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Multiple-time-scale Landau-Zener transitions in many-body systems
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Motivated by recent cold-atom experiments in optical lattices, we consider a lattice version of the Landau-Zener
problem. Every single site is described by a Landau-Zener problem, but due to particle tunneling between
neighboring lattice sites this on-site single-particle Landau-Zener dynamics couples to the particle motion within
the lattice. The lattice, apart from having a dephasing effect on single-site Landau-Zener transitions, also implies,
in the presence of a confining trap, an intersite particle flow induced by the Landau-Zener sweeping. This gives
rise to an interplay between intra- and intersite dynamics. The adiabaticity constraint is therefore not simply given
by the standard one, the Hamiltonian rate of change relative to the gap of the on-site problem. In experimentally
realistic situations, the full system evolution is well described by Franck-Condon physics; e.g., nonadiabatic
excitations are predominantly external ones characterized by large phononic vibrations in the atomic cloud, while
internal excitations are very weak as close-to-perfect on-site transitions take place.
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I. INTRODUCTION

The adiabatic theorem tells us that nonadiabatic excitations
become important whenever the rate of change of the Hamilto-
nian is large compare to the splitting between nearby energies.
A typical situation when this happens is when two weakly
coupled diabatic, or bare, energy levels cross. The coupling
between the corresponding states implies a lifting of the
degeneracy and the crossing becomes avoided. The simplest
description of this scenario is captured by the Landau-Zener
(LZ) model. Being analytically solvable, the LZ formula gives
an expression for the transition probability when the system
is swept through an avoided crossing [1]. In the diabatic
representation, the state vector |ψ(t)〉 = [ψx(t) ψy(t)]T is a
solution of the time-dependent Schrödinger equation (� = 1)

i
∂

∂t

[
ψx(t)

ψy(t)

]
=

[
λt U

U −λt

] [
ψx(t)

ψy(t)

]
. (1)

Here, λ is the sweep velocity and U the coupling strength
between the two diabatic states. For an initial state ψx(−∞) =
1,ψy(−∞) = 0, the probability for transfer from the x-
diabatic state to the y-diabatic state at t = +∞ is given by the
expression P = exp(−�) with the adiabaticity parameter � =
2πU 2

λ
. The adiabatic states are the instantaneous eigenstates

of the corresponding Hamiltonian, and for the LZ problem
we note that far from the crossing at t = 0, the diabatic and
adiabatic states coincide up to a swapping of the indices.
As mentioned, a slow time change in comparison to the
energy gap, i.e., λ � |U | (in dimensionless units), implies
an adiabatic evolution, here seen in the large � parameter.

Since adiabatic breakdown (i.e., population transfer be-
tween adiabatic states) occurs predominantly in the close
vicinity of the crossing where the diabatic energies are approx-
imately linear, the LZ model has seen numerous applications
in all possible fields of physics; in molecular/chemical physics
it demonstrates breakdown of the Born-Oppenheimer approx-
imation [2], in cold-atom physics it can be used to explain
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the decay of Bloch oscillations [3] or describe the formation
of molecules when the gas is driven through a Feshbach
resonance [4], for solid-state Josephson junctions LZ physics
can be used to analyze transport properties [5] or interference
effects [6], it may also be used to understand critical slowing
down and the Kibble-Zurek mechanism appearing when a
system is driven through a critical point [7], and it can be
employed for state preparation and coherent control [8]. This
said, with ever refined experimental techniques in especially
the AMO community, more complicated situations can be
in situ studied and as a result extended LZ models become
relevant.

In this paper we consider a lattice version of a many-body
LZ (MBLZ) problem, namely ultracold bosonic atoms loaded
into the first excited states, p bands, of a square optical lattice
[9]. The analysis is carried out at a mean-field level which
is not only computationally tractable, but it is also expected
to give an accurate picture of current experiments using
cold-atomic gases in optical lattices. Every single lattice site
realizes a nonlinear (single particle) LZ system, but tunneling
of atoms from site to site makes the full system very complex
showing an interplay between intra- and intersite dynamics.
Such coupled dynamics results in a complicated evolution
during the LZ sweep. More precisely, there is an intrasite
time scale (indirectly related to the adiabaticity parameter
�) which determines the probability for transitions between
the two on-site diabatic states, and there is an intersite time
scale related to the mobility of particles within the lattice. For
physically relevant parameters, intrasite adiabaticity is easier
to fulfill than intersite adiabaticity. This can be understood
since the intrasite dynamics describes a macroscopic flow of
atoms within the lattice. The effect becomes especially clear
as the system size is increased, and in fact by taking the
thermodynamic limit properly the system hosts an Ising-type
quantum phase transition which prevents full adiabatic driving
due to the critical slowing down mechanism. The system is
particularly interesting since this type of MBLZ problem is
reminiscent of Franck-Condon physics which typically can be
found in pump-probe experiments in molecular and chemical
physics [10]. Here, however, the external degrees of freedom is
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discretized to the lattice sites and apparently the corresponding
“pump” (LZ) process is here taking place for a finite time
allowing for external evolution to occur during the “pumping.”

The paper is structured in the following way. The system
Hamiltonian, and its physical realization in terms of cold p-
band atoms, is introduced in the following section, where also
the idea of the mean-field approach is outlined. Some general
remarks on the lattice problem are also given in Sec. II. The
results for the many-site problem are reported in Sec. III. To
better understand the interplay between intra- and intersite
dynamics we start by analyzing the ground-state properties and
then turn the attention to the time-dependent MBLZ problem.
We conclude with a summary in Sec. IV.

II. MODEL SYSTEM

In this section we introduce the model that supports
different internal and external characteristic time scales.
Effective models describing the MBLZ problems discussed
in this paper could arise in various physical systems such as
trapped spinor condensates in optical lattices [11], ion traps
[12], impurity-BEC systems in double wells [13], or atomic
condensates occupying higher energy bands of optical lattices
[14]. The following derivation considers the last option, more
precisely an ultracold gas of bosonic atoms loaded into the p

bands (first excited) of a square optical lattice. The reason for
this choice is because the two time scales appear naturally in
this system.

The specific system is presented next by deriving the
corresponding many-body Hamiltonian. From the many-body
Hamiltonian it is straightforward to arrive at the effective
model used in this paper by introducing the coherent-state
ansatz wave function and from there on obtain the mean-field
equations of motion.

A. Physical system and the quantum many-body Hamiltonian

We consider bosonic atoms of mass m free to move in a 2D
periodic potential. The single-particle Hamiltonian reads

Ĥsp = −�
2∇2

2m
+ V (r′), (2)

where the potential V (r′) = Vlat(r′) + Vtrap(r′) with

Vlat(r′) = Ṽx sin(kx ′) + Ṽy sin(ky ′),
(3)

Vtrap(r′) = mω̃2

2
(x ′2 + y ′2),

consists of the optical lattice and the external trapping poten-
tials, respectively, with k being the lattice wave number and ω̃

the trap frequency. The spectrum consists of bands of allowed
energies separated by band gaps. Thus, the eigenenergies
and eigenstates can be labeled by a discrete band index and
two continuous quasimomenta. On the isotropic square lattice
Vlat(r′) there is a single lowest (s) band and two degenerate
first excited (p) bands. Throughout this article we will work
with dimensionless variables where the recoil energy ER =
�

2k2/2m sets the energy scale giving a characteristic length l =
k−1 and time τ = �/ER . The scaled dimensionless variables

and parameters become x = kx ′,y = ky ′,Vx = Ṽx/ER,Vy =
Ṽy/ER,ω = √

2mω̃/�k2.
For the isotropic 2D lattice, every lattice site hosts two

degenerate atomic orbital states, the px and py orbitals. These
orbitals represent the single-site atomic states and are given
by the Wannier functions. Since we have two of them for
every site, we can think of the single-site state as a spin-
1/2 or qubit particle, but it should be remembered that the
spatial dependence of the orbitals is important for giving a
full description of the atomic states. Just like the eigenstates
of an isotropic 2D harmonic oscillator, the px-orbital state is
roughly Gaussian in the y direction and has a single node in the
x direction. Its width is larger in the direction of the node, i.e.,
the x direction. The same properties apply for the py orbital
but with the two directions swapped. Naturally, the shapes of
these orbitals (Wannier functions) will play an important role
for the dynamics of the system.

From the single-particle Hamiltonian (2) we continue by
applying the second-quantization procedure. The general form
of the many-body Hamiltonian is

Ĥmb =
∫

dr′ 	̂†(r′)
[
Ĥsp + U

2
	̂†(r′)	̂(r′)

]
	̂(r′). (4)

Here, U is the effective atom-atom (s-wave) interaction
strength and 	̂(r′) and 	̂†(r′) are the atomic annihilation
and creation operators, respectively, which obey the regular
bosonic commutation statistics [	̂(r′′),	̂†(r′)] = δ(r′′ − r′).
The Hamiltonian (4) is exact within the framework of two-
body contact interactions. In order to derive an effective
second-quantized model we impose the single-band and tight-
binding approximations; i.e., we will restrict the atoms to
reside only on the two p bands and only consider tunneling
between nearest neighbors as well as only on-site interactions.
To this end we expand the atom operators in the p-band
Wannier functions

	̂(r) =
∑
αj

wαj(r)âαj, (5)

where wαj(r) is the pα orbital (α = x, y) Wannier function at
site Rj = (xj,yj) = (πjx,πjy), and âαj annihilates an atom at
site j in orbital α. The creation and annihilation operators obey
the boson commutation relation [âαi,â

†
βj] = δαβδij. Inserting

(5), and its Hermitian conjugate, in the expression (4) for the
many-body Hamiltonian and making use of the orthogonality
of the Wannier functions together with imposing the tight-
binding approximation, one derives the second-quantized
Hamiltonian,

Ĥ = Ĥ0 + Ĥdd + Ĥoc, (6)

with

Ĥ0 = −
∑
α,β

∑
〈ij〉α

tαβ â
†
βiâβj

+
∑

α

∑
j

[
Eα(t) + ω2

2

(
x2

j + y2
j

)]
n̂αj, (7)
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and the interaction parts

Ĥdd = U

2

∑
α

∑
j

n̂αj(n̂αj − 1) + U

3

∑
αβ,α 	=β

∑
j

n̂αjn̂βj, (8)

Ĥoc = U

6

∑
αβ,α 	=β

∑
j

(â†
αjâ

†
αjâβjâβj + â

†
βjâ

†
βjâαjâαj). (9)

Here, n̂αj = â
†
αjâαj is the atomic number operator for flavor

α at site j. The indices α, β = x, y, and the
∑

〈ij〉α sums over
nearest neighbors in the direction α. The parameters are given
by the overlap integrals; tunneling amplitude

tαβ = −
∫

dr wαj(r)Ĥspwαj+1β
(r), (10)

where j + 1β indicates the neighboring site of j in the direction
β,

Eα(t) =
∫

dr wαj(r)[−∇2 + Vlat(r)]wαj(r), (11)

and the interaction strengths read

Uαβ = U0

∫
dr w2

αj(r)w2
βj(r). (12)

Note that we can choose the Wannier functions to be real.
Without the LZ sweep, the on-site energies Eα(t) are assumed
the same between the two orbitals, while by tuning Vx and Vy

externally the on-site energy becomes time-dependent and we
can drive the LZ sweep. In principle also the other parameters
will be altered by tuning the amplitudes Vx and Vy , but this
effect will be much smaller than the change in Eα(t), and
we can safely ignore such dependencies. In the isotropic
case and in the harmonic approximation, i.e., wxj(r) ∝ (x −
πjx) exp[−(x − πjx)2/2σ − (y − πjy)2/2σ ] with σ the width
and similarly for wyj(r), the interaction strengths obey Uxx =
Uyy = 3Uxy = 3Uyx . Therefore, we have defined U = Uxx to
parametrize all interaction terms. The effect of the trap appears
as the last term in Eq. (7), where we have assumed that the
trap varies minimally on the length scale of the lattice; i.e.,
the trap does not directly induce tunneling between lattice
sites. In this approximation we just replace xj and yj with
the positions of the site j. Finally we make a remark about
the tunneling coefficients tαβ which give the amplitude for
an α-orbital particle to tunnel in the β direction. Due to the
anisotropic shape of the orbitals, the tunneling strength of
say a px-orbital atom in the x direction, txx , is not the same
as for tunneling in the y direction, tyx . Using the particular
shapes of the Wannier functions on the p bands it follows that
|txx | > |tyx |, and if we pick txx < 0 we have that tyx > 0. For
our purposes it is enough to consider the orbital symmetric
situation txx = tyy ≡ t1 and txy = tyx ≡ t2 (corresponding to
the isotropic lattice). Another consequence of the shapes of the
wαj(j)’s is that tunneling cannot accompany a change of orbital
states (in general such tunnelings describe spin-orbit couplings
or so-called Dzyaloshinskii-Moriya processes); instead orbital
states are only interchanged via scattering of two px-orbital
atoms into two py orbitals or vice versa, as seen from Eq. (9).

Experimentally, atoms prepared in the ground state, the s

band, can be loaded into the p bands via a two-photon Raman
pulse [15], and there they would be let to relax into a p-band

(quasi) ground state. Such relaxation is indeed very fast—a
few tunneling times [15,16]. This implies that it takes place
on a much shorter time scale than other decay mechanisms.
The lattice will initially be anisotropic (Vx 	= Vy) such that all
atoms populate mainly one orbital type (the lattice anisotropy
lifts the p-band degeneracy). The lattice is then gradually
changed in order to realize the LZ sweep. The density of
the cloud can be measured either via time of flight or by
florescence measurements, which can work even at the single
site level [17].

B. Many-body Landau-Zener Hamiltonian

The idea of an interplay between physical mechanisms
characterized by different time scales means, in our case,
that we consider a system of both internal “spin” (the two
orbitals) and external spatial degrees of freedom. The idea is
that if the external degrees of freedom are frozen we recover
a regular (nonlinear) LZ problem, while if the full system is
considered the evolution of the external degrees of freedom
taking place during the LZ sweep can affect the on-site LZ
transition probabilities. As we will see below, the lengths of the
on-site spinors are not fixed and may vary in time. In particular,
the lengths give the number of atoms at that site. The change in
the spinor length follows then from the fact that the atoms are
mobile and can occupy different sites. We will demonstrate that
this particle mobility renders very complex coupled evolution.
We may note that this situation is qualitatively different from
earlier studies of LZ lattice physics [18] where the occupation
in the sites is fixed, and the presence of surrounding sites
appears solely as a dephasing effect on the on-site problems.

In the following section where the results are presented we
assume that a mean-field approximation is justified; i.e., the
atom number on every single site is typically larger than ten.
Even at the edge of the atomic cloud, where the particle number
drops well below ten, we imagine that number fluctuations are
still large and a mean-field description to be motivated. By
virtue of the mean-field approach we make the coherent state
ansatz, i.e.,

|	〉 =
⊗

j

|ψj〉j =
⊗

j

|ψxj,ψyj〉j, (13)

where the j-site state |ψxj,ψyj〉j is a two-mode coherent state

|ψxj,ψyj〉j = exp

(
−|ψxj|2 + |ψyj|2

2

) ∑
nx,ny

ψ
nx

xj ψ
ny

yj√
nx!ny!

|nx,ny〉j

(14)

with |nx,ny〉j a Fock state with nx and ny px- and py-
orbital atoms at site j, respectively. As coherent states we
have âαj|	〉 = ψαj|	〉 and 〈	|n̂αj|	〉 = |ψαj|2. Note that
|ψxj,ψyj〉j represents the spinor at site j and from here it
follows that its norm nj = √|ψxj|2 + |ψyj|2 gives the number
of particles at that particular site; i.e., Ntot = ∑

j nj is the total
number of particles.

The mean-field Hamiltonian (or classical energy func-
tional) is given by Hmf[ψαj] ≡ 〈	|Ĥ |	〉 where Ĥ is the
second-quantized Hamiltonian of Eq. (6). After writing the
Hamiltonian Ĥ on a normally ordered form, and using the fact
âαj|	〉 = ψαj|	〉 for any α = x, y and j, it directly follows
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that the energy functional is simply obtained by replacing
operators âαj (â†

αj) with ψαj (ψ∗
αj, where ∗ represents complex

conjugation). This gives us Hmf = H0 + Hdd + Hoc with

H0 = −
∑
α,β

∑
〈ij〉α

tαβψ∗
βiψβj

+
∑

α

∑
j

[
Eα(t) + ω2

2

(
x2

j + y2
j

)] |ψαj|2, (15)

Hdd = U

2

∑
α

∑
j

|ψαj|4 + U

3

∑
αβ,α 	=β

∑
j

|ψαj|2|ψβj|2, (16)

Hoc = U

6

∑
αβ,α 	=β

∑
j

[
(ψ∗

αjψβj)
2 + (ψ∗

βjψαj)
2
]
. (17)

The on-site energies Eα(t) are given by Ex(t) = −λt and
Ey(t) = λt with λ (> 0) the velocity of the LZ sweep.
Throughout, the interaction is taken to be repulsive, U > 0.

The mean-field equations of motion can be derived from the
Hamilton’s equations ∂ψαj/∂t = −∂H/∂ψ∗

αj. The resulting
equations (i.e., discrete Gross-Pitaevskii equations) become
[19]

i
∂ψxj

∂t
= −t1(ψxj+1x

+ ψxj−1x
) − t2(ψxj+1y

+ ψxj−1y
)

+ ω2

2

(
x2

j + y2
j

)
ψxj + λtψxj

+U

(
|ψxj|2 + 2

3
|ψyj|2

)
ψxj + U

2

3
ψ2

yjψ
∗
xj,

i
∂ψyj

∂t
= −t1(ψyj+1y

+ ψxj−1y
) − t2(ψyj+1x

+ψyj−1x
)

+ ω2

2

(
x2

j + y2
j

)
ψyj − λtψyj

+U

(
|ψyj|2 + 2

3
|ψxj|2

)
ψyj + U

2

3
ψ2

xjψ
∗
yj. (18)

The above expressions make clear that ψαj couples to its own
complex conjugate ψ∗

αj. This peculiar coupling of the order

parameter stems from the orbital changing term Ĥoc given in
Eqs. (9) and (17). Normally for Gross-Pitaevskii realizations
appearing in atomic physics, the order parameter couples only
to its density |ψ |2 and not to ψ∗ alone [20,21].

The coherent-state amplitudes ψαj should be seen as the
superfluid order parameter; the atoms are assumed condensed
and |ψαj|2 gives the number of atoms of flavor α in site j. It
should be remembered, however, that the full atomic density,
taking the spatial dependencies of the Wannier functions into
account, is

P (r) =
∑

α=x,y

∑
j

|ψαj|2w2
αj(r). (19)

Nevertheless, in the following we will talk about the atomic
density as the occupations of the different orbital states |ψαj|2,
and the total density at site j

Qj = |ψxj|2 + |ψyj|2, (20)

where as mentioned earlier, |ψαj|2 gives the number of pα-
orbital atoms in site j.

C. Multiple-time-scale many-body Landau-Zener problem

The presence of a trap is crucial for the system evolution
during the LZ sweep. At first, this may seen as strange since
the trap shifts the energies of the two orbitals equally within a
single site. In another language, it seems to be a local change
of an effective chemical potential. But as we will explain next,
this is indeed not a local density approximation, which derives
from the anisotropic properties of the tunneling; i.e., |t1| > |t2|.

The tunneling part of the Hamiltonian drives the kinetics
of particles within the lattice. Hence, the coefficients t1 and
t2 can be seen as inverse effective masses for the particles.
Since |t1| > |t2|, a px-orbital particle is “heavier” in the y

direction than in the x direction, and oppositely for a py-
orbital particle. Thus, an initially localized single px-orbital
particle will diffuse more rapidly in the x direction than in the
y direction. Furthermore, the effective mass is negative in the x

direction so the particle actually maintain both a “particle” and
a “hole” character. Now, if such a single px-orbital particle is
confined in a harmonic potential (atomic trap), its ground-state
wave function, ψxj, is Gaussian in both directions, but its width
in the x direction is larger than in its y direction. Naturally, the
opposite holds true for a py-orbital particle. Interaction will
couple the two orbital states, but as long as the interaction is not
too strong (that is, we are not in the Thomas-Fermi regime [21])
the ground state of Ntot particles will not be polar symmetric
even if the harmonic potential is isotropic [19]. That means that
at sites at the boundary of the particle distribution, either px- or
py-orbital particle densities will dominate. This demonstrates
that the model goes beyond the local density approximation—
the on-site potential strength does not uniquely determine the
particle density (chemical potential) locally.

How does this intrinsic anisotropy affect the LZ driving?
Starting with say Ex � Ey all particles will reside in the
px orbitals and the ground-state particle distribution will be
elongated in the x direction. For Ey � Ex , on the other hand,
the corresponding distribution will instead be elongated in
the y direction and all particles will populate py orbitals. This
observation will be explicitly demonstrated in the next section.
When we drive the LZ transition adiabatically it means that at
every occupied site particles swap from px to py orbitals.
Simultaneously, if we are to remain in the global ground
state the external shape of the particle distribution must also
change (otherwise we pay a price in potential energy); the
squeeze-shaped atomic density should be rotated by 90◦. At
every populated site a nonlinear LZ transition is realized, but
in addition, the sites are coupled and particles can hop between
them. The on-site LZ transition occurs on some characteristic
time τintra that will depend on the sweep velocity λ and the
interaction strength U , but also on the tunnelings t1 and t2
(as explained in the next paragraph). The extrinsic dynamics
during the LZ transition is characterized by some time τinter

which depends predominantly on the tunneling amplitudes.
Of course, this is a very simplified picture of the full coupled
system, but it gives an idea of the complex dynamics. It follows
that performing an adiabatic sweep would mean that λ−1 �
τintra, τinter. Physically, if we have a macroscopic number of
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particles in our lattice the above scenario implies that we
need to achieve a macroscopic current of particles within
the lattice. For physically relevant parameters one would
therefore expect that τinter > τintra. Then, if τinter > λ−1 > τintra

the on-site LZ transitions can be adiabatic while the overall
particle distribution becomes excited in terms of collective
vibrations.

A qualitative argument to explain the difference in time
scales, τintra and τinter, goes as follows. We first note that the
single-site problem can be mapped onto a Lipkin-Meshkov-
Glick LZ problem [22]. Due to the nonlinearity appearing
in the mean-field model, so-called swallow-tail loops of the
adiabatic energies form [23,24]. Interestingly, in the present
Lipkin-Meshkov-Glick system these loops are always present
and they make the gap between the lowest adiabatic energies
vanish. This would suggest that the intra time scale τintra should
go to infinity. However, the present lattice model cannot be
understood from single-site evolution, and the fact that the sites
are couple implies that an effective gap opens up between the
lowest on-site adiabatic energies. This gap is of the order of the
tunnelings t1,2. In particular, the gap size does not depend, to
lowest order, on the system size since the number of neighbors
is fixed. On the other hand, the inter time scale τinter will depend
on the total number of sites (the single-particle tight-binding
model is gapless), and in particular this gap vanishes in the
thermodynamic limit. Thus, for sufficiently large lattices the
slow time scale will unambiguously be the intersite one.

III. NUMERICAL RESULTS

In this section the idea is to demonstrate numerically what
we previously argued, namely that the coupling between
internal and external evolution leads to very complex full
system dynamics where in particular the Franck-Condon type
physics alters the LZ transition.

The many-site problem of Eq. (18) is solved using the split-
operator method [25]. This allows us to both consider time-
dependent problems as well as extracting the ground state by
simply propagating some initial state in imaginary time, t →
−it . For simplicity, the full state |	(t)〉 will be normalized to
unity (instead of the total number of atoms Ntot). Of special
interest for us is the atomic imbalance

Ztot(t) =
∑

j

Zj(t) =
∑

j

[|ψxj(t)|2 − |ψyj(t)|2]. (21)

Note that if the on-site imbalance were normalized, Zj(t) →
Zj(t)/[|ψxj(t)|2 + |ψyj(t)|2], it would directly relate to the LZ
transfer probability introduced in the introduction. It should be
clear that an adiabatic LZ sweep in the full lattice system would
imply that Ztot(−∞) = 1 → Ztot(+∞) = −1. However, as
will be discussed further, reaching Ztot(+∞) = −1 is not a
guarantee for total adiabatic evolution.

A. Ground-state properties

Before entering into the full time-dependent problem, let
us look at the ground-state properties of the time-independent
system; i.e., λt is taken as an external parameter that fixes the
detuning between the two orbitals. This will serve as a verifi-
cation of the general argumentation put forward in Sec. II C,

and visualize the idea behind the Franck-Condon mechanism
in our model. Given already in Eq. (14), at the mean-field
level, every site hosts a (nonnormalized) qubit (spin-1/2 parti-
cle) characterized by a state |ψj〉j = |ψxj,ψyj〉 = [ψxj ψyj]T

which alternatively can be represented by a Bloch vec-
tor Rj = (Jxj,Jyj,Jzj) = (2Re(ψ∗

xjψyj), 2Im(ψ∗
xjψyj), |ψxj|2 −

|ψyj|2). The length of the Bloch vector gives the (scaled) on-site
particle occupation, and the z component is nothing but the
on-site particle imbalance. The LZ parameter λt acts as an
external field which tries to align the on-site spins in the z

direction. Thus, for large |λt | we have Rj/|Rj| = (0,0, ± 1);
i.e., all the spins point either towards the north or the south
pole on the Bloch sphere. This is conveniently called the
polarized state. For zero field (detuning), λt = 0, and in the
absence of a trap Rj/|Rj| = (0, ± 1,0) [9]. More precisely,
due to the nonzero tunneling terms t1 and t2 (and their relative
signs) and the character of the interaction terms, the full
system organizes in an antiferromagnetic state with the spins
alternating between pointing in the positive or negative y

direction between neighboring sites [9,19]. This observation
suggests that in the thermodynamic limit there should occur
an Ising-type phase transition between these two phases.

Once the trap is included, as we have already argued, the
densities of the two atomic orbitals become elongated despite
the fact that the trap is isotropic. This is demonstrated in Fig. 1.
In the upper plots (a)–(f) we give examples of the ground-state
px density (left plots) and py density (right plots) for various
λt . More precisely, the plot gives the populations |ψαj|2 of the
two orbitals wαj(r). Far from resonance, i.e., when λt = 0, we
see that predominantly only px or py orbitals are populated
(note the color bars), and consequently the system is polarized
in the z direction. This is in agreement with interpreting λt

as a field strength. For zero field, λt = 0 (c) and (d), the
two distributions are identical but rotated 90◦. Thus, the full
particle distribution including both orbitals is still not polar
symmetric for λt = 0. In the lower plot (g) we show the total
imbalance Ztot for the whole lattice. Most interestingly, we
find a nonvanishing regime around λt = 0 where a mixing of
the two orbitals exists. We have numerically verified that in
the thermodynamic limit, i.e., increasing the number of atoms
while lowering the interaction strength U , the crossovers seen
around λt ≈ ±0.0005 become more sharp and finally they turn
into a proper continuous phase transition. This is a transition
between a polarized phase Ztot = ±1 and a symmetry-broken
antiferromagnetic phase (mentioned above). This transition is
of the Ising type [26], and it is interesting to notice that in the
literature of cold atoms on the p-band of optical lattices [14]
this transition in the superfluid regimes has been overlooked.

B. Landau-Zener problem

The discussed interplay between inter- and intrasite dy-
namics while driving the system through the LZ transition
should be understood from Fig. 1. In an adiabatic transition,
the full particle distribution should go from the first to the
third row of Fig. 1, at the same time as the particles within
each site are transferred from px orbitals to py orbitals [as in
Fig. 1(g)]. Numerically we always consider a finite time sweep
and thereby the ground state will always contain at least a small
fraction of atoms in both orbital states. From Ztot we have the
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FIG. 1. (Color online) Ground-state distributions |ψαj|2 (a)–(f) of
the two px (left) and py orbitals (right) for different “detunings”;
λt = −0.001 (a) and (b), λt = 0 (c) and (d), and λt = 0.001 (e) and
(f). The lower plot (g) shows the total atomic imbalance Ztot(λt). Apart
from the regime λt ∈ ±5 × 10−4, the system ground state populates
approximately only a single on-site orbital state (full polarization).
The dimensionless parameters used are ω = 0.003,t1 = −0.09,t2 =
0.0045, and U = 0.38. The latter three numerical values correspond
to an optical lattice with an amplitude of 17 recoil energies which
is chosen to be an experimentally relevant situation [15]. The trap
frequency is such that approximately a few hundred lattice sites are
populated.

amount of intrinsic excitations Piex = (1 − Ztot)/2. As already
mentioned, this quantity is not capable of characterizing
nonadiabaticity in the lattice since both inter- and intrasite
excitations can exist. One direct measurement of how adiabatic
the driving is would be to consider the instantaneous energy of
the system and compare it to the corresponding ground-state
energy. There is, however, a problem with such a measure in
our model. Going back to the equations of motion (18) it is
clear that what drives the transition is the last term which stems
from the orbital changing interaction (17). If we start with all
atoms residing in the px-orbital state it means that this coupling
term vanishes identically as it is proportional to ψ2

yj. This is
a result of considering a mean-field approximation; in a true
system quantum fluctuations would “kick off” the transition
even with no py-orbital atoms initially. In other words, in this
mean-field analysis we need to initially populate the py orbitals
in order to see any transition at all. Consequently, the system
is thereby automatically in an excited state to begin with. An

alternative approach would be to add a stochastic noise term
to the equations of motion (18), but this implies that we need
to perform sample averaging and a considerable slow down
in the computations. Thus, we omit such an approach and it
is also believed that the qualitative results would not change
from the ones presented below.

To understand the nonadiabatic excitations we will intro-
duce the widths of the py distribution

�yα
2 = 〈ψy |α̂2|ψy〉

〈ψy |ψy〉 − (〈ψy |α̂|ψy〉)2

(〈ψy |ψy〉)2
, (22)

where α̂ (α = x, y) is the discrete position operator. From the
above widths we define the squeezing measure

Fy(t) = �yy
2

�yx2
(23)

which tells how elongated the py distribution is; Fy(t) = 1 →
no squeezing, Fy(t) < 1 → squeezing in the y direction, and
Fy(t) > 1 → squeezing in the x direction. If the LZ sweep
is adiabatic we have that at the final time tf Fy(tf ) > 1 and
moreover Fy(t) should be time-independent for large times.
Variations in Fy(t) derive mainly from nonadiabatic excitations
in terms of vibrations in the particle distribution (phonons),
and we thereby introduce δFy(t) as the time variance of the
squeezing parameter at time t . In the following, Piex and δFy(t)
will be our rough measures of intra- and interwell nonadiabatic
corrections, respectively. But it should be kept in mind that
there is not a one-to-one relation between these quantities and
the LZ-induced excitations.

In Fig. 2 we present numerical results from integrating
Eq. (18) for various sweep velocities λ. The integration interval
[ti ,tf ] is taken long enough such that the effective diabatic
states |ψx〉 and |ψy〉 are approximately decoupled at ti and
tf . The initial state is obtained from first finding the ground
state (which will almost entirely populate the px orbitals) for
the given λti . We then populate the py orbitals with 1% by

0 0.5 1 1.5 2 2.5

x 10
−9

0

1

2

λ

δF
y(λ

)

0

0.5

1

P
ie

x(λ
)
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(a)

FIG. 2. Intrinsic excitations Piex(λ) (a) and variance of the
squeezing parameter δFy(λ) (b). The open circles mark calculated
values, while the solid line is a fifth-order polynomial least-squares fit.
Combining the results of the two plots, near full adiabatic population
transfer is only encountered for λ < 10−10. The parameters are the
same as for Fig. 1; i.e., they correspond to a lattice amplitude of 17
recoil energies.
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altering the initial state artificially where we take the py-orbital
distribution |ψyj|2 to be the same as the one for the px orbitals,
|ψxj|2. By increasing the initial population in the py orbitals the
intrinsic evolution would in general be more adiabatic since the
gap scales with |ψy |2. However, this would also imply that the
system would initially be more excited. In the figure we vary λ

while the remaining parameters are calculated from Wannier
function overlap integrals, Eqs. (10) and (12), corresponding
to an optical lattice with an amplitude of 17 recoil energies.
This particular choice is meant to represent an experimentally
relevant situation. The upper plot of Fig. 2 shows Piex(tf ) as
a function of λ, and the lower plot gives δFy(tf ) at the same
instant. Due to long computational times, only a few values of
λ have been considered. The solid line is a fit of a fifth-order
polynomial to the calculated data.

An interesting question is whether Piex(λ) can be assigned
an exponential or a power-law dependence of λ. Characteristic
for the standard LZ problem is its exponential dependence
on the coupling strength U and the sweep velocity λ—the
transition probability is a smooth and monotonic function of
both U and λ. Furthermore, from the form of P (given in
the introduction) it follows that the result for small λ (i.e.,
for adiabatic evolution) is nonperturbative. Extensions to mul-
tilevel problems [27–29], many-body situations [22,30–33],
and nonlinear LZ transitions [23,34,35] have been considered.
When the LZ model becomes nonlinear both the exponential
dependence and the smoothness of P may be lost [23]. Such
nonlinear LZ problems typically arise in mean-field theories
for single-site LZ problems. It is particularly found that for
strong enough nonlinearity, adiabaticity cannot be achieved
regardless of how slow the LZ sweep is [24]. In addition,
instead of an exponential dependence in the adiabatic regime
the transition probability was found to obey a power-law
dependence; i.e., Py ∼ λν for some power ν [23]. Power-
law dependencies have also been predicted in many-body
LZ problems beyond the mean-field regime [22,30,31]. The
large fluctuations and the few data points of Fig. 2 make
it impossible to extract any reliable power-law dependence
of Piex(tf ) in the adiabatic regime. It is found, however,
that Piex(tf ) shows a weak λ dependence for λ < 2 × 10−9,
and then rapidly approaches unity. This weak λ dependence
for small sweep velocities followed by a “rapid” change in
the transition probability directly implies that trying to fit a
curve P (λ) = exp(−C/λ) suggested by the LZ formula, for
some fitting parameter C, would give a large discrepancy. For
example, P (λ) displays a rapid increase for small λ’s and then
a slow saturation to its asymptotic value. Thus, it is clear that
the transitions of the present model greatly differ from those
of a single linear LZ problem.

As demonstrated in Fig. 2(b), the fluctuations in the
squeezing measure reach a peak in the regime when intrasite
excitations are still relatively low. Thus, as discussed earlier,
the internal time scale τintra is shorter than the external one
τinter, and nonadiabatic excitations predominantly occur as
vibrational phonon modes of the particle distribution. Upon
increasing λ, the fluctuations of Fy(tf ) decrease and here
it is actually found that the distribution has not performed
any “rotation”; i.e., the LZ sweep has mainly taken place
on-site, or in other words this is deep in the Franck-Condon
regime. In Fig. 3 we give an example (snapshot) of the final
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FIG. 3. (Color online) The final (full) distribution Qj(tf ) =
|ψxj(tf )|2 + |ψyj(tf )|2 of the two orbitals in a situations where
nonadiabatic excitations occurs mainly in the external degrees of
freedom (Piex = 0.026), i.e., in phononic vibrations of the particle
distribution. The distribution is still squeezed in the y direction despite
the fact that almost only the py-orbital states are populated which
clearly indicates that the transition takes place in the Franck-Condon
regime. The sweep velocity λ = 1.68 × 10−9 and the rest of the
parameters are as in Fig. 1.

full distribution Qj(tf ) = |ψxj(tf )|2 + |ψyj(tf )|2. Here Piex =
0.026 implies good intrasite LZ transfer, but from the plot it
is clear that external excitations in terms of particle vibrations
are large. Such large quantum fluctuations are indeed common
for many-body LZ problems [22,30]. The difference in this
study compared to earlier ones is that we can characterize the
excitations into two categories of internal and external, and
thereby also quantify the types of excitations. The external
excitations can be analyzed in terms of the Fourier spectrum
of some physical quantity A(t) = 〈Â〉. Here we define the
“spectrum” as the Fourier transform of the x and y “widths”
of the full distribution Qj,

Sα(ν) ∝
∫ ∞

tf

dt eiνt 〈α̂2〉, α = x, y, (24)

where tf is the time when the LZ sweep stops and after
that the system is evolving with a constant detuning λtf .
Thus, Sα(ν) is not exploring the evolution through the LZ
transition, but only the vibrations in the full distribution caused
by the LZ sweep. The results are displayed in Fig. 4 for
both the directions. There are some common vibrational mode
frequencies for both directions, ν = 0, ± 0.0072, ± 0.0128.
The y component also has two additional clear modes at
ν = ±0.0004. These excitation frequencies are of the same
order as the tunnelings |t1| (= 0.09) and t2 (0.0045) as well
as the trap frequency ω (= 0.003). Since |t1| determines the
bandwidth, excitations occur within the band. In particular,
the amplitude of the vibrational modes is much smaller than
the typical energy gap to other bands. For a potential amplitude
V = 17 (in scaled units), we have the gap

√
2V ∼ 6 � ν.

Thus, the characteristic energies of these phonon modes are at
least two orders of magnitude smaller than excitations between
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FIG. 4. (Color online) The “spectral function” Sα(ν) for the x and
y vibrations of the full atomic distribution Qj. The Fourier transform
is taken in the interval preceding the LZ transition. The parameters
are as in Fig. 3.

bands within the lattice and as a result we conclude that the
single-band approximation should be valid.

Let us end by a remark on how this model shows similarities
to situations in molecular physics and in this sense can serve
as a controllable model for studies of phenomena known from
this field. The present LZ process is a kind of realization
of Franck-Condon physics [10]. The idea of the Franck-
Condon mechanism is schematically described in Fig. 5. The
Franck-Condon principle plays an important role in molecular
physics where the transition takes place between electronic
states. It is used to understand internal molecular dynamics
in pump-probe experiments. Here, the transition is between
the orbital states, which belong to different Bloch bands, and

Ω
i,i−1

V
y
(x)

Ω
i,i Ω

i,i+1

x

V
x
(x)

ψ
yi−1

(x) ψ
yi

(x) ψ
yi+1

(x)

ψ
xi

(x)

FIG. 5. (Color online) The Franck-Condon mechanism. We
imagine that initially the particle’s state is ψxi(x) (schematically
represented by a px orbital in the plot) and a coupling � between
the px and py orbitals is turned on. If the coupling realizes a π -pulse
transition, the particle will reside solely on the upper py-orbital branch
after the turn-off of the coupling. In the Franck-Condon regime the
state will be approximately ψyi(x) (a py-orbital state at site i); i.e., the
effective coupling strengths |�i,i | � |�i,i±1| and the pulse is short
such that tunnelings are negligible during the transfer. It is clear that
for a pulse with a long duration the external evolution will affect the
final state on the py-orbital branch.

the vibrational motion of the molecule is here replaced by
particle motion within the lattice. One can imagine that by
increasing the tunneling rates t1 and t2 it could be possible
to be in a regime were τintra ∼ τinter and the Franck-Condon
principle would not hold any longer. Such a situation might
be difficult to achieve experimentally since in this regime the
single-band and tight-binding approximations fail. However,
there are probably ways to circumvent such issues, for example
by considering nonseparable lattices where the single-band
approximation is much more easily fulfilled [36]. The tight-
binding approximation is, in principle, not expected to be too
crucial for the present analysis and consequently it is possible
that the present system can work as a test bed for studies
of Franck-Condon physics and its breakdown in a controlled
manner. Moreover, here we analyze LZ transitions, but one
could consider other schemes more similar to pump-probe
methods, such as Raman transitions [15] or lattices shaking
[37].

IV. CONCLUSION

In this work we considered a LZ lattice problem at the mean-
field level. While the present model could be experimentally
realized in various types of systems, here we focused on
one of cold bosonic atoms loaded into the p bands of
optical lattices. The novel feature of this system, appearing
naturally on the p band, derived from an interplay between
intrasite LZ transitions and intersite particle dynamics. The
ability of particles to tunnel between lattice sites resulted in
a much stricter constraint for adiabaticity. More precisely,
an adiabatic evolution implied a macroscopic particle flow
within the lattice. The nonadiabatic excitations appear as
phonons making the particle distribution nonstationary. For
physically relevant parameters it was found that the intrasite
time scale was much shorter than the intersite time scale
which resulted in a Franck-Condon scenario. In this cold-atom
system, time-of-flight or single-site addressing measurements
would provide direct insight into both internal and external
excitations created during the LZ sweep.

All results of this work assume a relatively large particle
number per site (typically > 10) where mean-field approxi-
mations start to give an accurate description of the physics.
An interesting continuation would be to consider the opposite
regime of a low filling and where strong correlations become
dominant, e.g., in the insulating phase. As recently pointed
out [16], the physics of this system in the Mott insulator with
unit filling is extremely rich and in particular realizes a XYZ

Heisenberg model, where the LZ sweep would represent a
gradual change in the external field.
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A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston, and W. D.
Phillips, J. Phys. B 35, 3095 (2002); R. Scelle, T. Rentrop, A.
Trautmann, T. Schuster, and M. K. Oberthaler, Phys. Rev. Lett.
111, 070401 (2013).

013618-9

http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1039/b405601a
http://dx.doi.org/10.1039/b405601a
http://dx.doi.org/10.1039/b405601a
http://dx.doi.org/10.1039/b405601a
http://dx.doi.org/10.1103/PhysRevLett.87.140402
http://dx.doi.org/10.1103/PhysRevLett.87.140402
http://dx.doi.org/10.1103/PhysRevLett.87.140402
http://dx.doi.org/10.1103/PhysRevLett.87.140402
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/PhysRevLett.75.1831
http://dx.doi.org/10.1103/PhysRevLett.75.1831
http://dx.doi.org/10.1103/PhysRevLett.75.1831
http://dx.doi.org/10.1103/PhysRevLett.75.1831
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1140/epjb/e2003-00343-8
http://dx.doi.org/10.1140/epjb/e2003-00343-8
http://dx.doi.org/10.1140/epjb/e2003-00343-8
http://dx.doi.org/10.1140/epjb/e2003-00343-8
http://dx.doi.org/10.1080/09500340308235512
http://dx.doi.org/10.1080/09500340308235512
http://dx.doi.org/10.1080/09500340308235512
http://dx.doi.org/10.1080/09500340308235512
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1103/PhysRevA.73.012342
http://dx.doi.org/10.1103/PhysRevA.73.012342
http://dx.doi.org/10.1103/PhysRevA.73.012342
http://dx.doi.org/10.1103/PhysRevA.73.012342
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1103/PhysRevA.72.053604
http://dx.doi.org/10.1103/PhysRevA.72.053604
http://dx.doi.org/10.1103/PhysRevA.72.053604
http://dx.doi.org/10.1103/PhysRevA.72.053604
http://dx.doi.org/10.1103/PhysRevA.76.063607
http://dx.doi.org/10.1103/PhysRevA.76.063607
http://dx.doi.org/10.1103/PhysRevA.76.063607
http://dx.doi.org/10.1103/PhysRevA.76.063607
http://dx.doi.org/10.1088/0034-4885/75/2/024401
http://dx.doi.org/10.1088/0034-4885/75/2/024401
http://dx.doi.org/10.1088/0034-4885/75/2/024401
http://dx.doi.org/10.1088/0034-4885/75/2/024401
http://dx.doi.org/10.1103/PhysRevA.89.023620
http://dx.doi.org/10.1103/PhysRevA.89.023620
http://dx.doi.org/10.1103/PhysRevA.89.023620
http://dx.doi.org/10.1103/PhysRevA.89.023620
http://dx.doi.org/10.1103/PhysRevLett.95.033003
http://dx.doi.org/10.1103/PhysRevLett.95.033003
http://dx.doi.org/10.1103/PhysRevLett.95.033003
http://dx.doi.org/10.1103/PhysRevLett.95.033003
http://dx.doi.org/10.1103/PhysRevLett.97.190406
http://dx.doi.org/10.1103/PhysRevLett.97.190406
http://dx.doi.org/10.1103/PhysRevLett.97.190406
http://dx.doi.org/10.1103/PhysRevLett.97.190406
http://dx.doi.org/10.1103/PhysRevA.74.013607
http://dx.doi.org/10.1103/PhysRevA.74.013607
http://dx.doi.org/10.1103/PhysRevA.74.013607
http://dx.doi.org/10.1103/PhysRevA.74.013607
http://dx.doi.org/10.1103/PhysRevA.79.033603
http://dx.doi.org/10.1103/PhysRevA.79.033603
http://dx.doi.org/10.1103/PhysRevA.79.033603
http://dx.doi.org/10.1103/PhysRevA.79.033603
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.111.205302
http://dx.doi.org/10.1103/PhysRevLett.111.205302
http://dx.doi.org/10.1103/PhysRevLett.111.205302
http://dx.doi.org/10.1103/PhysRevLett.111.205302
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1103/PhysRevA.85.023605
http://dx.doi.org/10.1103/PhysRevA.85.023605
http://dx.doi.org/10.1103/PhysRevA.85.023605
http://dx.doi.org/10.1103/PhysRevA.85.023605
http://dx.doi.org/10.1103/PhysRevA.87.013636
http://dx.doi.org/10.1103/PhysRevA.87.013636
http://dx.doi.org/10.1103/PhysRevA.87.013636
http://dx.doi.org/10.1103/PhysRevA.87.013636
http://dx.doi.org/10.1103/PhysRevA.85.033638
http://dx.doi.org/10.1103/PhysRevA.85.033638
http://dx.doi.org/10.1103/PhysRevA.85.033638
http://dx.doi.org/10.1103/PhysRevA.85.033638
http://dx.doi.org/10.1209/0295-5075/107/30007
http://dx.doi.org/10.1209/0295-5075/107/30007
http://dx.doi.org/10.1209/0295-5075/107/30007
http://dx.doi.org/10.1209/0295-5075/107/30007
http://dx.doi.org/10.1103/PhysRevA.61.023402
http://dx.doi.org/10.1103/PhysRevA.61.023402
http://dx.doi.org/10.1103/PhysRevA.61.023402
http://dx.doi.org/10.1103/PhysRevA.61.023402
http://dx.doi.org/10.1103/PhysRevA.61.033603
http://dx.doi.org/10.1103/PhysRevA.61.033603
http://dx.doi.org/10.1103/PhysRevA.61.033603
http://dx.doi.org/10.1103/PhysRevA.61.033603
http://dx.doi.org/10.1103/PhysRevA.66.023404
http://dx.doi.org/10.1103/PhysRevA.66.023404
http://dx.doi.org/10.1103/PhysRevA.66.023404
http://dx.doi.org/10.1103/PhysRevA.66.023404
http://dx.doi.org/10.1103/PhysRevA.67.053613
http://dx.doi.org/10.1103/PhysRevA.67.053613
http://dx.doi.org/10.1103/PhysRevA.67.053613
http://dx.doi.org/10.1103/PhysRevA.67.053613
http://dx.doi.org/10.1103/PhysRevA.69.043604
http://dx.doi.org/10.1103/PhysRevA.69.043604
http://dx.doi.org/10.1103/PhysRevA.69.043604
http://dx.doi.org/10.1103/PhysRevA.69.043604
http://dx.doi.org/10.1016/0021-9991(82)90091-2
http://dx.doi.org/10.1016/0021-9991(82)90091-2
http://dx.doi.org/10.1016/0021-9991(82)90091-2
http://dx.doi.org/10.1016/0021-9991(82)90091-2
http://dx.doi.org/10.1063/1.448171
http://dx.doi.org/10.1063/1.448171
http://dx.doi.org/10.1063/1.448171
http://dx.doi.org/10.1063/1.448171
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevA.73.013823
http://dx.doi.org/10.1103/PhysRevA.73.013823
http://dx.doi.org/10.1103/PhysRevA.73.013823
http://dx.doi.org/10.1103/PhysRevA.73.013823
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.73.043605
http://dx.doi.org/10.1103/PhysRevA.73.043605
http://dx.doi.org/10.1103/PhysRevA.73.043605
http://dx.doi.org/10.1103/PhysRevA.73.043605
http://dx.doi.org/10.1103/PhysRevA.78.052329
http://dx.doi.org/10.1103/PhysRevA.78.052329
http://dx.doi.org/10.1103/PhysRevA.78.052329
http://dx.doi.org/10.1103/PhysRevA.78.052329
http://dx.doi.org/10.1103/PhysRevB.78.104426
http://dx.doi.org/10.1103/PhysRevB.78.104426
http://dx.doi.org/10.1103/PhysRevB.78.104426
http://dx.doi.org/10.1103/PhysRevB.78.104426
http://arxiv.org/abs/arXiv:0901.4778
http://dx.doi.org/10.1103/PhysRevLett.106.155302
http://dx.doi.org/10.1103/PhysRevLett.106.155302
http://dx.doi.org/10.1103/PhysRevLett.106.155302
http://dx.doi.org/10.1103/PhysRevLett.106.155302
http://dx.doi.org/10.1103/PhysRevLett.97.150402
http://dx.doi.org/10.1103/PhysRevLett.97.150402
http://dx.doi.org/10.1103/PhysRevLett.97.150402
http://dx.doi.org/10.1103/PhysRevLett.97.150402
http://dx.doi.org/10.1103/PhysRevA.73.063609
http://dx.doi.org/10.1103/PhysRevA.73.063609
http://dx.doi.org/10.1103/PhysRevA.73.063609
http://dx.doi.org/10.1103/PhysRevA.73.063609
http://dx.doi.org/10.1103/PhysRevLett.102.230401
http://dx.doi.org/10.1103/PhysRevLett.102.230401
http://dx.doi.org/10.1103/PhysRevLett.102.230401
http://dx.doi.org/10.1103/PhysRevLett.102.230401
http://dx.doi.org/10.1103/PhysRevLett.90.133601
http://dx.doi.org/10.1103/PhysRevLett.90.133601
http://dx.doi.org/10.1103/PhysRevLett.90.133601
http://dx.doi.org/10.1103/PhysRevLett.90.133601
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1103/PhysRevLett.111.070401



