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Signature of the existence of a coherently condensed state in a dilute gas above
the Bose-Einstein-condensate transition temperature
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We study quantum coherence properties of a dilute gas at temperatures above, but not much above, the transition
temperature of Bose-Einstein condensation. In such a gas, a small proportion of the atoms may possess coherence
lengths longer than the mean neighboring-atomic distance, implying the existence of quantum coherence greater
than that expected for thermal atoms. Conjecturing that a part of this proportion of the atoms may lie in a
coherently condensed state, some unexplained experimental results [D. E. Miller et al., Phys. Rev. A 71, 043615
(2005)] can be explained.
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I. INTRODUCTION

Quantum coherence at the macroscopic and mesoscopic
scales is a topic of interest in a variety of fields. A well-known
example is the Bose-Einstein condensation (BEC) formed
in a dilute gas of identical atoms when the temperature
is dropped below the transition temperature Tc [1–7]. One
interesting question is whether, at temperatures above and
within the same order of magnitude as Tc, atoms may possess
quantum coherence greater than that expected for thermal
atoms. In fact, at temperatures a little above Tc, the stochastic
Gross-Pitaevskii equation approach predicts that a fraction of
the atoms may still lie in a BEC-type state [8]. Some other
approaches give more or less similar predictions, restricted
to the region around Tc [9–17]. However, for temperatures
several times higher than Tc, these theoretical approaches do
not give a clear prediction for the above-mentioned quantum
coherence.

Interestingly, on the other hand, experimental evidence
exists for the above-discussed quantum coherence. It is given
by a recent experiment in which contrasts of the interference
patterns formed by a dilute gas of atoms were measured [18].
It was observed that, at some temperatures above Tc and
under some values of controlling parameters, the measured
contrasts are obviously higher than those predicted for thermal
atoms, implying the existence of extra quantum coherence.
A theoretical explanation for this extra coherence is still
absent, and the purpose of this paper is to take a first step
toward it.

To explain the approach we are to take, let us first consider a
gas of thermal (identical) atoms at a temperature much higher
than Tc. At such a high temperature, the indistinguishability of
the atoms usually does not have a significant effect, and as a
result, the atoms can be treated effectively as distinguishable
particles. As an approximation, a single atom in the gas
can be treated as a quantum Brownian particle interacting
with a thermal bath. Below, we call this approximation
the distinguishable-particle approximation. Behaviors of a
quantum Brownian particle have been studied extensively in
past years (see, e.g., Refs. [19–25] and references therein). Due
to environment-induced decoherence [26–30], the reduced
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state of the particle may approach an approximately diagonal
form in a basis given by Gaussian wave packets [22,23], which
is usually referred to as the preferred (pointer) basis [28–31].
This implies that the atom can be effectively described by a
mixture of Gaussian packets.

The width of the Gaussian wave packet discussed above
gives a measure of the coherence length of the related atom. It
cannot remain constant due to wave-packet expansion [33]. An
intriguing question is what may happen to those atoms whose
coherence lengths are on the scale of the mean neighboring-
atomic distance. The above-discussed distinguishable-particle
approximation fails for these atoms, since the related Gaussian
packets usually have non-negligible overlap with those of the
neighboring atoms. It would be reasonable to expect that these
atoms, at least some of them, may possess coherence greater
than that expected for thermal atoms.

At high temperatures, the proportion of the above-discussed
atoms with long coherence lengths should be too small to
induce any notable effect in most cases. However, when the
temperature drops to the order of Tc, attention should be paid to
them. In fact, as is well known, when the temperature becomes
close to Tc, the thermal de Broglie wavelength reaches the scale
of the mean neighboring-atomic distance [5]. In addition, the
mean coherence length of the atoms, given by the mean width
of the related Gaussian wave packets, is of the order of the
thermal de Broglie wavelength [23]. These two points suggest
an intuitive picture of a gas entering a BEC state, that is, loosely
speaking, it may happen when the mean coherence length
obtained under the distinguishable-particle approximation
reaches the scale of the mean neighboring-atomic distance.
Based on this picture, it would be reasonable to assume
that (some of) the atoms with sufficiently long coherence
lengths may form a condensate with strong coherence, such
that they may generate an interference pattern like that of a
BEC. We call such a condensate state a coherently condensed
state.

In this paper, we show that, making use of the above-
discussed assumption about the existence of a coherently
condensed state of some atoms, we can arrive at a semiquan-
titative explanation for the main features of the experimen-
tally observed, unexpectedly high contrasts discussed above.
Specifically, the paper is organized as follows. In Sec. II,
we discuss two models for a gas at temperatures above Tc:
a simple thermal model, in which the atoms are treated as
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thermal atoms, and a hybrid model, in which most the atoms
are thermal atoms while a small proportion of the atoms lies in a
coherently condensed state. Based on decoherence arguments,
we derive an expression for the temperature dependence of
the proportion of the atoms with long coherence lengths. In
Sec. III, we discuss predictions of the hybrid model for the
contrasts of the interference patterns studied in the experiments
in Ref. [18] and compare the predictions with experimental
results. Finally, concluding remarks and discussions are given
in Sec. IV.

II. TWO MODELS FOR A GAS OF ATOMS
AT TEMPERATURES ABOVE Tc

In this section, we discuss two models for a gas of N

identical, bosonic atoms: a simple thermal model for high
temperatures in Sec. II A and a hybrid model for temperatures
above and of the order of the BEC-transition temperature Tc

in Sec. II B. In Sec. II C, we discuss the temperature depen-
dence of the proportion of atoms possessing long coherence
lengths.

A. A simple thermal model for high temperatures

We neglect the internal motion of the atoms. At high
temperatures with T � Tc, as discussed in Sec. I, one may
use the distinguishable-particle approximation. At the end
of this section, we report that this approximation leads to a
self-consistent picture for the motion of most of the atoms.

We use S to denote a considered, central atom, and E to
denote the rest of the atoms, as the environment of S. The state
of the total system is denoted |�〉. Assuming that the environ-
ment can be regarded as a heat bath, the central atom behaves
like a particle undergoing a quantum Brownian motion, which
has been extensively studied [19–25]. It is known that, for
such a particle, the minimal-uncertainty Gaussian states are
approximately preferred states, and in the basis of these states,
the reduced density matrix, ρre = TrE (|�〉〈�|), approaches
an approximate diagonal form beyond some finite time
scale [23],

ρre(t) ≈
∫

dμαρα(t)|αξ0〉〈αξ0|. (1)

Here, |αξ 〉 indicates a minimal-uncertainty Gaussian state,
centered at α = (x0,p0) in the phase space and possessing a
dispersion ξ in the coordinate space, whose wave function in
the coordinate space is a Gaussian wave packet of the form

ϕ(x; α,ξ ) = A3
ξ exp

[
i p0 · (x − x0)

�
− (x − x0)2

4ξ 2

]
, (2)

where � is the Planck constant and

Aξ = (2π )−1/4ξ−1/2 (3)

is the normalization coefficient. As is well known, this
Gaussian state is a coherent state [32].

The reduced density matrix in Eq. (1) suggests that,
effectively, the central atom may be described by a mixture
of Gaussian wave packets, with probabilities ρα . If, further
assuming that ρα(t) has reached a stationary solution with a

Boltzmann form, then one gets a simple thermal model for the
atoms in an equilibrium state, which was used in Ref. [18].

The dispersion ξ0 in Eq. (1) is fixed and temperature
dependent [23],

ξ0 = �√
2mkBT

= 1

2
√

π
λT , (4)

where λT is the thermal de Broglie wavelength and kB denotes
the Boltzmann constant. As pointed in Ref. [33], due to
wave-packet expansion, the dispersion of the packet in fact
cannot remain constant. The above-discussed fixed value of
ξ0 can be regarded as the mean value of the dispersion. At
T � Tc, ξ0 is much smaller than the mean distance between
neighboring atoms, denoted da in what follows. As a result,
most of the Gaussian packets of neighboring atoms have
negligible overlap in the coordinate space. This justifies the
validity of the distinguishable-particle approximation.

B. A hybrid model for T of the order of Tc

When the temperature T drops to the order of Tc, the
dispersion of the packets discussed above reaches the order of
da on average, hence, its variation can no longer be neglected.
To study the properties of the central atom in this case, we
expand the state vector of the total system in the following
form, with the dispersion ξ as a variable,

|�(t)〉 =
∫

dμαdξ |αξ 〉∣∣	E
αξ (t)

〉
, (5)

where |	E
αξ (t)〉 are the corresponding components of the

environment. We assume that decoherence has occurred, such
that the Gaussian states are approximately preferred states [33]
and the components |	E

αξ (t)〉 of the environment satisfy〈
	E

α′ξ ′(t)
∣∣	E

αξ (t)
〉 ≈ 0 (6)

for α not close to α′ and for ξ not close to ξ ′. Then the reduced
density matrix has approximately the “diagonal” form

ρre(t) ≈
∫

dμαdξραξ (t)|αξ 〉〈αξ |, (7)

where

ραξ (t) = 〈
	E

αξ (t)
∣∣	E

αξ (t)
〉
. (8)

According to Eq. (7), effectively, the atom can be regarded
as lying in a mixed state, i.e., in a mixture of |αξ 〉 with
probabilities ραξ (t).

In the mixed-state description discussed above, the Gaus-
sian wave packets of |αξ 〉 with large dispersions, ξ � da , may
induce a problem. That is, they usually have non-negligible
overlap with Gaussian wave packets of their neighboring
atoms, and as a result, symmetrization of the whole wave
function does not allow us to treat the atoms as distinguishable
particles. This is in conflict with the distinguishable-particle
approximation, which is the starting point of the above
approach. This confliction suggests that the related atoms
may possess quantum coherence greater than that expected
for uncorrelated thermal atoms.

Then, what type of quantum coherence might the corre-
sponding atoms have? As discussed in Sec. I, for temperatures
a little above Tc, some fraction of the atoms may lie in a BEC
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state. It would be natural to expect that, at temperatures not
very close to Tc but still of the order of Tc, a small proportion of
the atoms may lie in a state with some similarity to a BEC state.
In particular, we recall that, as discussed previously, loosely
speaking, BEC transition happens when the mean coherence
length of the atoms obtained in the distinguishable-particle
approximation, which is of the order of the thermal de Broglie
wavelength, reaches the order of the mean neighboring-atomic
distance da .

Based on the above understanding of BEC transition, we
make the following conjecture, which is the basic assumption
of this paper:

Atoms that are connected by the relation of mutual coherence,
defined below, may lie in a coherently condensed state and can
be described by the same single-particle state.

Here, two atoms are said to have a mutual-coherence
relation if they are associated with two Gaussian wave packets
whose coherence lengths are longer than the distance between
the centers of the two packets. Two atoms in mutual coherence
with the same third atom are regarded as being in mutual
coherence too. Clearly, the atoms connected by the relation of
mutual coherence can be regarded as a whole.

At temperatures T above and not far from Tc, most of the
atoms with ξ � da are connected by the mutual-coherence
relationship. The above-discussed conjecture implies that
these atoms lie in a coherently condensed state. Then, using
Pcon to denote the probability that an atom will lie in a
coherently condensed state, we have

Pcon(t) =
∫ ∞

dc

P (ξ,t)dξ, (9)

where dc is of the order of da and P (ξ,t) indicates the proba-
bility that an atom will have a coherence length characterized
by ξ [34], namely,

P (ξ,t) =
∫

dμαραξ (t). (10)

In what follows, for simplicity of discussion, we assume that
dc = da , since generalization of the results given below to the
case of dc not equal to da is straightforward.

Finally, we get the following hybrid model for a gas in an
equilibrium state with a temperature T above and of the order
of Tc. That is, the atoms associated with |αξ 〉 of ξ � da lie in
a coherently condensed state, while other atoms are thermal
atoms described by the simple thermal model discussed in
the previous section. According to the conjecture introduced
above, atoms lying in the coherently condensed state can be
described by the same single-particle wave function when
computing the interference pattern they generate.

C. Temperature dependence of Pcon

In this section, we discuss the dependence of Pcon on
the temperature T . Let us first discuss the time variation of
P (ξ,t) in Eq. (10). It is mainly determined by competition
of the following two aspects of the Schrödinger evolution of
|αξ 〉|	E

αξ (t)〉 on the right-hand side of Eq. (5). On one hand,
expansion of the wave packet |αξ 〉 converts ραξ in Eq. (8)
to ρα′ξ ′ with a larger dispersion ξ ′ > ξ . On the other hand,

the interaction between the central atom and other atoms may
induce decoherence, changing |αξ 〉|	E

αξ 〉 to a superposition
of |α′ξ ′〉|	E

α′ξ ′ 〉 with smaller dispersions ξ ′ < ξ and with
almost-orthogonal |	E

α′ξ ′ 〉. This decoherence process converts
ραξ to ρα′ξ ′ with a smaller dispersion ξ ′ < ξ . Therefore, the
probability P (ξ,t) at a time t has two sources: The first is due
to wave-packet expansion from |α′ξ ′〉|	E

α′ξ ′ (t ′)〉 with ξ ′ < ξ

at some previous time t ′, and the second is due to decoher-
ence from |α′′ξ ′′〉|	E

α′′ξ ′′ (t ′′)〉 with ξ ′′ > ξ at some previous
time t ′′.

In Eq. (9), only those P (ξ,t) with ξ � da contribute to
Pcon. At temperatures T obviously higher than (still of the
order of) Tc, da is obviously larger than the mean value of ξ .
Physically, one can assume that P (ξ,t) decreases sufficiently
rapidly with increasing ξ beyond ξ = da . (Later we show that
this assumption leads to a self-consistent result.) Hence, for
P (ξ,t) with ξ � da , the above-discussed contribution from the
second source is small, compared with that from the first one,
and can be neglected.

Then, for large ξ , we get the expression for P (ξ,t), in terms
of P (ξ ′,t ′) with ξ ′ < ξ and t ′ < t ,

P (ξ,t) ≈ P (ξ ′,t ′) − η
T
(ξ ′)P (ξ ′,t ′)�t, (11)

where �t = t − t ′, the second term on the right-hand side rep-
resents the effect of decoherence which converts |α′ξ ′〉|	E

α′ξ ′ 〉
to superpositions of narrower wave packets of the central atom,
and η

T
(ξ ′) indicates the rate of this decoherence process.

The two variables ξ and ξ ′ are connected by the relation
ξ = ξ ′ + ve�t , where ve is the expanding speed of the packet.
The speed ve is determined by the width of the initial packet,
whose expansion makes contributions to both P (ξ,t) and
P (ξ ′,t ′), hence, ve is ξ independent. Since as discussed above
the dispersion ξ has a mean value given by ξ0 in Eq. (4), in
most cases ve is approximately determined by ξ0, hence, it is
temperature dependent. According to standard textbooks [see
Eq. (29)], ve ∝ 1/ξ0, and as a result, ve ∝ T 1/2. Therefore,
we write ve = u0T

1/2 with u0 approximately temperature
independent.

In an equilibrium state, the probability P (ξ,t) is time
independent, denoted P (ξ ). For large ξ , Eq. (11) shows that
this distribution satisfies

dP (ξ )

dξ
≈ − η

T
(ξ )

u0T 1/2
P (ξ ), (12)

where ve = u0T
1/2 has been used. Equation (12) has a solution,

P (ξ ) ≈ a0 exp

{
− 1

u0T 1/2

∫
dξη

T
(ξ )

}
, (13)

where a0 is an integration constant.
We assume that the decoherence rate η

T
(ξ ) has the follow-

ing dependence on ξ and T ,

η
T
(ξ ) 
 a1ξ

γ T β, (14)

with a parameter a1 independent of ξ and T . To get the values of
γ and β, we note that the decoherence is induced by collisions
among the atoms. This implies that, approximately, η

T
should

be proportional to the number of collisions per time unit. First,
it should be proportional to the mean speed of the atoms,
hence, η

T
∼ √

T , giving β = 1/2. Second, since the collision
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number is approximately proportional to the cross sections
of the Gaussian packets, one has η

T
∼ ξ 2, giving γ = 2. For

β = 1/2 and γ = 2, Eq. (13) gives

P (ξ ) ≈ a0 exp

{
− a1

3u0
ξ 3

}
. (15)

Equation (15) shows that our previous assumption about the
fast decay of P (ξ,t) for large ξ is self-consistent.

As for the parameter a0, we note that due to the T

dependence of the decoherence rate η
T
(ξ ) with β = 1/2, the

variation rate of P (ξ ) in Eq. (12) with respect to ξ is in fact
T independent. This suggests that the parameter a0 may be T

independent. Below, we assume that a0 either is T independent
or changes slowly with T .

Now we compute the proportion Pcon. Substituting Eq. (13)
with Eq. (14) into Eq. (9), direct derivation shows that, in terms
of z = (ξ/da)γ+1, Pcon can be written as

Pcon ≈ daa0

γ + 1

∫ ∞

1
dzz

− γ

γ+1 exp

(
− a1d

γ+1
a

(γ + 1)u0
T β−1/2z

)
.

(16)

In the experiment we discuss, the mean atomic distance da is
proportional to

√
T , therefore, we write

da = a2T
1/2 (17)

[see Eq.(25) for an explicit expression of da]. Then, noting that
u0, a1, and a2 are ξ independent, we have

Pcon ≈ acT
1/2E γ

γ+1

((
T

T0

)γ /2+β)
, (18)

where En(x) is a function defined by

En(x) =
∫ ∞

1
z−ne−xzdz, (19)

and

T0 =
[

a1a
γ+1
2

(γ + 1)u0

]− 1
γ /2+β

, (20)

ac = a0a2

γ + 1
. (21)

The proportion Pcon has an exponential-type decay in the
temperature region of interest here (see Fig. 1).

III. EXPERIMENTAL EVIDENCE OF THE EXISTENCE
OF A COHERENTLY CONDENSED STATE ABOVE Tc

In this section, we show that some of the unexplained
experimental results given in Ref. [18] can be explained in
the hybrid model introduced above.

A. Experimental results in Ref. [18]

In this subsection, we summarize experimental results given
in Ref. [18], which are of relevance to the study in this
paper. In an experiment discussed there, the contrast of the
interference pattern formed by a cloud of N atoms with mass
m is measured. Initially, the cloud, confined by a harmonic

FIG. 1. Variation of Pcon/(acT
1/2

0 ), on the logarithmic scale, with
T/T0 for γ = 2 and β = 0.5 [see Eq. (18)]. It shows an approximately
exponential decay for T below 3T0. Inset: The decay is even faster
for larger T/T0.

trap with a frequency ω, is prepared in a thermal state at a
temperature T , which is above the BEC transition temperature
Tc. Shortly after being released from the trap, the gas is exposed
to two Bragg beams successively. Each Bragg beam has a
shining period τp. This process creates an identical copy of
the initial cloud, separated by a distance denoted d. Then the
cloud and its copy expand freely and, after a period of flying
time τf = 48 ms, form an interference pattern with a contrast
denoted Cex.

To analyze the experimental results, the simple thermal
model discussed in Sec. II A was studied in Ref. [18], with
the dispersion of the Gaussian packets given by the thermal de
Broglie wavelength, λT = h/

√
2πmkBT . This model predicts

the contrast for the interference pattern

Cth = exp

(
−2π2R2

T

λ2
f

)
, (22)

where the subscript “th” stands for thermal, and

λf = hτf

md
, RT =

√
kBT

mω2
. (23)

The quantity λf gives the fringe spacing of the interference
pattern.

The following results were reported in Ref. [18], concerning
the contrast Cex.

(i) There exists approximately a temperature, which we
denote Td , below which Cex values are close to Cth and above
which Cex values are higher than Cth.

(ii) The temperature Td changes notably with the shining
length τp of the Bragg beams but is not as sensitive to the
distance d.

(iii) The Bragg beams are velocity selective for a relatively
long period τp.
More specifically, for point (ii), with Tc ≈ 0.6 μK, in the case
of τp = 10 μs, Td ≈ 3 μK for λf = 340 μm, and Td ≈ 2 μK
for both λf = 230 μm and λf = 170 μm. In the case of τp =
30 μs, Td ≈ 1 μK for λf = 170 μm. Related to point (iii),
within the simple thermal model, the velocity-selection effect
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cannot explain the observed, unexpectedly high contrast of Cex

at T > Td [18].

B. Detailed predictions of the simple thermal model

Before discussing predictions of the hybrid model and com-
paring them with the above-discussed experimental results, it
would be useful to discuss in more detail predictions of the
simple thermal model. In this model, when the cloud is released
from the trap at an initial time t = 0, the atoms are described
by an ensemble mixture of Gaussian wave packets ϕ(x; α,ξ )
in Eq. (2). Let us consider a constant dispersion ξ of the order
of the thermal de Broglie wavelength, ξ ∼ λT . The values of
α are assumed to obey the Boltzmann distribution,

f (x0, p0) =
(

�ω

kBT

)3

exp

[
− 1

kBT

(
p2

0

2m
+ mω2x2

0

2

)]
,

(24)

where mω2x2
0/2 is the potential generated by the harmonic

trap, centered at the origin of the coordinate space. Direct
computation shows that, under this distribution, the standard
deviation of the position of an atom in each direction is given
by RT in Eq. (23). Thus, the majority of the atoms lies within
a sphere with a radius RT . Using this property, we get the
following estimate to the mean neighboring-atomic distance
in the initial cloud:

da ≈ RT

(
4π

3N

)1/3

. (25)

Hence, the parameter a2 in Eq. (17) has approximately the
expression a2 ≈

√
kB/mω2 3

√
4π/3N .

Let us use tb to denote a time immediately beyond the
second Bragg beam. We assume that tb is short, such that the
wave packets still have a Gaussian shape. If a Bragg beam
converts a packet into two packets, the two Bragg beams
convert an initial Gaussian wave packet into four packets.
Two in the four packets have the same mean velocity and
we study the interference pattern formed by them. We use d
to indicate the displacement of the two packets at this time,
with |d| = d, and take its direction as the x direction of the
coordinate system. The z direction is taken to be perpendicular
to the plane of the measured interference pattern.

The above-discussed two packets are written as

ψ(x,α0,tb) = J [ψ1(tb) + ψ2(tb)], (26)

where

ψ1(tb)〉 
 ϕ(x; α1,ξ ), ψ2(tb) 
 ϕ(x; α2,ξ ), (27)

with α1 = (x0+ d
2 , p0) and α2 = (x0− d

2 , p0). For brevity, we
normalize the wave function ψ(x,α,tb), with

J =
{

2 + 2 exp

(
− d2

8ξ 2

)
cos( p0 · d/�)

}−1/2

. (28)

For the parameters used in the experiments and for ξ ∼ λT ,
one has exp(− d2

8ξ 2 ) � 1. This gives J
1/
√

2.
To compute the Schrödinger evolution of ψ1(t) and of ψ2(t),

we make use of a result given in standard textbooks, namely,
an initial Gaussian wave packet ϕ(x; α0,ξ ) has the following

free expansion [35],

A3
σ ei[ p0·(x−x0)�]

× exp

{
− ∣∣x − (

x0 + p0t

m

)∣∣2

4σ 2

(
1 − i�t

2mξ 2

)
− iθ (t)

}
,

(29)

where Aσ is defined by Eq. (3) (with ξ replaced by σ ),

σ =
√(

�t

2mξ

)2

+ ξ 2, (30)

and θ (t) = − p2
0t

2m�
− 3

2 arctan(�t/2mξ 2). Then it is not difficult
to compute

ψ(x,α0,t) 
 1√
2

[ψ1(t) + ψ2(t)] (31)

and the density ρ(x,α0,t) = |ψ(x,α0,t)|2. Integrating
ρ(x,α0,t) thus obtained over α0 = (x0, p0) with the weight
f (x0, p0), one gets the averaged density, denoted n(x,t),
namely, n = ∫

ρf dα0. For the parameters used in the exper-
iments and for ξ of the order of λT , at time t = τf when the
interference pattern is measured, one has

ξ�
√

�τf

2m
. (32)

Making use of the relation in Eq. (32), one can compute the
density (see Appendix A), obtaining

n(x,t) 
 A6
Re

− |x|2
2R2

(
1 + Cth cos

2πx

λf

)
, (33)

where

R =
√

R2
T + kBT τ 2

f

m
+ σ 2 =

√
R2

T

(
1 + ω2τ 2

f

) + σ 2. (34)

The quantity R gives approximately the size of the expanded
thermal cloud. Equation (33) predicts the contrast given in
Eq. (22) for the interference pattern.

Finally, it would be of interest to say a few words on whether
a notable improvement may be achieved for the agreement
between Cth and Cex at temperatures T > Td , if the Boltzmann
distribution is replaced by the Bose-Einstein distribution. We
have performed numerical simulations but have not observed
any obvious improvement (see Appendix B).

C. Predictions of the hybrid model

In this section, we discuss predictions of the hybrid model
introduced in Sec. II B. In this model, the density of the cloud
is written as

n(x) = nth + ncon, (35)

where ncon indicates the contribution from the atoms in the
coherently condensed state and nth for that from the thermal
atoms. The density nth is in fact given by the right-hand side
of Eq. (33) multiplied by (1 − Pcon).

In the experiments, a contrast was obtained by measuring
the intensity of the light reflecting from the atoms at the
final stage [36]. It corresponds to the contrast given by
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n(x,y) = ∫
n(x)dz. Since R�λf , the term exp(− |x|2

2R2 ) in
Eq. (33) can be treated as 1 in the considered region. Then, for
nth(x,y) = ∫

nthdz, we have

nth(x,y) 
 (1 − Pcon)A4
R

(
1 + Cth cos

2πx

λf

)
. (36)

We use L to indicate the size of the region occupied by
the atoms in the coherently condensed state. As discussed
previously, the atoms in a coherently condensed state can
be described by the same single-particle wave function when
computing the interference pattern they generate. As long as
the absolute value of this wave function changes slowly within
region L, the density ncon(x,y) = ∫

ncondz has approximately
the expression

ncon(x,y) ≈ Pcon

L2

(
1 + cos

2πx

λf

)
, (37)

independent of the exact shape of the wave function [see
Eq. (C7) in Appendix C].

Making use of Eqs. (35)–(37), after simple algebra, we get
the following expression for the density of the atoms in the
x-y plane,

n(x,y) ≈ G

(
1 + C cos

2πx

λf

)
, (38)

where

G = (1 − Pcon)A4
R + Pcon

L2
, (39)

and the modified contrast is given by

C = (1 − Pcon)Cth + qPcon

(1 − Pcon) + qPcon
, (40)

with q = 1/(L2A4
R). Making use of the expression of AR given

by Eq. (3), one gets q = 2πR2

L2 . For the parameters used in the
experiments, the main contribution to R in Eq. (34) is given

by the term
kBT τ 2

f

m
; as a result,

q

T
≈ 2πkBτ 2

f

mL2
. (41)

It is reasonable to assume that the size L of the coherently
condensed state has a weak dependence on the temperature
T . Then the ratio q/T is almost independent of T or changes
slowly with T .

The expansion of the coherently condensed state should be
much slower than that of the thermal cloud. This implies that
the size L of the coherently condensed state should be much
smaller than the size R of the thermal cloud. As a result, q � 1.
Hence, even for small Pcon, it is possible for qPcon to be not
small and to make a significant contribution to the predicted
contrast C in Eq. (40). But for sufficiently small Pcon for which
qPcon � Cth, one has C 
 Cth; that is, the prediction of the
hybrid model reduces to that of the simple thermal model.

D. Comparison with experimental results

In order to compare the above-obtained contrast in Eq. (40)
and the experimental results, we consider a quantity M defined

by

M = C − Cth

T 3/2(1 − C)
. (42)

Substituting Eq. (18) with γ = 2 and β = 0.5 into Eq. (40),
then into Eq. (42), and noting the smallness of Pcon, one gets

M ≈ aE 2
3

((
T

T0

)3/2)
, (43)

where

a = acq

T
= a0a2

3

q

T
. (44)

Before giving the comparison, we discuss the properties
of the two parameters T0 and a in the studied experiments.
First, let us consider T0 in Eq. (20). As discussed in Sec. II C,
the parameters a1 and u0 are almost temperature independent.
The parameter a2 given below Eq. (25) is also temperature
independent. Hence, T0 is temperature independent. The value
of T0 is in fact determined by intrinsic properties of the gas
and by the initial condition (not including the temperature
dependence) of the cloud in the trap. Hence, T0 should also
be independent of τp and λf . Next, for the parameter a in
Eq. (44), as discussed in Sec. II C and Sec. III C, the parameter
a0 and the ratio q/T are almost temperature independent or
change slowly with the temperature T . Hence, the parameter
a is almost temperature independent or changes slowly
with T .

An advantage of considering the quantity M as a function of
the temperature T is that the parameter a introduces a vertical
shift only to ln M . Making use of this property and noting the
above-discussed weak dependence of a on T , it is possible to
approximately determine the value of T0 by a best fitting of
the prediction of Eq. (43) to the experimental results obtained
with one pair of (τp,λf ). With the value of T0 thus obtained,
one can check whether the prediction of Eq. (43) may be in
agreement with the experimental results for this pair of (τp,λf )
and, furthermore, also check for other pairs of (τp,λf ).

We use the experimental data obtained with τp = 30 μs and
λf = 170 μm to get an estimate of the value of T0. We found
T0 = 5.12 μK (a = 0.075 μK−3/2) in the best fitting, given
by the minimum of s = 1∑

i 1

∑
i(ln Mex,i − ln Mi)2 (smin =

0.012), where Mex,i represents the values given by Eq. (42)
from the experimentally obtained contrasts Cex and M are the
corresponding values given by Eq. (43). As shown in Fig. 2, in
this best fitting, the agreement between Mex and the theoretical
predictions is good over almost the whole temperature range,
except for the first two points with T close to Td . Moreover,
the agreement is also good in the contrast plot (Fig. 3).

Then we study the case of τp = 10 μs. We first fix T0

at the above-obtained value of T0 = 5.12 μK and take a as
a fitting parameter. More or less, agreement has been seen
between the analytically predicted M in Eq. (43) and the ex-
perimental results in the temperature region T � Td + 1 μK,
where Cex values are obviously larger than Cth values (see
Fig. 4). Specifically, (i) for λf = 230 μm with Td ≈ 2 μK,
the agreement is good in the temperature region T � 3 μK;
and (ii) for λf = 340 μm with Td ≈ 3 μK, the agreement is
not as good, but still not bad, in the region of T � 4 μK
except for the last two points. Similar results can also be seen
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FIG. 2. The ln M versus the temperature T , for τp = 30 μs and
λf = 170 μm. Circles: experimental results computed from Eq. (42)
with C replaced by the experimentally obtained contrasts Cex given in
Ref. [18]. Solid curve: analytical predictions computed from Eq. (43)
with two fitting parameters, a = 0.075 μK−1.5 and T0 = 5.12 μK.

in the contrast plot (Fig. 5). For λf = 170 μm, no reasonable
comparison can be made, because there are only one or two
points in the region above Td + 1 μK.

Next, we take both T0 and a as fitting parameters in the
case of τp = 10 μs. (i) At λf = 230 μm with 11 points
satisfying T > 3 μK, the best fitting gives T0 = 4.7 μK
(a = 0.053 μK−3/2 and smin = 0.0109), close to the value of
5.12 μK obtained in Fig. 2. (ii) At λf = 340 μm, there exist
eight points satisfying T > 4 μK. With all eight points used,
the best-fitting T0 is much larger than 5.12 μK, while with
the first six of the eight points used, the best fitting gives
T0 = 3.45 μK (a = 0.26 μK−3/2 and smin = 0.0019).

On the other hand, for a sufficiently small value of the
parameter a such that qPcon � Cth, the contrasts predicted in
the hybrid model in Eq. (40) are approximately equal to Cth

and, hence, close to the experimental data Cex in the region
T < Td (see Fig. 5). (The value of T0 does not influence the

FIG. 3. Similar to Fig. 2, but for the contrast. The theoretical
prediction (solid curve) was computed by making use of Eq. (42),
with M computed from Eq. (43). For comparison, Cth values of the
simple thermal model are also plotted (dashed curve).

FIG. 4. Similar to Fig. 2, but for τp = 10 μs with a fixed T0 =
5.12 μK . The fitting parameter a = 0.044 μK−1.5 for λf = 230 μm
and a = 0.083 μK−1.5 for λf = 340 μm.

prediction for a = 0.) However, for whatever fixed value of the
parameter a, the prediction of Eq. (40) for the contrast cannot
be made to agree with the experimental data over the whole

FIG. 5. Similar to Fig. 4, but for the contrast. The dashed curve
represents Cth.
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temperature region. Even when we changed the value of T0 as
well, no obvious improvement was observed.

Therefore, in the case of τp = 10 μs, the contrast undergoes
a transition approximately in the region (Td,Td + 1 μK).
Below this region the hybrid model works well with a ≈ 0;
above this region, the model works well at λf = 230 μm
with a as a fitting parameter and with T0 fixed at the value
determined in the above case of τp = 30 μs, and works
partially at λf = 340 μm. We note that this conclusion can
also be regarded as being valid for λf = 170 μm.

To summarize, in the case of τp = 30 μs, the hybrid model
can explain the main features of the experimental results
of the contrasts over almost the whole temperature region
studied experimentally. However, in the case of τp = 10 μs,
in order to explain the main features of the experimental
results by the hybrid model, one needs to assume that the
contrast undergoes a transition approximately in the region
(Td,Td + 1 μK), below which the parameter a ≈ 0 and above
which a has a nonzero value.

A hint to the possible origin of the above-discussed
transition behavior of the contrast lies in an observation made
in Ref. [18]. That is, in the case of τp = 30μs the two Bragg
beams have a significant velocity-selection effect, meanwhile,
in the case of τp = 10 μs the velocity-selection effect is not
as significant. This suggests that the velocity-selection effect
of the Bragg beams may have some relation to the transition
behavior of the contrast.

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, we study the conjecture that, in a gas at a
temperature above, but not much above, the BEC transition
temperature, a small portion of the atoms may lie in a coher-
ently condensed state. We show that experimental support for
this conjecture exists; that is, with a hybrid model based on this
conjecture, some unexplained experimental results reported in
Ref. [18] can be explained.

What is left unexplained is the transition behavior of the
contrast, from a relatively low-temperature region, in which
the atoms behave like thermal atoms, to a relatively high-
temperature region, in which some of the atoms show quantum
coherence like that in a coherently condensed state. In order to
understand this transition behavior, further investigations, both
experimental and theoretical, are needed. A key point may lie
in the role played by a velocity-selection feature of the Bragg
beams. In particular, one may wonder whether any relation
exists between the velocity-selection effect and the formation
of a coherently condensed or some BEC-type state among
some atoms. To solve this problem is a challenging task. In
fact, the mechanism of the formation of BEC is a topic that is
not fully understood, though many efforts have been made and
important progress has been achieved [8–16,37–39]. From the
experimental viewpoint, e.g., it should be useful to study the
possible connection between the transition region discussed
above and the velocity-selection effect of the Bragg beams,
in particular, in the case of τp = 10 μs. Moreover, a study
of the contrasts at temperatures higher than those reported in
Ref. [18] should be of interest too.

Finally, we give a brief discussion of experiments that
may be performed in the future to test other aspects of the

hybrid model proposed in this paper. The theory discussed
here predicts that the value of T0 [Eq. (20)] is a function of the
parameter a1 in the decoherence rate [see Eq. (14)]. Decreasing
the scattering length by the technology of Feshbach resonance
[5], the parameter a1 should be decreased, and as a result, the
value of T0 should increase. This implies an increase in the
proportion of the condensed part (Pcon), hence, an increase
in the contrast, which may be tested by experiments. When
the scattering length is decreased to a sufficiently small value,
it is possible for T0 to be sufficiently large such that Pcon

does not show an obvious decay in the temperature region
studied. In this case, since q ∝ T , Eq. (40) shows that it may
even be possible for the contrast to increase with increasing
temperature.

ACKNOWLEDGMENTS

W.W. is grateful to Jie Liu for initial stimulating discussions
and is also grateful to Jiangbin Gong for valuable suggestions.
This work was partially supported by the Natural Science
Foundation of China under Grants No. 11275179 and No.
10975123 and the National Key Basic Research Program of
China under Grant No. 2013CB921800.

APPENDIX A: DERIVATION OF EQ. (33)

In order to derive Eq. (33), let us first compute the phase
difference between ψ1(t) and ψ2(t) in Eq. (31). At time t =
τf , Eqs. (30) and (32) give σ ≈ �t

2mξ
. Then, making use of

expression (29), it is easy to get the expression of the phase
difference,

− p0 · d
�

+
[
x − (

xt + d
2

)]2 − [
x − (

xt − d
2

)]2

4σξ
, (A1)

where

xt = x0 + p0t

m
. (A2)

Simple algebra shows that the difference has the simple
expression

2π (x − x0)

λf

, (A3)

where λf is defined in Eq. (23). Then the density is written as

ρ(x,α,t) = |ψ(x,α,t)|2

≈ 1

2
A6

σ e
− (x−xt )2

2σ2

×
[
e

(x−xt )d
2σ2 + e

− (x−xt )d
2σ2 + 2 cos

2π (x − x0)

λf

]
.

(A4)

Integrating Eq. (A4) with the weight f in Eq. (24) over α =
(x0, p0), one gets Eq. (33).

APPENDIX B: CONTRAST IN THE SIMPLE THERMAL
MODEL WITH A BOSE-EINSTEIN DISTRIBUTION

In this Appendix, by numerical simulation, we show that,
in the simple thermal model with a Bose-Einstein distribution
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FIG. 6. Contrasts predicted by Eq. (B2), in the simple thermal
model with the Bose-Einstein distribution. Dash curve: μ = 0. Solid
curve: μ = −1 μK. For comparison, predictions of Eq. (22) with
the Boltzmann distribution (dotted curve) and experimental data with
λf = 170 μm, τp = 30 μs (filled circles) are also plotted.

for the function f in Eq. (24), the obtained contrasts are still
not close to the experimental results in the temperature region
T > Td . The Bose-Einstein distribution is written as

fBE (x0, p0) = 1

e(E−μ)/kBT − 1
, (B1)

where E= p0
2

2m
+mω2 x0

2

2 is the single-particle energy in the trap
and μ is the chemical potential. Under this distribution, direct
computation shows that, in the simple thermal model, the
contrast has the expression

C̃th = 1∑∞
n=1

1
n3 zn

{ ∞∑
n=1

1

n3
zn exp

(
−2π2R2

T

nλ2
f

)}
, (B2)

where z = eμ/kBT . Taking the first-order terms in both the
numerator and the denominator, Eq. (B2) gives Cth in Eq. (22).
For a Bose gas, μ < 0, hence z < 1. Numerically, we found
that predictions of Eq. (B2) are not close to the experimental
data for T > Td , as illustrated in Fig. 6.

APPENDIX C: CONTRAST FOR A CLASS
OF THE INITIAL CONDITIONS

In this Appendix, we discuss the contrast under initial
conditions of a type more generic than Gaussian wave packets.
It is shown that the expression of the contrast Cth in Eq. (22),
as well as the expression of the fringe spacing λf in Eq. (23),
is still approximately valid for a more generic type of single-
particle states in the simple thermal model.

For simplicity, we discuss a one-dimensional configuration
space. We consider an initial packet ϕ0(x), centered at x0 in
the coordinate space and at p0 in the momentum space. We
assume that the main body of the packet lies in a region of
scale l, namely, |x − x0| � l, not necessarily of a Gaussian
shape. Free expansion of the packet gives

ϕ(x,t) = 1

2π�

∫
dpdx ′ exp

[
− ip2t

2m�
+ ip(x − x ′)

�

]
ϕ0(x ′).

(C1)

Changing the variable p to p′ = p − m(x−x ′)
t

, then integrating
out p′, we get

ϕ(x,t) =
√

m

2iπ�t

∫
dx ′ exp

(
i(x − x ′)2m

2�t

)
ϕ0(x ′). (C2)

Let us write the wave function beyond the two Bragg
beams as

ψ0(x) = ϕ0(x) + ϕ0(x + d). (C3)

Making use of Eq. (C2), simple derivation gives the following
expression for the time evolution of ψ :

ψ(x,t) =
√

m

2iπ�t

∫
dx ′ exp

(
i(x − x ′)2m

2�t

)
ϕ0(x ′)

×
[

1 + exp

(
id(2x − 2x ′ + d)m

2�t

)]
. (C4)

For times sufficiently long, one has l � λ, where

λ = ht

md
. (C5)

Since the main body of ϕ0(x ′) lies within a region of scale
l centered at x0, in the integration on the right-hand side of
Eq. (C4), approximately, one may consider the integration
domain (x0 − l,x0 + l). Within this region, because of the
relation l � λ, the variable x ′ in the term exp( id(2x−2x ′+d)m

2�t
)

can be approximately taken as x0. Then, making use of
Eq. (C2), Eq. (C4) can be written as

ψ(x,t) ≈ ϕ(x,t)

[
1 + exp

(
i
2π

(
x − x0 + d

2

)
λ

)]
. (C6)

This gives

ρ(x,t) ≈ |ϕ(x,t)|2
(

1 + cos
2π

(
x − x0 + d

2

)
λ

)
. (C7)

For a slowly varying |ϕ(x,t)|2, Eq. (C7) predicts an inter-
ference pattern with a fringe spacing λ under an envelope
|ϕ(x,t)|2. Note that λ gives λf in Eq. (23) at t = τf .

For an ensemble of packets, with x0 and p0 obeying the
Boltzmann distribution [cf. Eq. (24)], direct derivation gives
the expression for the density,

n(x) ≈ F0(x) + F1(x) cos
2π

(
x + d

2

)
λ

+F2(x) sin
2π

(
x + d

2

)
λ

, (C8)

where

F0(x) =
∫

dx0G(x,x0) exp

(
− x2

0

2R2
T

)
,

F1(x) =
∫

dx0G(x,x0) exp

(
− x2

0

2R2
T

)
cos

2πx0

λ
, (C9)

F2(x) =
∫

dx0G(x,x0) exp

(
− x2

0

2R2
T

)
sin

2πx0

λ
.
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Here,

G(x,x0) = �ω

kBT

∫
dp0|ϕ(x,t ; x0,p0)|2 exp

(
− p2

0

2mkBT

)
,

(C10)

with the dependence on x0 and p0 written explicitly.
In some situations of interest, the quantity G(x,x0) can be

approximately regarded as a constant for x in the region of
measurement, i.e., for x of the order of λ and for x0 in a region

wherein exp(− x2
0

2R2
T

) is not small. To be specific, we discuss

two examples. In the first example, |ϕ|2 ∝ δ(x − x0 − p0t/m).
This gives

G(x,x0) ∝ exp

[
− (x − x0)2

2L2
t

]
, (C11)

where Lt =
√

kBT t2/m. For the parameters used in the
experiments in Ref. [18], direct computation shows that
λ/Lt = (

√
2πλT )/d is approximately between 1/3 and 1/15,

and RT /Lt = 1/ωt ≈ 1/20 for t = τf . Hence, G is approxi-
mately a constant for the value of x and x0 of interest here. In
the second example, |ϕ|2 has a Gaussian form with a standard
deviation σ , i.e., |ϕ|2 ∝ exp[−(x − x0 − p0t/m)2/(2σ 2)], like
that in the thermal model discussed above. In this case,

G(x,x0) ∝ exp

[
− (x − x0)2

2
(
L2

t + σ 2
)]

. (C12)

Similarly, G is approximately a constant in the region of
interest here.

For an approximately constant G, F2 ≈ 0 and can be
neglected. Then direct computation shows that

n(x) ≈ F0

[
1 + Cth cos

2π
(
x + d

2

)
λ

]
, (C13)

where Cth is the contrast given in the simple thermal model in
Eq. (22).
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