /2,
where T stands for transpose and ρ is the total density. This
state has a purely imaginary φ0, has a real φ±2 and φ±1 =
0, and is degenerate with the state (φ2,φ1,φ0,φ−1,φ−2)T =√

ρ(1,0,0,
√

2,0)T /
√

3 shown in Fig. 3(b), where the ±j

symmetry of the states is broken. The latter state has only
j = 2,−1 components. The aforementioned two states break
the time-reversal symmetry and are degenerate with their
time-reversed counterparts. For a nonzero γ , the degeneracy
between these two states is no longer ensured. With the
introduction of a progressively increasing SO coupling γ , in
the state of Fig. 3(a) ρ0 decreases with the corresponding
increase in ρ±2 as is shown in Fig. 3(c). With further increase
in γ,ρ0 becomes zero and only the components j = ±2
survive. The introduction of a nonzero magnetization M only
introduces a splitting in the j = ±2 components as shown
in Fig. 3(d). There is no phase separation in this case also.
Above a critical value of SO coupling γ , the condensate
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FIG. 4. (Color online) Same as in Fig. 2 for c0 = 201.36,c1 =
−1.81,c2 = 24.15 > 20c1. The parameters used are (a) γ = M = 0,
(b) γ = 0,M = 0.5, (c) γ = 0.25,M = 0, (d) γ = 0.25,M = 0.5,
(e) γ = 1,M = 0, and (f) γ = 1,M = 0.5. Time-reversal symmetry
is broken in (b)–(f).

consists of atoms in only mf = ±2 states, which for M = 0
is time-reversal symmetric.

The above study shows that there cannot be a phase
separation for c2 < 20c1. Next we consider c2 > 20c1. First we
consider a ferromagnetic state with c1 < 0 and c2 > 0 obtained
by employing a0 = 52.35aB,a2 = 45.8aB,a4 = 43.0aB , lead-
ing to c0 = 201.36,c1 = −1.81,c2 = 24.15 > 20c1. In this
case the densities of the spinor BEC of 10 000 atoms are shown
for � = 0 for different values of γ and M in Figs. 4(a)–4(f).
From these plots we see that with an increase of SO coupling
from γ = 0 the overlapping component states separate and the
population of the j = ±2 components increases at the cost of a
reduction in population of the j = 0, ± 1 components. Finally,
for γ ≈> 1 only the components j = ±2 survive. In all cases a
finite nonzero magnetizationM breaks the symmetry between
densities of the components j = ±1 and between j = ±2. The
ground-state solutions in this case are phase separated for γ

greater than a critical value in agreement with the discussion
in Sec. II B.

Next we consider a cyclic phase with c2 > 20c1. For this
we consider a0 = 139.6a0,a2 = 45.8a0, and a4 = 64.5a0 lead-
ing to c0 = 242.97 > 0,c1 = 12.06 > 0, and c2 = 459.68 >

20c1, corresponding to a cyclic phase. As the strength of SO
coupling γ is increased, there is a phase separation as is shown
in Figs. 5(c)–5(f). The nature of the phase separation in this
case is different from that discussed in c1 < 0 and c2 > 20c1 in
the sense that the components j = 2 and −1 as well as −2 and
1 are overlapping in this case, consistent with the conclusion
of the theoretical analysis in Sec. II B. The solutions in this
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FIG. 5. (Color online) Same as in Fig. 2 for c0 = 242.97 > 0,

c1 = 12.06 > 0, and c2 = 459.68 > 20c1. The parameters used
are (a) γ = 0.5,M = 0, (b) γ = 0.5,M = 0.5, (c) γ = 2,M = 0,
(d) γ = 2,M = 0.5, (e) γ = 4,M = 0, and (f) γ = 4,M = 0.5.
Time-reversal symmetry is broken in all cases.

domain always break time-reversal symmetry irrespective of
the value of γ .

1. Symmetry-preserving versus symmetry-breaking solutions

The imaginary-time propagation, that we use in calculation,
preserves the spatial symmetry of the initial input wave
function. Different types of states can be obtained with
different inputs. For example, the states illustrated so far in
Figs. 2–5 were obtained with Gaussian inputs, which were
slightly shifted from the origin, for the component wave
functions. We can obtain different density distributions for
the components by using initial Gaussian inputs centered at the
origin. This is illustrated in Fig. 6 for the same set of parameters
as in Fig. 4: c0 = 201.36,c1 = −1.81,c2 = 24.15 > 20c1.
Distinct from Fig. 4, in Fig. 6, the phase separation occurs
in a different fashion preserving the symmetry of the trap:
ρj (x) = ρj (−x). One of the components leaves the central
region and stays symmetrically on both sides of the origin. The
symmetry-breaking states of Fig. 4 have lower energy than the
symmetry-preserving states of Fig. 6 with the same sets of
parameters. Similar symmetry-breaking states were found in
scalar binary condensates [42]. In symmetry-preserving and
symmetry-breaking cases the phase separation may start with
different values of magnetization M and SO coupling γ . The
magnetization and SO couplings in Figs. 6(b) and 6(c) are
identical to those in Figs. 4(e) and 4(d), respectively. For the
same set of parameters, there is a phase separation in Fig. 4(d)
and not in Fig. 6(c). In Fig. 6 the phase separation starts at a
larger value of SO coupling.
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FIG. 6. (Color online) Same as in Fig. 2 for c0 = 201.36,

c1 = −1.81,c2 = 24.15 > 20c1. The parameters used are (a) γ =
0.5,M = 0, (b) γ = 1,M = 0, (c) γ = 0.25,M = 0.5, and (d)
γ = 0.5,M = 0.5. Time-reversal symmetry is broken in all cases.

Next we show in Fig. 7 some of the possible parity-breaking
states obtained with the parameters of Fig. 2(c), e.g., c0 =
242.97,c1 = 12.06 > 0,c2 = −13.03 < 20c1. Figures 7(a)
and 7(b) were calculated with real Gaussian inputs for both the
j = ±2 components. This will correspond to α2 = α−2 =
1/

√
2 in the discussion in Sec. II B, leading to symmetry prop-

erties R[φ±2(x)]=R[φ±2(−x)], I[φ±2(x)]= − I[φ±2(−x)],
R[φ2(x)] = R[φ−2(x)], I[φ2(x)] = −I[φ−2(x)], as
illustrated in Figs. 7(a) and 7(b). Figures 7(c) and 7(d) were cal-
culated with an imaginary Gaussian input for j = 2 and a real
Gaussian input for j = −2 components. This will correspond
to α2 = i/

√
2 and α−2 = 1/

√
2 in the discussion in Sec. II B,

leading to symmetry properties R[φ2(x)] = −R[φ2(−x)],
R[φ−2(x)]=R[φ−2(−x)],I[φ2(x)]=I[φ2(−x)],I[φ−2(x)] =
−I[φ−2(−x)],R[φ2(x)]=I[φ−2(x)], I[φ2(x)]=R[φ−2(x)],
as illustrated in Figs. 7(c) and 7(d). In the same fashion all the
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FIG. 7. (Color online) Real and imaginary parts of the j = ±2
wave-function components for the parameters of Fig. 2(c). Plots (a)
and (b) were obtained with two real Gaussian input states for j = ±2
components. Plots (c) and (d) were obtained with an imaginary
Gaussian input for j = 2 and a real Gaussian input for j = −2
components.
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FIG. 8. (Color online) Dynamics of a phase-separated spinor
condensate in the presence of both SO coupling and Rabi term
(γ = 1.0,� = 0.5, and a zero initial magnetization). The density
profiles are shown at (a) t = 0, (b) t = 70.0, and (c) t = 275, the time
after which the condensate has recovered its initial shape after one
complete oscillation. (d) The component population Nj = ∫

ρj (x)dx

vs time during a complete cycle of the periodic oscillation.

parity-breaking states obtained in Sec. II B from an analytic
consideration can be realized numerically.

As in the case of a binary condensate [36], phase-separated
SO-coupled spinor condensates can be categorized either
as weakly segregated or strongly segregated. In the weakly
segregated domain, the total density profile preserves the
symmetry of the trapping potential (not illustrated here)
and has an approximate smooth Gaussian profile like that
of a single-component BEC in a trap. In the strongly
segregated domain, a notch appears in the total density
profile corresponding to symmetry-breaking solutions shown
in Figs. 4(e), 4(f), 5(e), and 5(f). In case of a nonzero
magnetization, an asymmetrically located notch ensures that
the total density profiles corresponding to Figs. 4(f) and 5(f)
do not have the symmetry of the trap (not shown here).

2. Spin-mixing dynamics in a phase-separated spinor condensate

In the presence of a Rabi term (� �= 0) the solutions of
Eqs. (10)–(14), in general, are not stationary and exhibit
oscillating spin-mixing dynamics [34,43]. To study the spin-
mixing dynamics in a phase-separated spinor condensate, we

again consider 10 000 atoms of 23Na with a0 = 52.35aB,a2 =
45.8aB a4 = 43.0aB , as in Fig. 4, yielding c0 = 201.36,c1 =
−1.81,c2 = 24.15 > 20c1. We first solve Eqs. (10)–(14) using
imaginary time propagation employing γ = 1,M = 0, and
� = 0.5 with the aforementioned set of parameters. The initial
component densities so obtained are shown in Fig. 8(a). We
then evolve this solution using real-time propagation. The
presence of the Rabi term leads to spin mixing between the
various components. The magnetization M is no longer a
conserved parameter in the presence of the Rabi term as can
be interpreted from Fig. 8(b), where the magnetization is 0.37
at time t = 70. During the evolution, the condensate densities
execute oscillation periodically recovering the initial shape
as shown in Fig. 8(c) at time t = 275 after one complete
oscillation. In Fig. 8(d) we plot the component normalizations
Nj versus time during this periodic oscillation.

IV. SUMMARY OF RESULTS

We studied the density profile of a trapped SO-coupled
f = 2 BEC for different values of the interatomic scattering
lengths. Such modification of the scattering lengths can
be realized in a laboratory using the Feshbach resonance
technique [44]. The Hamiltonian of this problem preserves
time-reversal symmetry but breaks parity. The wave functions
of the different spin components are complex in general. In the
antiferromagnetic domain only the miscible density profiles
of different components are found. In this domain the wave
functions preserve time-reversal symmetry. In the ferromag-
netic domain the phase-separated density profiles of different
components are found. The underlying wave functions could
be degenerate and break time-reversal symmetry in this domain
with a time-reversal operator connecting two degenerate wave
functions. A class of parity-breaking states is found where the
real and imaginary parts of wave functions exhibit opposite
parities. These conclusions were illustrated by a numerical
solution of a mean-field model.
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[18] G. Juzeliūnas, J. Ruseckas, and J. Dalibard, Phys. Rev. A 81,
053403 (2010); J. Dalibard, F. Gerbier, G. Juzeliūnas, and P.
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