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Quantum reflection and interference of matter waves from periodically doped surfaces

Benjamin A. Stickler,1,* Uzi Even,2 and Klaus Hornberger1

1Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
2School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

(Received 27 October 2014; published 13 January 2015)

We show that periodically doped, flat surfaces can act as reflective diffraction gratings for atomic and molecular
matter waves. The diffraction element is realized by exploiting the fact that charged dopants locally suppress
quantum reflection from the Casimir-Polder potential. We present a general quantum scattering theory for
reflection off periodically charged surfaces and discuss the requirements for the observation of multiple diffraction
peaks.
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I. INTRODUCTION

Quantum reflection refers to a nonvanishing reflection
probability in the absence of a classical turning point [1–6]. It is
a ubiquitous and inherently quantum-mechanical phenomenon
relevant for chemical reactions, for the trapping of cold atoms
in optical potentials, and for the scattering of atoms off surfaces
[7–15].

Numerous theoretical works on quantum reflection of atoms
and small particles can be found in the literature; more recent
studies discuss the reflection of atoms from Casimir-Polder
potentials [3,16,17], of antihydrogen from material slabs and
nanoporous materials [18,19], and of small particles from
evanescent laser fields [4,6]. Further works considered the
case of temporally [20] and spatially [21] oscillating surfaces,
and it was proposed that quantum reflection of photons from
magnetic fields might even test nonlinearities of the quantum
vacuum in strong fields [22].

Direct experimental observations of quantum reflection
include the scattering of hydrogen atoms off superfluid helium
[23], as well as reflection measurements of atoms from
surfaces mediated by the long-range Casimir potential [5,10–
12,24–27]. The use of periodically microstructured quantum
reflection gratings enabled the detection of several diffraction
orders [25,27]. Such optical elements can be attractive tools
for metrological applications because diffraction gratings
act as mass filters and because the reflection probability
from the Casimir-Polder potential depends on the particle’s
polarizability [3]. For instance, the mass selective diffraction of
a microstructured grating allowed direct observation of helium
trimers [25]. The quantum reflection of Bose-Einstein conden-
sates from a microstructured Fresnel mirror was numerically
studied in [28].

Thus far, diffraction gratings for matter waves have been
realized only with the help of periodic microstructures. These
microstructures act mainly by physically blocking a part of
the incoming wave, which is a purely geometrical effect [25].
It is a natural and open question whether quantum reflection
gratings can also be realized without microstructured surfaces.
It is the aim of this paper to answer this question in the
affirmative and to demonstrate that quantum reflection into
different diffraction orders can be realized with flat, periodi-
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cally doped surfaces, thus circumventing the requirement for
microstructures.

This paper is organized as follows: In Sec. II we discuss
some general aspects of quantum scattering off periodic sur-
faces. The total interaction potential induced by periodically
doped surfaces is then derived in Sec. III, where we also discuss
its asymptotic behavior for y → ∞. In Sec. IV we show that
it suffices to consider this asymptotic form, and we investigate
the associated specular reflection from the surface. Section V
then demonstrates that periodically doped surfaces can be used
as diffraction gratings, and we provide our conclusions in
Sec. VI.

II. REFLECTION FROM PERIODIC SURFACE
POTENTIALS

We consider the general quantum scattering problem of
a small particle of mass m and static polarizability α off a
perfectly planar but charged surface. The chosen coordinate
system is as depicted in Fig. 1; that is, x and z are the in-plane
coordinates, and the surface is situated at y = 0. The incoming
beam is described by a plane wave ψin(r) = exp(ik · r), with
ky < 0. Denoting the angle of incidence by θ and the azimuthal
angle by ϕ, we have the components of the initial wave vector
kx = k cos θ cos ϕ, ky = −k sin θ , and, kz = k cos θ sin ϕ. The
angle θ is small in grazing incidence diffraction experiments,
and hence, k2

x + k2
z � k2

y , so that the energy of the lateral
motion exceeds the energy of the motion towards the surface.
Typically, θ is in the range θ � 20 mrad [5,25,27].

In order to determine the reflection probability, we solve
the Schrödinger equation,

(� + k2)�(r) − 2m

�2
V (r)�(r) = 0, (1)

for the stationary scattering wave �(r) under appropriate
boundary conditions as specified below. Here, V (r) denotes
the total interaction potential between the point particle and
the surface; it will be discussed in detail in Sec. III.

If V (r) is everywhere attractive, no classical turning
point exists, although a finite reflectivity due to quantum
reflection might occur. The concept of Wentzel-Kramers-
Brillouin (WKB) wave functions proved to be particularly
powerful for the theoretical description of quantum reflection
[2]. This is due to the fact that the validity of the WKB
approximation requires the local de Broglie wave length to
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FIG. 1. (Color online) Schematic of the reflection problem. The
incident wave vector k impinges with angle θ at the surface, and ϕ is
the azimuthal angle with respect to the in-plane orientation.

vary sufficiently slowly [2,3,16], while a strong local variation
of the de Broglie wave length indicates regions where quantum
reflection is likely to occur. WKB waves are therefore the
natural incoming and outgoing waves for quantum reflection
problems. It is a remarkable general result that the WKB wave
functions become exact for both large and small separations,
y → ∞ and y → 0, if the interaction potential between the
surface and the impinging particle vanishes faster than 1/y2

for large separations y → ∞ [2]. The reflection probability
then approaches unity in the limit of small normal velocities
ky → 0. Moreover, if V (r) is periodic, reflection into different
diffraction orders is possible, as was observed experimentally
with microstructured reflection gratings [25].

A. Boundary conditions

We proceed to specify the boundary conditions associated
with Eq. (1) for y → ∞ and y → 0. For the time being, we
restrict the discussion to potentials that vary periodically only
in one in-plane direction, i.e., V (r) ≡ V (x,y) = V (x + ax,y).
This is done for the sake of simplicity; the generalization
to potentials that are also periodic in the z direction is
straightforward and will be briefly discussed at the end of
this section.

Since the potential V (x,y) is x periodic with period ax

and independent of z, the x component of the outgoing
wave vector can differ only by integer multiples of the grating
wave vector qx = 2π/ax , while the z component is preserved.
The y component of the final momentum is determined by the
conservation of total energy. Hence, the scattering state �(r)
has the general asymptotic form

�(r)
y→∞−→ eik·r + eikzz

∑
n∈Z

rne
i(kx+nqx )xeikny, (2)

with kn = √
k2 − (kx + nqx)2 − k2

z (which implies k0 = −ky).
The reflection probability Rn into diffraction order n is given
by Rn = |rn|2, and the total reflectivity is R = ∑

n Rn.
The second boundary condition, for y → 0, depends on

the specific behavior of the interaction potential V (r) near the

surface y → 0. If V (r) is proportional to Cγ /yγ in this limit,
independent of x and z, and if γ > 2, the WKB wave functions
are exact near the surface [2]. It will become clear in Sec. III
that the potential induced by a periodically doped surface
meets this requirement due to the Casimir-Polder interaction,
so that the second boundary condition can be stated as

�(r)
y→0−→ eikzz

∑
n∈Z

tne
i(kx+nqx )xψ

(n)
WKB(y). (3)

Here, the complex numbers tn are transmission coefficients,
and the outgoing WKB wave ψ

(n)
WKB(y) of order n is given by

[2]

ψ
(n)
WKB(y) = 1√

pn(y)
exp

[
− i

�

∫ y

ys

dy ′pn(y ′)
]

, (4)

where pn(y) = √
�2k2

n − 2mCγ /yγ is the local momentum for
y → 0 and ys is some arbitrary starting point.

We remark that one can estimate whether or not the WKB
wave function is a good approximation to the exact solution
of the Schrödinger equation (1) by means of the badlands
function [2]. In Sec. IV we will use the badlands function to
estimate the reflection distance from the surface.

The stationary Schrödinger equation (1) together with the
boundary conditions (2) and (3) states a well-posed boundary
value problem which must be solved in order to obtain the
reflection probabilities Rn. A more convenient formulation of
the problem can be obtained by exploiting the periodicity of
V (x,y) in the in-plane direction x directly in the Schrödinger
equation (1). The resulting equations, referred to as coupled-
channel equations, replace Eq. (1) and will be derived next.

B. The coupled-channel equations

Since we assume for the moment that the interaction poten-
tial V (x,y) is independent of the second in-plane coordinate
z, the component kz is preserved, and the stationary scattering
wave �(r) can be expanded as

�(r) = eikzz
∑
n∈Z

ei(kx+nqx )xψn(y). (5)

Inserting this together with the Fourier decomposition
V (x,y) = ∑

n Vn(y)einqxx into the Schrödinger equation (1)
yields the coupled-channel equations [29],(

∂2
y + k2

n

)
ψn(y) − 2m

�2

∑
n′∈Z

Vn−n′ (y)ψn′(y) = 0. (6)

These equations describe the coupling between dif-
ferent diffraction orders n with wave numbers kn =√

k2 − (kx + nqx)2 − k2
z , which are linked by the Fourier

coefficients Vn(y) of the potential V (x,y). Comparison with
Eqs. (2) and (3) reveals that the boundary conditions to Eq. (6)
are

ψn(y)
y→∞−→ δn0e

−ik0y + rne
ikny (7)

and

ψn(y)
y→0−→ tnψ

(n)
WKB(y). (8)

The coupled-channel equations (6) in combination with the
boundary conditions (7) and (8) are the basis for the treatment
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of quantum scattering and of quantum reflection off periodic
surfaces. For a given interaction potential V (x,y) one must,
in general, resort to numerical methods. An algorithm for this
task is presented in the Appendix.

Let us fix some notations which will be helpful when
discussing general potentials. The diffraction order n = 0 is
referred to as specular. Consequently, we refer to V0(y) as
the specular potential, while Vn(y), n 	= 0, is the nth coupling
potential. Moreover, the wave number of the nth diffraction
order kn characterizes whether this diffraction order is open
(k2

n > 0) or closed (k2
n < 0), in (imperfect) analogy to the

notion of open and closed scattering channels in conventional
scattering theory [30].

We remark that, in practice, it suffices to solve the coupled
equations (6) only for the open diffraction orders, k2

n > 0.
This is due to the fact that quantum reflection occurs far away
from the surface where the influence of the closed-order wave
functions is negligible (see [2,3,16] as well as Sec. IV).

The generalization of the coupled-channel equations (6)
to a potential V (r) which is periodic also in the z di-
rection is straightforward and comes without any further
complications [29]. In particular, a second Fourier index is
added to all Fourier coefficients, and one must replace kn

with knm =
√

k2 − (kx + nqx)2 − (kz + mqz)2. The resulting
coupled-channel equations are then the direct generalization
of Eqs. (6).

III. THE INTERACTION POTENTIAL

We now discuss the total interaction potential for a
periodically doped surface and derive its asymptotic behavior.
We will see in Sec. IV that its asymptotic shape determines
the probability for quantum reflection and is thus of major
significance for the observation of different diffraction orders.

The total interaction potential between a polarizable point
particle and a doped surface consists of two contributions:
(i) the Casimir-Polder (CP) interaction VCP(y) and (ii) the
electrostatic interaction Vel(r) induced by the surface charge
σ (x,z). The purely attractive CP interaction VCP(y) between
an atom and a flat surface can be well described with the aid of
shape functions [2,3]. It behaves as VCP(y) → −C4/y

4 in the
highly retarded limit y → ∞, while it approaches VCP(y) →
−C3/y

3 for small separations [31–33]. It is a matter of the
particle and of the surface under investigation whether the
highly retarded limit y → ∞ suffices to describe quantum
reflection [2].

Thus, the total interaction potential V (r) can be written as

V (r) = VCP(y) − α

2
|E(r)|2, (9)

where the electrostatic field E(r) is determined by the surface
charge distribution σ (x,z),

E(r) = 1

4πε0

∫
dx ′dz′ σ (x − x ′,z − z′)

(x ′2 + y2 + z′2)
3
2

⎛
⎜⎝

x ′

y

z′

⎞
⎟⎠ . (10)

The total interaction potential (9) is everywhere attractive;
thus, no turning point exists. It falls off at least as 1/y3 near the
surface y → 0 due to the CP interaction, which justifies the
use of WKB functions for small normal distances y → 0 (see

Sec. II and [2]). However, the asymptotic behavior assumed
in (3) still requires that the potential (9) is independent of the
in-plane coordinates x and z as y → 0.

A. The electrostatic interaction potential

Let us therefore take a look at the electrostatic contribution
Vel(r) to the total interaction potential (9) of the periodically
doped surface. We exploit the periodicity of the doping by
expanding the charge distribution σ (x,z) as

σ (x,z) =
∑
n∈Z

σn(z)ein2πx/dx , (11)

where dx denotes the doping period (not necessarily equal to
the period ax of the potential). Naturally, we consider the case
of an electrically neutral surface, σ0(z) = 0, which avoids an
infinitely extended constant electric field [34]. Moreover, for
simplicity we assume that the charge distribution is symmetric
in x, σ (−x,z) = σ (x,z), and that it varies in the second in-
plane direction z on a length scale much larger than the doping
period dx .

Inserting the Fourier decomposition (11) of σ (x,z) into
the expression for the electric field (10) and noting that the
integrand is sharply peaked at z′ 
 0, one obtains

E(r) 
 1

ε0

∞∑
n=1

σn(z)e−nκxy[sin(nκxx)ex + cos(nκxx)ey],

(12)

where we abbreviated κx = 2π/dx . For large normal distances
y � 1/κx , the electric field (12) decays exponentially on the
length scale 1/κx = dx/2π , which is determined by the doping
period dx . This is due to the fact that the doping period dx is
the only length scale available in this system.

Inserting the field (12) into the total interaction potential
(9) gives the electrostatic interaction potential Vel(r),

Vel(r) = − α

2ε2
0

[
β0(y,z) + 2

∞∑
n=1

βn(y,z)e−nκxy cos(nκxx)

]
,

(13)

where we introduced the coefficients

βn(y,z) =
∞∑

�=1

σ�(z)σ�+n(z)e−2�κxy . (14)

Importantly, in the asymptotic regime y � 1/2κx the potential
(13) also decays exponentially, however, on the length scale
1/2κx , which is half the scale of the asymptotic electric field
(12). The asymptotic shape of the electrostatic interaction
potential (13) is thus completely determined by the doping
period dx , which is the only characteristic length in the prob-
lem. Since the electrostatic interaction decays exponentially
for large normal distances y, the total interaction potential (9)
decays asymptotically as 1/y4 due to the retarded CP potential,
and hence, the reflectivity approaches unity for small normal
velocities k0 → 0 [3].

The Fourier coefficients of the total interaction potential (9),
as required in the coupled-channel equations (6), are easily
obtained from of Eqs. (9) and (13). The specular potential
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V0(y,z) reads

V0(y,z) = VCP(y) − α

2ε2
0

∞∑
�=1

σ 2
� (z)e−2�κxy, (15)

and the nth coupling potential takes on the form

Vn(y,z) = − α

2ε2
0

∞∑
�=1

σ�(z)σ�+|n|(z)e−(2�+|n|)κxy . (16)

For example, a harmonic surface charge distribution in one in-
plane direction, σ (x,z) ≡ σ cos(κxx) with Fourier coefficients
σ� = σδ|�|1/2, yields Vel(r) = −ασ 2 exp(−2κxy)/8ε2

0. This
potential is independent of the in-plane coordinate x; that is, it
is purely specular, although the charge distribution is periodic.
It is finite near the surface y → 0, which implies that the CP
potential dominates the total interaction potential for small y.
Hence, the WKB wave functions ψ

(n)
WKB(y) for the CP potential

become exact for y → 0, as was presupposed in the boundary
condition (3).

B. Asymptotic behavior of the specular interaction potential

It is a general result that the quantum reflection of a
matter wave approaching the surface with a small velocity
component in the normal direction is primarily influenced by
the asymptotic tail of the attractive interaction potential [2,3].
It is easily verified by inspection of Eqs. (15) and (16) that the
interaction potential (9) is asymptotically (y � 1/2κx) given
by its specular interaction potential (15). At such distances
from the surface the coupling to neighboring diffraction orders
(16) is exponentially suppressed, and the x-specular potential
V0(y,z) is, in leading order, given by

V0(y,z) 
 VCP(y) − α

2

(
σ1(z)

ε0

)2

e−2κxy . (17)

As noted in the previous section, the asymptotic electrostatic
potential (17) decays exponentially on the length scale
1/2κx = dx/4π and is independent of the precise shape of the
doping profile σ (x,z) within the unit cell in the x direction.

We have thus seen that the CP interaction dominates the
potential (17) at both close and far distances from the surface,
y → 0 and y → ∞. This justifies the boundary conditions (3)
also in the presence of the electrostatic interaction. In what
follows, we focus on z-independent charge distributions, σ1 =
const, for convenience, before returning to the general case
σ1(z) in Sec. V.

If σ1 is sufficiently large, an electrostatically dominated
region exists between the CP region near the surface, y → 0,
and the CP region far above the surface, y → ∞. In particular,
for helium atoms and a given doping period dx , this inter-
mediate region exists for

√
σ1dx � e

√
e0

4
√

3π/2 4
√

4αf , where
αf = e2

0/4πε0�c is the fine-structure constant. This criterion
can be obtained by equating the two different contributions
of the x-specular potential (17) and minimizing in y. It must
be emphasized that the criterion depends only on

√
σ1dx . For

instance, for a doping period dx = 100 nm, the required area
density of carriers is roughly σ1/e0 � 5 × 1015 electrons/m2.

IV. REFLECTION DISTANCE AND SPECULAR
QUANTUM REFLECTION

Within this section we first employ the maximum of the
badlands function to estimate the reflection distance from
the surface. We then demonstrate that periodically charged
surfaces can suppress quantum reflection by calculating the
reflection probabilities off a surface that is periodically doped
in one in-plane direction. The reflection distance from the
surface will justify the asymptotic approximation discussed in
Sec. III.

A. Reflection distance from the surface

The badlands function B(y) is an important tool for working
with semiclassical wave functions since it indicates regions
where the WKB approximation is a good estimate of the
exact solution of the Schrödinger equation [2,3,16,17,35]. In
particular, the WKB waves well approximate the exact wave
function if the badlands function is small, B(y) � 1, while
intervals where B(y) is significantly nonzero can be regarded
as regions where quantum reflection can occur [2,35]. Since
no classical turning point exists in the potential (9), we use
the maximum of the badlands function B(y) to estimate the
distance scale of quantum reflection.

The badlands function B(y) is defined as [2]

B(y) = �
2

∣∣∣∣3

4

[p′(y)]2

[p(y)]4
− p′′(y)

2[p(y)]3

∣∣∣∣ , (18)

where p(y) is the local x-specular momentum (we still
assume z independence in this section), i.e., p(y) =√

�2k2
0 − 2mV0(y), with V0(y) being the x-specular potential

(17); the primes denote derivatives with respect to y.
If the total interaction potential is dominated by the CP

interaction at all distances y, we may neglect the electrostatic
contribution to the total potential (17). To keep the argument
as simple as possible, we restrict the following discussion to
the case in which the highly retarded limit y → ∞ of the CP
interaction is sufficient to describe quantum reflection, as it is
the case, e.g., for helium atoms reflected from silica surfaces
[2]. In this limit the CP potential is of the form VCP(y) =
−C4/y

4, with C4 = 3�cα/32π2ε0 [31], and the maximum of
the badlands function is approximately at

yCP = 1√
v0 sin θ

4

√
3�c

16π2ε0

α

m
, (19)

above the surface. The scale of the reflection distance is thus
in this case determined completely by the properties of the
particle and independent of the doping period dx and charge
density σ1. Moreover, since the reflection distance depends
only on the ratio between polarizability and mass, α/m, it is
approximately the same for atomic clusters of arbitrary size.
However, the reflection probability decreases with increasing
cluster size [2].

On the other hand, if the electrostatic contribution domi-
nates the quantum reflection, the maximum of the badlands
function lies approximately at

yel = dx

4π
ln

[
64π3αf

3(5 − √
21)

σ 2
1

e2
0

y4
CP

]
, (20)
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above the surface. The reflection distance then increases
linearly with the doping period dx and depends only logarith-
mically on the charge density σ1 and the CP reflection length
scale yCP.

For example, helium atoms approaching the surface with an
initial velocity of v0 
 300 m s−1 at an incidence angle θ � 1
mrad have a CP reflection distance of yCP � 40 nm above
the surface. For an exemplary charge-carrier density σ1/e0 

1016 electrons/m2 the maximum of the badlands function (20)
is then at a position yel > 1/2κx = dx/4π , which is deep in
the asymptotic regime of the electrostatic interaction potential
(13). This justifies the specular approximation of the total
interaction potential (17) for this charge density.

In fact, it can be argued that the asymptotic approximation
(17) is sufficient to describe quantum reflection for arbitrary
charge densities σ1. For large densities it is valid due to
the mentioned large reflection distances (20), while for
small densities the reflectivity from the purely electrostatic
interaction potential tends towards zero (for the exact and
for the asymptotic electrostatic interactions). The physical
reason for the latter is that in the case of small doping
periods dx the electric field can be neglected because the CP
potential dominates the total interaction potential (17); on the
other hand, in the case of large dx the reflection probability
approaches zero, as will be shown in the next section.

B. Specular quantum reflection

We now explicitly calculate the probability for quantum
reflection from a flat surface that is periodically charged with
period dx in one in-plane direction. This requires solving
the Schrödinger equation (1) with the asymptotic interaction
potential (17) for σ1 = const. It can be seen from the coupled-
channel equations (6) that this is equivalent to solving these
equations only for the isolated specular channel,

(
∂2
y + k2

0

)
ψ0(y) − 2m

�2
V0(y)ψ0(y) = 0, (21)

with the specular boundary conditions (7) and (8) (n = 0).
If the interaction potential is dominated by the CP inter-

action for all normal distances y, the reflection probability
can be obtained in leading order from zero-energy solutions
of Eq. (21) [16]. It then tends towards unity for decreasing
normal velocity k0 → 0 and decreases, in the highly retarded
limit, for increasing values of the characteristic CP length
bCP = √

2mC4/� [2].
On the other hand, if the interaction potential has a dom-

inantly electrostatic region, Eq. (6) describes reflection from
an exponential quantum well and can be solved analytically
(since substitution ξ ∝ e−κxy turns Eq. (21) into a Bessel
differential equation of complex-order) [1,4]. In this case the
total reflection probability R is [4]

R = e−k0dx . (22)

The reflection probability tends towards unity for vanishing
normal velocities k0 → 0 and decreases with increasing
doping period dx . The physical reason is that for a given doping
period dx the asymptotic electric field (12), and therefore also
the asymptotic interaction potential (13), decays exponentially
on the scale defined by the period dx . In the limit of large dx

the asymptotic electrostatic potential (17) decays slowly, and
thus, the probability for quantum reflection tends to zero.

Returning to the discussion of the length scale (20) of
quantum reflection, we now see that it is, indeed, hardly
possible to observe different diffraction orders if the charge
density is periodic only in the x direction. The reason is that
for a significant coupling between the x channels the surface
charge has to be small because of Eq. (20). This in turn requires
large doping periods dx , implying low reflection probabilities
(22). However, one can create grating structures by locally
suppressing quantum reflection in a controlled fashion, as we
discuss next.

V. QUANTUM REFLECTION INTO DIFFERENT
DIFFRACTION ORDERS

In the previous section we saw that if the surface charge
σ (x,z) is periodic in a single in-plane direction x, its period dx

defines the dominant length scale of the system. This length
scale then determines the probability of quantum reflection
(22), implying that the coupling to different diffraction orders
is suppressed.

Thus, to observe diffraction into different diffraction orders
a second length scale has to be introduced. This is most
easily achieved by making the surface charge density σ (x,z)
periodic also in the second in-plane direction z. (Alternatively,
one can think of a one-dimensional superstructure with two
different periods.) We then deal with a two-dimensional
periodic surface charge σ (x,z) inducing the electric field which
attracts the impinging particle. Again, the reflection probability
is determined by the asymptotic shape of the electrostatic
interaction potential in the normal direction y. It follows from
Eq. (12) that if the period dz in one in-plane direction is much
greater than the period dx in the other in-plane direction,
dz � dx , the asymptotic electric field decays on the length
scale set by the smaller period dx , while the z dependence
of the surface charge σ1(z) determines the amplitude of the
asymptotic field (12). At positions z where the charge σ1(z)
is large, quantum reflection can be suppressed according to
the discussion of the previous section, while at positions z

where σ1(z) is close to zero, CP reflection can occur. In this
way it is possible to realize a reflective diffraction grating
in the direction z consisting of an alternating sequence of
absorptive “grating bars” and reflective regions in between.
Each absorptive grating bar is realized by short-period doping
in the x direction perpendicular to the grating direction z.

A. Theoretical description

We thus consider a two-dimensional periodic surface charge
density σ (x,z) with periods dx and dz, with a small ratio
dx/dz � 1 so that the asymptotic electric field (12) in the
normal direction is determined by dx . The asymptotic behavior
of the total interaction potential is then given by the specular
potential (17), where the charge modulation σ1(z) is now
allowed to be a periodic function of the grating direction z. The
asymptotic total potential (17) is independent of the in-plane
coordinate x, making kx a preserved quantity. Moreover, the
potential decays exponentially in the normal direction with
the length scale set by the smaller period dx . If the charge
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modulation σ1(z) varies smoothly with period dz between
zero and some finite value σm, one observes, alternatingly,
regions where quantum reflection can occur from the CP
potential [σ1(z) 
 0] and regions where quantum reflection is
suppressed due to the presence of the electrostatic interaction
[σ1(z) 
 σm].

To describe the probability of reflection off this diffraction
grating, we solve the stationary Schrödinger equation (1) for
the specular potential (17),

(
∂2
y + ∂2

z

)
ψ(y,z) − 2m

�2
V0(y,z)ψ(y,z) = 0, (23)

where the total scattering state is �(r) = eikxxψ(y,z). Repeat-
ing the steps described in Sec. II yields the coupled-channel
equations for the diffraction in the z direction in direct analogy
to Eqs. (6). They can be solved numerically with the algorithm
explained in the Appendix.

To demonstrate the working principle of the diffraction
grating it suffices to regard an initial wave packet approaching
the surface along the short-period in-plane direction x. Thus,
we have ϕ = 0 and kz = 0. This means that the asymptotically
outgoing diffraction orders have in-plane momentum k′

z =
nqz, where qz = 2π/az denotes the lattice wave number in the
z direction, while the normal component ky changes to kn =√

k2 − k2
x − (nqz)2 according to the conservation of energy.

Since kz = 0, the expected diffraction pattern is symmetric,
Rn = R−n.

For long grating periods dz � dx it is natural to assume
that 2π/dzk0 � 1, which is usually known as the sudden
approximation [29]. This means that all outgoing waves have
approximately the same wave number, kn 
 k0. Then the
Schrödinger equation (23) simplifies to

(
∂2
y + k2

0

)
ψ(y,z) − 2m

�2
V0(y,z)ψ(y,z) = 0. (24)

Here, the grating direction z enters the equation only in a
parametric fashion, and hence, the scattering state ψ(y,z)
also depends on z only parametrically. The corresponding
asymptotic boundary condition (2) can be expressed as

ψ(y,z)
y→∞−→ e−ik0y + r(z)eik0y. (25)

In general, the resulting reflection probability is a function of
the grating direction z, R(z) = |r(z)|2, and the probability of
diffraction into the nth order Rn = |rn|2 is obtained from

rn = 1

az

∫ az
2

− az
2

dzr(z)e−inqzz. (26)

It is easily verified that R = (1/az)
∫ az/2
−az/2 dzR(z) is the total

reflectivity.
In order to discuss particular examples we rewrite the

Schrödinger equation (24) by defining the dimensionless pe-
riodic function �(z) by σ1(z) = σm�(z), where σm = const is
the doping amplitude. Hence, the nth-order coupling potential
Vn(y) between diffraction orders in the grating direction z is
given by

Vn(y) = − α

2az

(
σme−κxy

ε0

)2 ∫ az
2

− az
2

dz�2(z)e−inqzz. (27)

B. Stripe geometry

As a first example we discuss the case where the grating
bars are of the form of rectangular doping stripes in grating
direction z,

�(z) =
∑
n∈Z

�

(
f dz

2
− |z − ndz|

)
. (28)

Here, f ∈ [0,1) is the opening fraction of the grating. Clearly,
in this case �(z) is not slowly varying in the direction of
the grating z so that the validity of the asymptotic interaction
potential (17) is questionable; however, we ignore this for the
moment.

We solve the Schrödinger equation (24) for all positions z

in the grating direction. If z is within the grating bar, �(z) =
1, the reflection coefficient vanishes approximately, r(z) = 0,
because quantum reflection is suppressed by the electrostatic
interaction. On the other hand, at positions z where �(z) =
0, the reflection coefficient is close to the value of pure CP
reflection of a flat surface, r(z) 
 rCP. In summary, we obtain

r(z) = rCP[1 − �(z)], (29)

and the probability for reflection into the nth diffraction order
Rn = |rn|2 reads

Rn = RCP(1 − f )2sinc2[n(1 − f )π ], (30)

with RCP = |rCP|2. This is exactly the diffraction intensity
expected from a periodic grating with opening fraction (1 − f )
[36].

In addition, we note that the total reflectivity R is given
by R = (1 − f )RCP; that is, it depends on the properties of
the impinging particle through RCP. In particular, denoting
by bCP the characteristic length of the CP potential, the CP
reflection probability RCP approaches unity for k0bCP → 0,
and it decreases exponentially with increasing k0bCP [2]. If the
CP length scale bCP is dominated by the highly retarded limit,
bCP = √

2mC4/� [2], the reflectivity decreases exponentially
with v0 sin θ

√
αm.

We compare the analytic result (30) with the exact,
numerically obtained reflectivities for helium atoms with the
initial velocity v0 = 300 m s−1, approaching the surface at
incidence angle θ = 1 mrad. The short doping period is
dx = 500 nm, while the long doping period is dz 
 40 μm;
the doping amplitude is set to σm/e0 = 1016 electrons/m2,
and the grating fraction is given by f = 1/2. The coupled-
channel equations (6) are solved numerically with the help
of Johnson’s log-derivative method (see the Appendix). The
coupling potentials Vn(y) which appear in the coupled-channel
equations (6) are given by

Vn(y) = −αf

2

(
σme−κxy

ε0

)2

sinc(nf π ). (31)

The probability RCP for flat CP reflection required in (30) is
calculated numerically with the help of the same method.

In Fig. 2(a) we see agreement between the numerically
obtained diffraction probabilities and the analytically approx-
imated values (30). In particular, while the specular peak is
slightly overestimated by (30), the reflection probabilities for
the first diffraction orders are well described. This example
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FIG. 2. (Color online) Probabilities of reflection into different diffraction orders for a doping profile �(z) given by (a) Eq. (28) and (b)
Eq. (32). In (a) the numerically obtained values (red diamonds) compare well with the analytical result (black squares) given by Eq. (30).

clearly shows that the flat diffraction grating can be realized
with the help of two-dimensional periodic surface doping.

More complicated doping structures �(z) can only be
treated by solving the coupled-channel equations (6) numer-
ically. As a second example, we investigate the diffraction
pattern resulting from a Gaussian doping profile, which might
be much more realistic. Specifically, the doping profile �(z)
is of the form

�(z) =
∑
k∈Z

exp

(
− (z − kdz)2

2ε2

)
, (32)

where we assume that the width ε � dz so that there is
negligible overlap between neighboring grating bars. The
coupling potentials Vn(y) are then of the form

Vn(y) = −αε
√

π

2dz

(
σme−κxy

ε0

)2

exp

[
−

(
nεπ

dz

)2
]

. (33)

The diffraction pattern is shown in Fig. 2(b) for helium atoms.
The parameters are as above, except the doping amplitude is
σm/e0 = 1015 electrons/m2; the width of the doping profile is
ε = dz/10. Again, we find that the observation of multiple
diffraction peaks is clearly possible. Compared with the
previous example, the reflection probability of the specular
peak is enhanced, while the probabilities of reflection into the
first diffraction orders are of a comparable magnitude.

VI. CONCLUSION

We demonstrated that quantum reflection of atomic and
molecular matter waves into multiple diffraction orders can be
achieved with flat, periodically charged surfaces. The electric
field generated by the surface dopants provides a force in
addition to the Casimir-Polder interaction that can locally
suppress quantum reflection. Diffraction into different orders
is then achievable with a two-dimensional doping pattern that
is periodic in both surface directions. The diffraction grating
consists of an alternating sequence of absorptive grating bars
and reflective “grating slits,” where each grating bar is realized
by periodic surface doping. The quantum reflection occurs
from the Casimir-Polder potential in the grating slits, i.e.,

in undoped regions between two neighboring grating bars.
The reflection probabilities are comparable in magnitude and
scaling to previous diffraction experiments off the Casimir-
Polder interaction of microstructured gratings. Mass selection
and the observation of multiple diffraction peaks should thus
be possible also with flat, doped surfaces.

In this work we have developed a quantum theory of
scattering of matter waves from periodically charged surfaces.
The investigation of quantum reflection from a surface which is
periodically doped only in one in-plane direction revealed that
the reflectivity can be efficiently suppressed. This is due to the
fact that the asymptotic shape of the electrostatic interaction
potential is fixed by the doping period dx . It was argued, by
estimating the reflection distance from the surface, that in this
case the asymptotic interaction potential suffices completely to
describe quantum reflection. Moreover, the asymptotic shape
of the interaction potential was found to be independent of
the specific doping structure, so that the coupling to different
diffraction orders is suppressed if the surface doping is periodic
in only a single in-plane direction. Based on this observation
we proposed realizing flat diffraction gratings for matter waves
with a two-dimensional grating-like structure. We determined
the diffraction intensities for helium atoms and demonstrated
that the observation of several diffraction peaks is, indeed,
possible. This makes the discussed setup an alternative to
microstructured matter-wave diffraction elements.

A natural question is whether the idea of modulating the
reflection by periodic doping can be extended to realize further
flat optical elements, such as flat concave mirrors or Fresnel
mirrors, by appropriately adjusting the surface doping. Such
optical elements for quantum reflection may well be easier
to produce than their microstructured counterparts since the
asymptotic form of the interaction potential is independent of
the precise doping structure within the absorptive bars.
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APPENDIX: NUMERICAL METHOD

To solve the coupled-channel equations (6) (where n labels
x- or z-diffraction orders) we employ Johnson’s log-derivative
method [37]. It is based on formulating Eq. (6) as a matrix
equation for the matrix �(y) = [�nm(y)], where �nm(y) de-
notes the nth component of the mth solution vector associated
with incident momentum km. Hence, the matrix elements of
interest are �n0(y) with incident momentum k0. Defining the
logarithmic derivative matrix Z(y) = � ′(y)�−1(y) gives a
matrix Riccati equation

Z′(y) + Z2(y) + U(y) = 0, (A1)

with the potential matrix U(y) defined as

Unm(y) = k2
nδnm − 2m

�2
Vn−m(y). (A2)

Since the badlands function B(y) vanishes for y → 0 (see
Sec. III), we know that in this limit Z(y) is well approximated
by the WKB solution with V (y) 
 VCP(y). Therefore, Z(y) is
given by, for y → 0,

Z(y)
y→0−→ diag

[
− i

�
pn(y) − p′

n(y)

2pn(y)

]
, (A3)

where pn(y) = √
�2k2

n − 2mVCP(y) is the local momentum
of the nth diffraction order. The WKB solution (A3) is then
propagated with the help of Johnson’s algorithm [37] towards
y → ∞, where, again, the badlands function vanishes. The
reflection matrix R is then identified by matching Z to

�(y) 
 exp(−iKy) + exp(iKy)R, (A4)

where K = diag(kn). In particular, we calculate

R = exp(−iKy)[(iK − Z)−1(iK + Z)] exp(−iKy), (A5)

which is independent of y for y → ∞. The reflection coeffi-
cients rn are the entries of Rn0.

The algorithm is as follows [37]: Let M be the even number
of equidistant grid points, ym = y0 + m�y, where, in our case,
y0 = 0 and �y = yend/M , and let Um = U(ym). The matrix is
initialized with

Y0 = Z(0) − �y

3
U0 (A6)

and is propagated in two steps,

Ym+1 = (I + �yYm)−1Ym − 4�y

3

(
I + �y2

6
Um+1

)−1

Um+1

(A7)

and

Ym+2 = (I + �yYm+1)−1Ym+1 − 2�y

3
Um+2. (A8)

Finally, in the last step Eq. (A8) is replaced by

Z(yend) ≡ YM = (I + �yYM−1)−1YM−1 − �y

3
UM. (A9)

The error decreases as O(h4) [37].
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