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One-dimensional Fermi gas with a single impurity in a harmonic trap:
Perturbative description of the upper branch
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The transition from “few to many” has recently been probed experimentally in an ultracold harmonically
confined one-dimensional lithium gas, in which a single impurity atom interacts with a background gas consisting
of one, two, or more identical fermions [A. N. Wenz et al., Science 342, 457 (2013)]. For repulsive interactions
between the background or majority atoms and the impurity, the interaction energy for relatively moderate system
sizes was analyzed and found to converge toward the corresponding expression for an infinitely large Fermi gas.
Motivated by these experimental results, we apply perturbative techniques to determine the interaction energy for
weak and strong coupling strengths and derive approximate descriptions for the interaction energy for repulsive
interactions with varying strength between the impurity and the majority atoms and any number of majority
atoms.
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I. INTRODUCTION

One-dimensional Bose and Fermi systems with contact
interactions have been studied for many decades now, espe-
cially in the regime where the systems obey periodic boundary
conditions [1–5]. A large fraction of the eigenstates can
be thought of as corresponding to gaslike states. A second
subset of eigenstates corresponds to self-bound dropletlike
states. These states maintain their bound-state character in
the absence of periodic boundary conditions, i.e., in free
space. In many cases, both the gaslike and dropletlike states
can be obtained analytically via the Bethe ansatz. The Bethe
ansatz takes advantage of the fact that the zero-range nature
of the interactions, combined with the fact that particles in
one dimension have to pass through each other to exchange
positions, allows one to identify constants of motion. The
solutions can then be derived in terms of these constants
of motion. A closely related aspect is that a variety of
one-dimensional systems with two-body contact interactions
are integrable [1,4].

The solution of the homogeneous system can be applied
to one-dimensional systems under spatially varying external
confinement via the local density approximation [6–10]. This
approximation typically provides a highly accurate description
for a large number of particles but not necessarily for a small
number of particles. It is thus desirable to derive more accurate
descriptions for small one-dimensional systems with two-body
δ-function interactions under external confinement. Unfor-
tunately, extensions of the Bethe ansatz to inhomogeneous
systems are, in general, not known. This can be understood
intuitively by realizing that the relative two-body momentum
in inhomogeneous systems is not conserved due to the pres-
ence of the spatially varying confinement. Correspondingly,
harmonically trapped one-dimensional few-body systems have
been treated numerically by various techniques [7,11–17].

In this work, we apply standard Raleigh-Schrödinger
perturbation theory to harmonically confined systems and
derive approximate solutions whose accuracy can be improved
systematically by considering successively higher orders in
the expansion in the small parameter. We focus on one-
dimensional Fermi gases with a single impurity under external

harmonic confinement. This system is of particular interest
since it has been realized experimentally in Jochim’s cold-atom
laboratory [18,19]. In the experiments, the impurity is a
lithium atom that occupies a hyperfine state different from the
hyperfine state that the majority of atoms occupy. The trapping
geometry is highly elongated and effectively one-dimensional.
We show that our perturbative results enable us to calculate
the energy of the upper branch, which has been studied
experimentally, with fairly good accuracy for all N over a wide
range of coupling strengths. In addition, our results provide
bounds on the energies in the weakly and strongly interacting
regimes. These bounds can be used, e.g., to assess the accuracy
of numerical solutions.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian and notation.
Section III summarizes our perturbative results. The perturba-
tive results are analyzed in Secs. IV and V. Finally, Sec. VI
concludes.

II. SYSTEM HAMILTONIAN

We consider a single impurity immersed in a one-
dimensional Fermi gas that consists of N identical mass m

fermions. The mass of the impurity is equal to that of the
majority or background particles. The impurity, with position
coordinate z0, interacts with the majority particles, with
position coordinates zj (j = 1, . . . ,N), through a zero-range
two-body potential with strength g,

V2b(zj0) = gδ(zj − z0), (1)

where zj0 = zj − z0. The Hamiltonian H for the harmonically
confined (N,1) system then reads

H =
N∑

j=1

Hho(zj ) + Hho(z0) +
N∑

j=1

V2b(zj0), (2)

where the single-particle harmonic oscillator Hamiltonian
Hho(z) is given by

Hho(z) = − �
2

2m

∂2

∂z2
+ 1

2
mω2z2; (3)
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here, ω denotes the angular trapping frequency. The δ-function
interactions in Eq. (2) can be replaced by a set of boundary
conditions on the many-body wave function �(z0,z1, . . . ,zN ),(

∂�

∂zj0

∣∣∣∣
zj0→0+

− ∂�

∂zj0

∣∣∣∣
zj0→0−

)
= gm

�2
�

∣∣∣∣
zj0→0

, (4)

where the limits zj0 → 0+, zj0 → 0−, and zj0 → 0
are taken while keeping the other N coordinates, i.e.,
z1, . . . ,zj−1,zj+1, . . . ,zN , and (zj + z0)/2, fixed.

In the following, we determine the eigenenergies E(N ) of
the Hamiltonian H for various N . Throughout, we restrict
ourselves to the so-called upper branch. This branch can
be populated by preparing the system in the noninteracting
limit (g → 0+) and by then adiabatically first increasing g to
large positive values, then continuing across the confinement-
induced resonance [20] to infinitely negative g values, and
finally increasing g to small negative values. Solid, dotted, and
dashed lines in Fig. 1(a) show the energy of the upper branch
for N = 1 [21], 2, and 3 [14,15,22], respectively, as a function
of −1/g. For all N , the energy increases monotonically as a
function of increasing −1/g. The upper branch corresponds
to the ground state of the model Hamiltonian when g is
positive but not when g is negative. For negative g, the model
Hamiltonian supports molecular-like bound states. In real
cold atom systems, energetically lower-lying molecular states
exist even for positive g. However, it has been demonstrated
experimentally [19] that the upper branch can be populated
with reasonably high fidelity for positive g, motivating us—as
well as others [7,12,13,16,17,23–26]—to investigate the prop-
erties of the upper branch within a stationary zero-temperature
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FIG. 1. (Color online) (a) Solid, dotted, and dashed lines show
the energy of the upper branch for N = 1, 2, and 3 as a function of
−1/g. The energies of the (1,1) system are obtained by solving the
transcendental equation derived in Ref. [21]. The energies of the (2,1)
and (3,1) system are taken from Refs. [14,15,22]. (b) Solid, dotted,
and dashed lines show the interaction energy ε(N ), normalized by the
Fermi energy EF(N ), for N = 1, 2, and 3, respectively, as a function
of −1/g. The harmonic oscillator length aho is defined in Eq. (10).

quantum mechanics framework. Since decay to states with
molecular character can lead to significant depopulation of the
upper branch for negative g, our primary focus in the following
lies on the positive g portion of the upper branch.

For g = 0+, the energy of the upper branch is equal to
Eni(N ) = (N2 + 1)�ω/2. We write the energy E(N ) of the
upper branch in terms of the interaction energy ε(N ),

E(N ) = Eni(N ) + ε(N ). (5)

Solid, dotted, and dashed lines in Fig. 1(b) show the interaction
energies, normalized by the energy EF(N ), for systems with
N = 1, 2, and 3 majority particles. The energy EF(N ) is
directly proportional to the number of majority particles,

EF(N ) = N�ω. (6)

Figure 1(b) shows that the normalized interaction energy
depends relatively weakly on the number of particles. Indepen-
dent of N , we have ε(N ) = 0 for g = 0+ and ε(N ) = EF(N )
for |g| = ∞. As can be read off Figs. 1(a) and 1(b), the energy
increase of the upper branch is the same on the positive g side
as it is on the negative g side, indicating that ε(N ) approaches
2EF(N ) in the g = 0− limit for N = 1–3. We refer to EF(N ) as
the Fermi energy of the majority particles. It should be noted,
however, that the “exact” Fermi energy of the majority particles
is EF(N ) − �ω/2, i.e., EF(N ) corresponds to the leading order
term of the Fermi energy of the majority particles in the large
N limit.

One of the main goals of this paper is to derive expansions
for the interaction energy of the upper branch around g = 0+
and |g| = ∞ using standard Raleigh-Schrödinger perturbation
theory for any N , i.e., for N = 1, . . . ,∞. To this end, we
express the interaction energies ε(0+) and ε(|∞|) in the vicinity
of g = 0+ and |g| = ∞, respectively, in a power series of the
dimensionless interaction parameter γ (for |g| small) or in a
power series of γ −1 (for |g| large) [27],

ε(0+)(N ) =
[

kmax∑
k=1

B(k)(N )γ k

]
EF(N ) + O(γ kmax+1) (7)

and

ε(|∞|)(N ) =
[

1 +
kmax∑
k=1

C(k)(N )γ −k

]
EF(N ) + O(γ −(kmax+1)),

(8)

where the dimensionless interaction parameter γ is given by

γ = π√
2N

g

�ωaho
, (9)

with

aho =
√

�

mω
(10)

denoting the harmonic oscillator length. As we show below, the
scaling of the interaction energy by EF(N ) ensures a smooth
connection between the energy shifts for finite and infinite N .
In Eqs. (7) and (8), the dimensionless kth-order perturbation
theory coefficients B(k)(N ) and C(k)(N ) depend on N and are
determined in the next section.
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TABLE I. Coefficients B (k)(N ) for various (N,k) combinations.
The numbers in parentheses denote the uncertainty that arises from
evaluating the perturbation theory sums with a finite energy cutoff.
The numbers without error bars have been rounded.

k = 1 k = 2 k = 3

N = 1 0.179 587 −0.022 355 1 0.001 792 30
N = 2 0.190 481 −0.023 983 8 0.001 795 23
N = 3 0.194 409 −0.024 485 2 0.001 776 03(1)
N = 4 0.196 423 −0.024 721 0 0.001 762 7(1)
N = 5 0.197 647 −0.024 856 3 0.001 753 5(1)
N = 6 0.198 469 −0.024 943 5 0.001 747 0(1)
N = 7 0.199 059 −0.025 004 2
N = 8 0.199 503 −0.025 048 8
N = 9 0.199 849 −0.025 082 8
N = 10 0.200 126 −0.025 109 6
N = 11 0.200 353 −0.025 131 3
N = 12 0.200 543 −0.025 149 1
N = ∞ 0.202 642 −0.025 330 3 0.001 711 00

III. PERTURBATIVE RESULTS

A. N → ∞ limit

The impurity problem for the homogeneous system with
positive γ was solved by McGuire in 1965 [28]. Within the
local density approximation the Fermi wave vector is replaced
by the wave vector at the trap center such that the interaction
energy of the ground state for the harmonically trapped system
with N → ∞ becomes [19]

ε(∞)

EF(∞)
= γ

π2

[
1 − γ

4
+

(
γ

2π
+ 2π

γ

)
arctan

(
γ

2π

)]
. (11)

Expanding Eq. (11) around γ = 0+ and |γ | = ∞, respectively,
B(k)(∞) and C(k)(∞) can be obtained for k = 1,2, . . . . We find
B(1)(∞) = 2/π2, B(2)(∞) = −1/(4π2), B(3)(∞) = 1/(6π4),
C(1)(∞) = −8/3, C(2)(∞) = 0, and C(3)(∞) = 32π2/15. The
numerical values of these coefficients are summarized in
Tables I and II. It is readily shown that the small and large
γ series, Eqs. (7) and (8), converge for γ < 2π and γ −1 <

(2π )−1, respectively. Table II shows that C(2)(∞) vanishes.

TABLE II. Coefficients C(k)(N ) for various (N,k) combinations.
The numbers in parentheses denote the uncertainty that arises from
evaluating the perturbation theory sums with a finite energy cutoff.
The numbers without error bars have been rounded.

k = 1 k = 2 k = 3

N = 1 −3.544 91 3.856 03 34.3007
N = 2 −3.172 45 2.419 04(1) 25.38(2)
N = 3 −3.028 54 1.814 2(2) 23.78(8)
N = 4 −2.950 40
N = 5 −2.900 81
N = 6 −2.866 34
N = 7 −2.840 91
N = 8 −2.821 33
N = 9 −2.805 78
N = ∞ −2.666 67 0 21.0552

We return to this finding when we discuss the N dependence
of the C(k)(N ) coefficients.

B. (1,1) system

The eigenenergies of the harmonically trapped (1,1) system
can be obtained for any γ by solving a simple transcen-
dental equation [21]. Expanding the transcendental equation
around the known eigenenergies for small and large γ , one
obtains power series in the interaction energy. Inverting these
series, one obtains analytical expressions for the B(k)(1)
and C(k)(1) coefficients. We find B(1)(1) = π−3/2, B(2)(1) =
− ln(2)/π3, B(3)(1) = −[π2 − 9 ln(4)2]/(24π9/2), C(1)(1) =
−2π1/2, C(2)(1) = −4π [ln(2) − 1], and C(3)(1) = π3/2[π2 −
24 − 9(ln(4) − 4) ln(4)]/3. The numerical values of these
coefficients are summarized in Tables I and II. As in the
N → ∞ case, the small and large γ series for N = 1, Eqs. (7)
and (8), have a finite radius of convergence. Employing the
techniques of Ref. [29], we find—using up to 50 expansion
coefficients—that the small and large γ series converge
for |γ | < 1.0745(2) × 2π and |γ |−1 < [1.0745(2) × 2π ]−1,
respectively. Our result for the convergence of the small γ

series is consistent with what is reported in the literature [30].

C. Weakly repulsive (N,1) system, N = 2,3, . . .

To treat the weakly interacting system with finite N , N > 1,
we rewrite the system Hamiltonian in second quantization and
expand the field operators for the majority particles and the
impurity in terms of single-particle harmonic oscillator states
(see, e.g., Ref. [31]). The interaction matrix elements can be
evaluated analytically and the first-order perturbation theory
treatment for positive g yields

B(1)(N ) = 2
√

N	(1/2 + N )

π2N !
. (12)

The first-order energy shift may be interpreted as the leading-
order mean-field shift. We find limN→∞ B(1)(N ) = 2/π2,
which agrees with the coefficient obtained by expanding
Eq. (11). The evaluation of the second-order energy shift
involves the evaluation of infinite sums. We find, as ex-
pected, that these sums converge. The reason is that the
one-dimensional δ-function interaction does not, unlike two-
or three-dimensional δ-function interactions [32,33], require
any regularization if used in standard perturbation theory
approaches. We did not find a compact analytical expression
applicable to all N for the second-order energy shift. For
N = 1 and 2, we have B(2)(1) = − ln(2)/π3 and B(2)(2) =
[−9 + 6

√
3 + 3 ln(2 + √

3) − 12 ln(2)]/(4π3). For larger N ,
the expressions are lengthy. The numerical values for N � 12
are listed in Table I. Table I also summarizes the numerically
determined values for the third-order coefficients B(3)(N )
for N = 2–6. The B(3)(N ) coefficient increases slightly as
N changes from 1 to 2, and then decreases monotonically
as N increases further. The numerically determined B(3)(N )
coefficients for N = 2–6 approach the N = ∞ coefficient
smoothly if plotted as a function of 1/N .
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D. Strongly interacting (N,1) system, N = 2,3, . . .

The strongly interacting regime has been treated pertur-
batively at leading order, i.e., at order 1/γ , for N � 8 [26]
(note, though, that only the coefficients for N � 4 were
reported explicitly, i.e., in equation or numerical form). To
derive these results, the two-body interaction for large |g| is
modeled by imposing the two-body boundary condition on
the many-body wave function when the distance between the
unlike particles approaches zero [23,26,34]. Since the ground-
state eigenenergy for |g| = ∞ is degenerate, the perturbation
shift is obtained by diagonalizing the perturbation matrix
constructed using the degenerate states for g = ∞. For the
many-body states �α and �β , the perturbation matrix element
Vαβ reads [23]

Vαβ = − �
4

m2g

N∑
j=1

∫
· · ·

∫ (
∂�∗

α

∂zj0

∣∣∣∣
zj0→0+

− ∂�∗
α

∂zj0

∣∣∣∣
zj0→0−

)

× δ(zj0)

(
∂�β

∂zj0

∣∣∣∣
zj0→0+

− ∂�β

∂zj0

∣∣∣∣
zj0→0−

)
dz0dz1 . . . dzN .

(13)

These matrix elements are closely related to the boundary
condition representation of the one-dimensional odd-parity
pseudopotential [35,36]. We evaluate the integrals in Eq. (13)
analytically for N = 1–4. The analytical results for N = 1
and 2 read C(1)(1) = −2

√
π and C(1)(2) = −√

π/2(81/32).
The analytical expressions for N = 3 and 4 are lengthy and
not reported here [37]. For larger N , we perform all but
one integration for each of the perturbation matrix elements
analytically. The resulting numerically determined energy
shifts are accurate to more than 10 digits. Table II summarizes
the numerical values for the coefficient C(1)(N ) for N � 9
obtained by us. The extension to larger N is, although tedious,
possible in principle.

To determine the energy shift proportional to γ −2, we
use second-order perturbation theory. Reference [38] pointed
out that the second-order perturbation theory energy shift
of the (1,1) system diverges, thus requiring regularization.
Analogous divergencies arise in the perturbative treatment of
one-dimensional single-component Fermi gases with general-
ized δ-function interactions (see, e.g., Ref. [35]) and that of
one-dimensional Bose gases with effective range-dependent
zero-range interactions. In the following, we discuss the
impurity problem with N = 2 and 3. To evaluate the second-
order energy shifts, we need to know the complete set of
eigenstates of the (2,1) and (3,1) systems with |g| = ∞.
For the (2,1) system, we use the analytical wave functions
from Ref. [39] and evaluate the integrals analytically. For the
(3,1) system, we derive compact forms for the eigenstates
using spherical coordinates and evaluate the relevant integrals
analytically. We then evaluate the second-order perturbation
theory sums numerically, imposing an energy cutoff on the
relative energy of the intermediate (or virtual) states that
are being summed over. The second-order energy shift is
found to contain power-law divergencies in the energy cutoff.
These divergencies are canceled through the introduction of a
counterterm and the constant (and physically meaningful) part
is extracted with high precision by a regularization scheme

similar to that developed for harmonically trapped bosons [40].
Table II reports the resulting second-order perturbation theory
coefficients with error bars. Our perturbative coefficients are
consistent with the coefficients obtained by fitting the (2,1) and
(3,1) energies reported in Refs. [15,22] to a polynomial in γ −1.
For the N = 2 and 3 systems, we extend the above treatment
to the third order (see Table II). These third-order calculations
require the evaluation of matrix elements Vαβ between excited
states. Since the third-order perturbation expression is more
involved than the second-order perturbation expression, our
third-order result has a larger error bar than our second-order
result [41].

The calculations of the second- and third-order energy shifts
can, in principle, be extended to larger N . To do so, two
challenges need to be overcome. First, an efficient method
to generate the complete set of eigenstates at |g| = ∞ has
to be devised. Second, an efficient scheme for evaluating the
matrix elements and infinite perturbation theory sums has to
be developed. This is not pursued here.

IV. FITTING THE B(k)(N) AND C (k)(N) COEFFICIENTS

Tables I and II suggest that the coefficients B(k)(N ) and
C(k)(N ) change, for fixed k, smoothly with N . This motivates
us to write

B(k)(N ) =
jmax∑
j=0

b
(k)
j

(
1

N

)j

(14)

and

C(k)(N ) =
jmax∑
j=0

c
(k)
j

(
1

N

)j

. (15)

It should be noted that the expressions (14) and (15) reduce
to b

(k)
0 and c

(k)
0 , respectively, in the N → ∞ limit. In the

following, the parameters b
(k)
j and c

(k)
j are obtained by fitting

the coefficients B(k)(N ) and C(k)(N ) for fixed k.
We start with B(2)(N ). We fit Eq. (14) to the B(2)(N ) values

for N = 1–80 (the values for N = 1 − 12 are reported in
Table II), varying jmax from 2 to 20. We find that the most
reliable fit is obtained for jmax = 12–13. In this case, the fitting
parameter b

(2)
0 differs from −1/(4π2) [the result obtained by

expanding Eq. (11)] by less than 10−8. This suggests that not
only the k = 1 coefficient (see discussion above) but also the
k = 2 coefficient connects smoothly with the infinite N result.
Table III reports the results of our fit to the B(2)(N ) coefficients
with N = 1–80 and ∞ by a polynomial with jmax = 6.

As mentioned earlier, the B(3)(1) coefficient is slightly
smaller than the B(3)(2) coefficient. The B(3)(N ) coefficients
for N � 2, however, decrease monotonically. This motivates
us to fit the B(3)(N ) coefficients with N = 2–6 and ∞ by a
polynomial with jmax = 4. The fit coefficients are reported in
Table III. It can be seen that the coefficient b

(3)
0 agrees with

the coefficient B(3)(∞) reported in Table I. We believe that
our fit provides an accurate description of the 6 < N < ∞
coefficients.

Symbols in Figs. 2(a)–2(c) show the C(k)(N ) coefficients
with k = 1,2, and 3, respectively, as a function of 1/N .
Our fits to these data (see Table II) using polynomials with
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TABLE III. Fitting coefficients b
(k)
j for k = 2 and 3. For k = 2

and 3, we used jmax = 6 and 4, respectively.

k = 2 k = 3

j = 0 −0.025 330 4 1.71100 × 10−3

j = 1 0.001 959 1 2.23905 × 10−4

j = 2 0.003 347 7 6.59881 × 10−6

j = 3 −0.011 697 2 −3.67025 × 10−4

j = 4 0.037 941 4 2.64073 × 10−4

j = 5 −0.068 444 0
j = 6 0.048 634 6

jmax = 6,3, and 3 are shown by solid lines (see Table IV for
the coefficients).

The discussion so far has focused on the coefficients
B(k)(N ) and C(k)(N ) with k = 1–3. It is, in general, not
feasible to extend the perturbative calculations to higher k

for arbitrary N . However, for N = 1 and ∞, the coefficients
with larger k can be obtained readily. We find that |B(k)(1)|
decreases monotonically with increasing k (we checked this
for k � 50). The |C(k)(1)| coefficient increases monotonically
with increasing k for k < 37; for k � 37, we observe small
nonmonotonic oscillations. For N = ∞, we find that the
B (k)(∞) with k even and k � 4 vanish while the |B(k)(∞)|
with k odd decrease monotonically with increasing k (again,
we checked this for k � 50). Similarly, the C(k)(∞) with k

even and k � 2 vanish while the |C(k)(∞)| with k odd increase
monotonically with increasing k. Assuming a linear change
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FIG. 2. (Color online) Symbols show the coefficients (a) C(1)(N ),
(b) C(2)(N ), and (c) C(3)(N ) as a function of 1/N . The solid lines show
our fits with jmax = 6, 3, and 3, respectively.

TABLE IV. Fitting coefficients c
(k)
j for k = 1,2, and 3. For k =

1,2, and 3, we used jmax = 6,3, and 3, respectively.

k = 1 k = 2 k = 3

j = 0 −2.666 67 0.000 00 21.055 20
j = 1 −1.407 49 7.067 39 8.809 15
j = 2 1.787 04 −5.705 89 −5.074 55
j = 3 −4.217 46 2.494 53 9.510 90
j = 4 7.330 94
j = 5 −7.136 04
j = 6 2.764 76

with 1/N , interpolating between B(k)(1) and B(k)(∞) and
between C(k)(1) and C(k)(∞) for k > 3 yields estimates for
the finite N , N > 1, coefficients. While rough, these estimates
might provide a reasonable means to connect the weak and
strong perturbation theory limits for quantities such as those
shown in Figs. 3 and 4.

We cannot accurately estimate the radius of convergence of
the small and large γ expansions for 1 < N < ∞. However,
the fact that the radius of convergence is given by |γ | <

1.0745(2) × 2π for N = 1 and γ < 2π for N = ∞ for the
small γ series and by |γ |−1 < [1.0745(2) × 2π ]−1 for N = 1
and γ −1 < (2π )−1 for N = ∞ for the large γ series suggests

-1 -0.5 0 0.5
-1/γ

1

1.1

ρ(
∞

)

1

1.1

ρ(
3)

 

1

1.1

ρ(
2)

(c)

(b)

(a)

FIG. 3. (Color online) Solid lines show the quantity ρ(N ) as
a function of −1/γ for (a) N = 2, (b) N = 3, and (c) N = ∞,
respectively. For comparison, dotted, dashed, and dash-dotted lines
show the perturbative results for ρ(N ) accounting for terms up to
order γ 0, γ 1, and γ 2, respectively, in the weakly interacting regime
and accounting for terms up to order γ −1, γ −2, and γ −3, respectively,
in the strongly interacting regime.
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FIG. 4. (Color online) The quantity δ(N,N ′) as a function of
−1/γ . The solid line is for (a) N = 2 and N ′ = ∞ and the circles
are for (b) N = 3 and N ′ = ∞ and (c) N = 2 and N ′ = 3. In the
large γ regime, the uncertainty of the numerically determined (3,1)
energies leads to appreciable uncertainties in δ(2,3) and δ(3,∞) [see
the error bars in Figs. 4(b) and 4(c)]. For comparison, dotted, dashed,
and dash-dotted lines show the perturbative results for δ(N,N ′)
accounting for terms up to order γ 0, γ 1, and γ 2, respectively, in
the weakly interacting, small |γ | regime and accounting for terms up
to order γ −1, γ −2, and γ −3, respectively, in the strongly interacting,
large |γ | regime.

two speculations: First, a convergent series can be found for
any γ and N . Second, the radius of convergence of the small
γ series is approximately 2π for all N . Figures 3 and 4, which
are discussed in the next section, are consistent with these
speculations.

V. DISCUSSION

This section compares the perturbative energy expres-
sions with the numerically determined energies of the upper
branch. Figure 1(b) shows that the scaled interaction energy
ε(N )/EF(N ) depends weakly on N if plotted as a function of
−�ωaho/g. The dependence on N is even weaker when the
interaction strength is parameterized by γ as opposed to g. To
benchmark the applicability of the perturbative expressions we
analyze the interaction energy of the system with N majority
atoms by comparing with that of the (1,1) system. Specifically,
we consider the quantities ρ(N ),

ρ(N ) = ε(N )/EF(N )

ε(1)/EF(1)
, (16)

and δ(N,N ′),

δ(N,N ′) = ε(N )/EF(N ) − ε(1)/EF(1)

ε(N ′)/EF(N ′) − ε(1)/EF(1)
. (17)

For finite N , ρ(N ) reduces to ε(N )/[Nε(1)], i.e., ρ(N ) tells
one the interaction energy per particle, normalized by the
interaction energy of the (1,1) system. The quantity δ(N,N ′)
can alternatively be written as [ρ(N ) − 1]/[ρ(N ′) − 1].

By expanding Eq. (16) in the weakly interacting (small |γ |)
regime, we find

ρ(N ) = ρ
(w)
0 (N ) + ρ

(w)
1 (N )γ + ρ

(w)
2 (N )γ 2 + O(γ 3), (18)

where the coefficients ρ
(w)
k (N ) are determined by the B(l)(N )

and B(l)(1) with l � k + 1. By expanding Eq. (16) in the
strongly interacting (large |γ |) regime, we find

ρ(N ) = 1 + ρ
(s)
1 (N )γ −1 + ρ

(s)
2 (N )γ −2

+ ρ
(s)
3 (N )γ −3 + O(γ −4), (19)

where the coefficients ρ
(s)
k (N ) are determined by the C(l)(N )

and C(l)(1) with l � k. Solid lines in Figs. 3(a)–3(c) show
the quantity ρ(N ) for N = 2, 3, and ∞, respectively. The
solid lines are obtained using the numerical (2,1) and (3,1)
energies and the semianalytical (1,1) and (∞,1) energies.
For γ → 0+ (i.e., for −1/γ → −∞), the quantity ρ(N )
approaches the constant ρ

(w)
0 (N ) = B(1)(N )/B(1)(1) [see the

horizontal dotted lines in Figs. 3(a)–3(c)], which increases
monotonically from 1.0607 to 1.1284 as N goes from 2 to
∞. This portion of the interaction energy can be interpreted
as the mean-field contribution. Inclusion of the next order
correction [the ρ

(w)
1 (N )γ term] and the next two corrections

[the ρ
(w)
1 (N )γ and ρ

(w)
2 (N )γ 2 terms] yields the dashed and

dash-dotted lines in Figs. 3(a)–3(c). The dash-dotted lines
provide a fairly accurate description of the quantity ρ(N ) for
−1/γ � −0.4. For |γ | → ∞, the leading-order γ -dependent
term [see the (nonhorizontal) dotted lines in Figs. 3(a)–3(c)]
increases monotonically from 0.3725 to 0.8782 as N changes
from 2 to ∞. Inclusion of the next-order correction and the
next two corrections yields the dashed and dash-dotted lines
in Figs. 3(a)–3(c). It can be seen that the dash-dotted lines
provide a fairly accurate description of the quantity ρ(N ) for
−1/γ � −0.15. This value is close to the expected radius
of convergence of the interaction energy [recall, the radius
of convergence is 1/γ = (1.0745 × 2π )−1 ≈ 0.148 for the
(1,1) system]. Combining the perturbative descriptions for
small and large |γ |, the expansions provide a fairly accurate
description of the interaction energy for the system with N

majority particles, normalized by that for the (1,1) system,
over a wide range of interaction strengths γ .

By expanding Eq. (17) in the weakly interacting regime,
we find

δ(N,N ′) = δ
(w)
0 (N,N ′) + δ

(w)
1 (N,N ′)γ

+ δ
(w)
2 (N,N ′)γ 2 + O(γ 3), (20)

where the coefficients δ
(w)
k (N,N ′) are determined by the

B(l)(N ), B(l)(N ′), and B(l)(1) with l � k + 1. By ex-
panding Eq. (17) in the strongly interacting regime,
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we find

δ(N,N ′) = δ
(s)
0 (N,N ′) + δ

(s)
1 (N,N ′)γ −1

+ δ
(s)
2 (N,N ′)γ −2 + O(γ −3), (21)

where the coefficients δ
(s)
k (N,N ′) are determined by the

C(l)(N ), C(l)(N ′), and C(l)(1) with l � k + 1. The quantity
δ(N,N ′) is shown by the solid line in Fig. 4(a) for (N,N ′) =
(2,∞) and by dots in Figs. 4(b) and 4(c) for (3,∞) and (2,3),
respectively. We observe that the quantity δ(N,N ′) changes
only slightly as −1/γ goes from −∞ to 0; this is particularly
true for δ(2,3) [see Fig. 4(c)]. The limiting values [see the
dotted lines in Figs. 4(a)–4(c)] are given by δ

(w)
0 (N,N ′) and

δ
(s)
0 (N,N ′), respectively. Dashed lines include the next order

correction in the weakly and strongly interacting regimes,
and dash-dotted lines include the next two corrections. In
the weakly interacting regime, the dash-dotted lines provide
a fairly good description of the quantity δ(N,N ′). In the
strongly interacting regime, however, the validity regime of
the perturbative expressions is quite small. For δ(2,3), e.g.,
the expansion coefficients are δ

(s)
0 (2,3) = 0.7213, δ

(s)
1 (2,3) =

0.0694(3), and δ
(s)
2 (2,3) = −2.31(12), where the numbers in

brackets denote the error bars due to the uncertainties of
the second- and third-order perturbation theory coefficients.
The fact that |δ(s)

2 (2,3)| � |δ(s)
1 (2,3)| is responsible for the

turnaround of the dash-dotted line for large positive γ . We
note that the error bar of the quantities δ(3,∞) and δ(2,3),
obtained from the numerical energies [see dots in Figs. 4(b)
and 4(c)], is too large in the large γ regime to meaningfully
compare with the perturbative results.

VI. CONCLUSION

This paper considered the upper branch of a noninteracting
harmonically trapped one-dimensional Fermi gas with a
single impurity. Zero-range two-body contact interactions with
strength g were assumed between the majority atoms and the
impurity. This system constitutes one of the simplest meso-
scopic systems accessible to experiment and theory. On the
experimental side, it has been demonstrated by the Heidelberg
group that the upper branch of the model Hamiltonian can be
emulated reliably using ultracold atoms [18,19]. On the theory

side, various numerical and analytical techniques have been
applied [7,11–17,23–26]. This paper pursued a perturbative
approach, which determined expansions of the energy of the
upper branch in the weakly and strongly interacting regimes
for various N . In the cases where we were not able to obtain
general N expressions for a fixed order in the perturbative
expansion, approximate expressions applicable to all N were
obtained through fits. Through comparison with accurate
numerical few-body energies, the perturbative expressions
were shown to provide a satisfactory description for a wide
range of interaction strengths.

The main results of this work are as follows: (i) We
determined an expansion for the energy of the upper branch
of a one-dimensional harmonically trapped Fermi gas with a
single impurity in the weakly repulsive regime up to order γ 3,
applicable to any system size. (ii) We determined an expansion
for the energy of the upper branch in the strongly interacting
regime up to order γ −3, applicable to any system size. While
the idea to treat the coupling strength 1/γ as a small parameter
is not new, our work provides an explicit demonstration that
such a program can be carried through explicitly beyond the
leading-order correction. (iii) The radii of convergence of the
series were reported for N = 1 and ∞. (iv) The behavior of
the expansion coefficients in the series in γ k and γ −k with
k > 3 was discussed. (v) The perturbative expressions were
benchmarked and found to provide a reliable description over
a wide range of interaction strengths.

The results presented in this work can be used to calculate
perturbative expressions for the contact and other observables.
Moreover, the second- and third-order results in the γ −1 series
allow one to assess the applicability regime of effective spin
models [26,34,42].
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