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Stability of a trapped dipolar quantum gas
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We calculate the stability diagram for a trapped normal Fermi or Bose gas with dipole-dipole interactions.
Our study characterizes the roles of trap geometry and temperature on the stability using Hartree-Fock theory.
We find that exchange appreciably reduces stability and that, for bosons, the double instability feature in oblate
trapping geometries predicted previously is still predicted by the Hartree-Fock theory. Our results are relevant to
current experiments with polar molecules and will be useful in developing strategies to obtain a polar molecule
Bose-Einstein condensate or degenerate Fermi gas.
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I. INTRODUCTION

There has been tremendous progress in producing ultracold
gases of atoms with strong magnetic dipoles [1–6] and
heteronuclear molecules with strong electric dipoles [7–9].
The defining feature of these systems is that the particles
interact with a dipole-dipole interaction (DDI) that is long
ranged and anisotropic. This anisotropy—side-by-side dipoles
repel, whereas those in a head-to-tail configuration attract—
significantly affects the properties of system. Notably, the
attractive component of the interaction can cause the system
to become mechanically unstable and collapse. Experiments
using Bose-Einstein condensates have investigated the inter-
play between collapse and the geometry of the harmonic
confinement potential [10] (also see Refs. [3,11]) and the
collapse dynamics of the system [12]. Theoretical under-
standing of condensate stability is well developed for the
nearly pure condensate [13,14] (providing a good description
of experimental results [15]) and the partially condensed
system [16].

In contrast, the stability of normal Bose and Fermi gases
are more poorly characterized. Such systems should be well
described by Hartree-Fock theory, however these calculations
are challenging in the presence of a confining potential, par-
ticularly near instability. The Hartree (i.e., direct interaction)
term is reasonably convenient to implement in an efficient and
accurate manner in calculations. This term (which is the only
interaction term present in the Gross-Pitaevskii description of
a dipolar condensate) tends to distort the position space density
to elongate along the direction that the dipoles are polarized.
The Fock term (i.e., exchange interaction) is more difficult to
implement, and for this reason is often neglected or treated
approximately. This term tends to distort the momentum
distribution in a manner that depends on the statistics of the
particles [17], an effect that has recently been observed in a
normal Fermi gas [18]. A detailed understanding of stability is
required by polar molecule experiments because of the large
dipole moments that can be obtained with these molecules.
This understanding has to include both thermal and trapping
effects, as to date these systems have not been cooled below the
relevant degeneracy temperatures (i.e., Fermi or condensation
temperature), and high aspect ratio trapping potentials have
been employed to suppress bimolecular chemical reaction
rates [19]. From a theoretical perspective, it is important to

establish whether transitions to novel many-body states will
occur before mechanical instability (e.g., see Refs. [20,21]).

The first treatments of stability for the Fermi gas in a
three-dimensional harmonic trap were based on Hartree [22]
and simplified variational Hartree-Fock [23,24] theories.
Those results were shown to significantly overestimate the
critical dipole strength at which the system became unstable
by Zhang and Yi, who performed the first full Hartree Fock
calculations [25,26]. Instability in these calculations was
identified by the numerical algorithm becoming unstable
(e.g., failure to converge and development of density spikes).
Numerical instability is sensitive to grid choice and must be
verified by careful convergence testing with refined grids. For
the full Hartree-Fock calculations of a cylindrically symmetric
trap, the system is represented by a four-dimensional distribu-
tion function, and the ability to refine the grid is constrained
by computational resources. Thus a major outstanding issue
is to produce reliable and accurate predictions for the Fermi
stability.

Stability for the normal Bose gas was considered in
Refs. [16,27] at the level of Hartree theory, and a variational
Hartree-Fock theory [28], which is inapplicable near the
critical temperature. The Hartree calculations revealed that
above, but close to the critical temperature, the Bose gas
can have a novel double instability feature when confined in
an oblate trap with the dipoles polarized along the tightly
confined direction. Full calculations for the stability boundary
of the normal Bose gas have not been performed at the level of
Hartree-Fock theory, and an important question is whether the
double instability feature survives when exchange interactions
are included.

In this paper we develop a general theory of stability for
trapped dipolar gases described by the Hartree-Fock approxi-
mation. We derive a result for the compressibility of the gas at
trap center that we use to identify the instability. We present
results for the stability boundaries of Bose and Fermi gases as
a function of temperature and trap geometry. Importantly, we
show that these boundaries can be accurately computed, and
show that previous Hartree-Fock results for a dipolar Fermi
gas in an oblate trap significantly overestimate the stability
region. Our Bose gas stability calculations demonstrate that
the double instability feature is robust to exchange interactions.
We develop useful analytic results to describe the behavior of
the stability boundaries.
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II. THEORY

A. Hartree-Fock formalism

We consider a gas of dipolar particles polarized into a single
internal state and confined in an arbitrary trapping potential
Vtr(x). These particles interact via a DDI of the form

Udd(r) = Cdd

4π

1 − 3 cos2 θ

|r|3 , (1)

where Cdd = μ0μ
2
m for magnetic dipoles of strength μm and

d2/ε0 for electric dipoles of strength d, and θ is the angle
between the dipole separation r and the polarization axis,
which we take to be the z direction. We do not consider the
case with Cdd < 0, which could be obtained by rapidly rotating
the dipoles [29]. For bosons, the particles also interact via a
contact interaction of strength g, where g = 4πa�

2/m, with
a the s-wave scattering length.

Working in the grand canonical ensemble, and making
a semiclassical approximation [26,30–32], the system is
described by the Wigner function

W (x,k) = 1

exp
{
β
[

�2k2

2m
+ Veff(x,k) − μ

]} − η
, (2)

where η = 1 for bosons and η = −1 for fermions, μ is
the chemical potential, and β = 1/kBT . This approximation
furnishes a good description when the temperature is high
compared to the trap level spacing of the confining potential.
For fermions this approximation can be applied at1 T = 0 as
long as the Fermi energy is sufficiently large compared to the
level spacing [25]. For the case of bosons at T < Tc, where Tc

is the critical temperature [33], a condensate emerges, which
is not described by the semiclassical Wigner function. In the
Hartree-Fock approximation

Veff(x,k) ≡ Vtr(x) + 2gn(x) + �D(x) + η�E(x,k), (3)

is the effective potential, dependent on both position and mo-
mentum, and recalling that g = 0 for spin-polarized fermions.
The position density is given by

n(x) =
∫

dk
(2π )3

W (x,k), (4)

and [17,32]

�D(x) =
∫

dx′ Udd(x − x′)n(x′), (5)

=
∫

dk
(2π )3

eik·xŨdd(k)ñ(k), (6)

�E(x,k) =
∫

dk′

(2π )3
Ũdd(k − k′)W (x,k′), (7)

are the direct and exchange interaction terms, respectively and
ñ(k) is the Fourier transform of n(x). In Eqs. (6) and (7), Ũdd is
the Fourier transform of the dipole-dipole interaction, given by

Ũdd(k) = Cdd(cos2 θk − 1/3), (8)

where θk is the angle between k and kz.

1For fermions at T = 0, W (x,k) = �[μ − �
2k2

2m
− Veff (x,k)] where

� is the Heaviside step function.

To find equilibrium solutions Eqs. (2)–(7) must be solved
self-consistently subject to the additional constraint of atom
number, i.e., N = ∫

dx n(x) fixed by adjusting the chemical
potential. In practice solving the Hartree-Fock equations is
time consuming and resource intensive because of the high
dimensionality of the Wigner function and difficulties with
accurately evaluating the exchange interactions. We do not
discuss aspects of the numerical solution here, but note that
techniques for accurately solving these equations have been
presented in Refs. [26,32,34].

B. Hartree formalism

If the exchange term is neglected the effective potential
loses its k dependence, i.e., Veff(x,k) → Veff(x), where

Veff(x) ≡ Vtr(x) + 2gn(x) + �D(x). (9)

In this case Eq. (4) can be evaluated [27,32]

n(x) = 1

λ3
dB

ζ
η

3/2

(
eβ[μ−Veff (x)]

)
, (10)

where

ζ η
α (z) =

∞∑
j=1

ηj−1 zj

jα
, (11)

is the polylogarithm function, and λdB = h/
√

2πmkBT . We
have thus arrived at a Hartree theory for the system,2 which
involves solving Eqs. (6), (9), and (10) self-consistently. This
theory is computationally much simpler because it does not
require the evaluation of the full Wigner function.

C. Stability condition

The mechanical stability of a system requires a finite
positive compressibility κ = n−2(∂n/∂μ)T . Thus we seek
the divergence of the compressibility, and hence density
fluctuations, to identify the critical point at which the system
becomes unstable. This approach has been applied to normal
dipolar gases at the Hartree level using the RPA treatment of
density fluctuations [27].

In this subsection we derive a result for the compressibility
within Hartree-Fock theory that we use to identify instability.
Neglecting the density prefactor, the scaled isothermal com-
pressibility is

∂n(x)

∂μ
=

∫
dk

(2π )3

∂W (x,k)

∂μ
. (12)

The Wigner function derivative is obtained from Eq. (2) as

∂W (x,k)

∂μ

= Wμ(x,k)

{
1 −

[
2g − Cdd

3
+ η

∂�E(x,k)

∂n(x)

]
∂n(x)

∂μ

}
, (13)

2More correctly Hartree for the DDI and Hartree-Fock for any
contact interaction.
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where

Wμ(x,k) ≡ βζ
η

−1

(
eβ[μ− �

2k2

2m
−Veff (x,k)]

)
, (14)

is the derivative of W with respect to μ at constant Veff . For
the term in braces in Eq. (13) we have used that �E(x,k) is
local in x and in evaluating �D(x), for stability considerations
we take k along the direction where Ũdd(k) is most attractive,3

i.e., θk = π/2, giving Ũdd(k) = −Cdd/3. Hence we obtain

∂n(x)

∂μ
= nμ(x)

1 + [2g − Cdd/3 − Cddξη(x)]nμ(x)
, (15)

where we have defined

nμ(x) ≡
∫

dk
(2π )3

Wμ(x,k), (16)

ξη(x) ≡ −η

∫
dk

(2π )3

Wμ(x,k)

nμ(x)

∂�E(x,k)

Cdd∂n(x)
, (17)

where ∂�E(x,k)/∂n(x) is derived in Appendix A. The bare
scaled compressibility nμ(x) corresponds to the long wave-
length limit of the bare density response function used in
the RPA treatment (i.e., k → 0 limit of χ0(x,k), e.g., see
Refs. [27,38]), while the exchange parameter ξη derived here
is a key result of our work, which is required to accurately
account for the compressibility of the Hartree-Fock solution.

For the gas to be stable, i.e., have a finite positive com-
pressibility, we require that [from (15) since nμ(x) is always
positive]

1 + [2g − Cdd/3 − Cddξη(x)]nμ(x), (18)

is positive definite at all positions x. The critical point, where
compressibility diverges, occurs when (18) equals zero at some
position,4 i.e.,

1 + [
2g − Cdd

/
3 − Cddξ

crit
η

]
ncrit

μ = 0. (19)

Neglecting the exchange parameter ξη, this result reduces
to the Hartree stability condition [27,38]

1 + [2g − Cdd/3]ncrit
μ = 0, (20)

where

nμ(x) = β

λ3
dB

ζ
η

1/2

(
eβ[μ−Veff (x)]

)
. (21)

III. STABILITY BASED ON DENSITY

A. Parameters and full numerical results

Here we consider the stability of a dipolar gas of spec-
ified peak density n. It is convenient to introduce the di-
mensionless temperature t ≡ kBT m/(�2n2/3) and interaction
c ≡ Cddn

1/3m/�
2 variables. These parameters completely

3Anisotropy of the DDI means that the compressibility is di-
rectionally dependent (cf. anisotropic speed of sound in a dipolar
condensate [35,36] and superfluidity [37]). We take the most attractive
direction for the purpose of analyzing stability.

4For cases where the confining potential has a minimum, the gas
has its peak density at this location, and this is where the system will
first become unstable if the DDI strength is increased.
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FIG. 1. (Color online) Critical exchange parameter ξ crit
η for a

Fermi gas (red), a purely dipolar Bose gas (blue), and a Bose gas
with εdd = 6 (green).

characterize the Fermi gas, while for the Bose gas we also
require the ratio of DDI to contact strength εdd = Cdd/3g.
That is, the dimensionless bare compressibility n̄μ(c,t,εdd) =
nμ�

2/n1/3m and exchange parameter ξη(c,t,εdd) are com-
pletely determined by these variables. In practice these
functions can be obtained from a self-consistent solution for
W (x,k) in a trap, from which nμ(x) and ξη(x) can be calculated,
and then mapped to the dimensionless variables using the local
density at each x.

From knowledge of functions n̄μ(c,t,εdd) and ξη(c,t,εdd)
we can determine the stability boundary as follows: at a given
value of t (and εdd for bosons) the value of c is increased
until (19) is satisfied. This identifies the critical interaction
parameter ccrit, exchange parameter (see Fig. 1), and bare
compressibility.

The instability boundaries for Bose and Fermi gases using
the Hartree-Fock theory are shown in Fig. 2. For reference
we have indicated the dimensionless noninteracting critical
temperature for condensation t0

c = 2π/ζ (3/2)2/3 ≈ 3.31 and
Fermi temperature t0

F = (9π4/2)1/3 ≈ 7.60, for Bose and
Fermi systems at density n, respectively. At t0

c the Bose gas
saturates and for the purely dipolar case (g = 0) is unstable
for any nonzero value of the DDI (in the semiclassical
approximation), whereas the Fermi gas, by virtue of its Fermi
sea, is stable against a finite positive interaction down to zero
temperature. The Fermi gas is always found to be stable against
a larger dipole interaction parameter than a purely Bose gas at
the same temperature. Our results for a Bose gas with a g > 0
(εdd = 6) show that the ccrit boundary increases more rapidly
with t , than for the purely dipolar case. For g � Cdd/3 (i.e.,
εdd � 1) the compressibility no longer diverges and the system
is stable.

These observations are similar to those made in Ref. [27]
using Hartree theory. For reference we have also included
the Hartree boundary in Fig. 2, and observe that this always
lies above the Hartree-Fock boundary. Thus we conclude that
the effect of exchange interactions is to lower the stability
boundary. Insight into this result can be found from the Hartree
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FIG. 2. (Color online) Stability boundaries based on the density
of a Fermi gas (red curves), a purely dipolar Bose gas (blue), and
a dipolar gas with εdd = 6 (green) using Hartree-Fock theory (solid)
and Hartree theory (dashed). Thin lines are from Eq. (25) for t > 2
(almost obscured by the full results) and Eq. (26) for t < 4.

Local Fock (HLF) theory, an approximate Hartree-Fock theory
introduced in Ref. [39]. That treatment reduces the exchange
interaction term to a local (i.e., x-dependent) form that is
negative, but increases in magnitude with increasing n(x).
Thus the effect of exchange is qualitatively similar to an
attractive contact interaction, acting to increase fluctuations
and reduce stability.

B. Analytic treatment

The Hartree-Fock stability condition can be written [from
Eq. (19)] as

ncrit
μ = 1

Cdd
(
1/3 + ξ crit

η − 2/3εdd
) . (22)

We develop analytic expressions for the local stability
boundaries based on the HLF theory [39] in which

n = (m∗/m)3/2λ−3
dB ζ

η

3/2(z), (23)

nμ = (m∗/m)3/2βλ−3
dB ζ

η

1/2(z), (24)

where z is the local effective fugacity, m∗ is the local effective
mass (approximately accounting for exchange effects), with
m/m∗ = (1 + 2δ/3)/(1 + δ)2/3, and the local momentum dis-
tortion, δ, is discussed in Appendix B. Using (22) we solve (24)
for the critical fugacity zcrit, which we use in Eq. (23) to
calculate the critical density to develop approximate analytic
expressions for the critical interaction strength ccrit.

1. High-T limit

In the limit T → ∞ the exchange parameters tend to the
limits indicated in Fig. 1. Using these constants we find

ccrit ≈ t − η(πm/m∗)3/2t−1/2

1/3 + ξ crit
η − 2/3εdd

, (25)

for t 	 1, where, for the values of g we consider m/m∗ ≈
1.02 to 1.03, as can be found from δ in Appendix B. This
expression is plotted in Fig. 2, and found to provide a good
approximation to the full Hartree-Fock results (thin solid lines
almost obscured by the full results in the plot). Note that taking
m/m∗ ≈ 1 does not noticeably change the results in Fig. 2
since it only applies to the t−1/2 term. By setting the exchange
effects to zero (ξ crit

η = 0 and m/m∗ = 1) Eq. (25) provides
a good description of the full Hartree results (also shown
in Fig. 2).

2. Low-T limit for fermions

For fermions with t 
 1, using the T → 0 limits for the
exchange stability factor from Fig. 1 and m/m∗ → 1.07 from
Appendix B

ccrit ≈ (4π4/3)1/3m/m∗ + 1
9 (π/6)2/3t2m∗/m

1/3 + ξ crit
−1

. (26)

This expression is plotted in Fig. 2, and found to provide a
good approximation to the full numerical result.

IV. STABILITY OF TRAPPED GASES

In this section we specialize to particles confined within a
cylindrically symmetric harmonic trap

Vtr(x) = m

2

[
ω2

ρ(x2 + y2) + ω2
zz

2
]
, (27)

with aspect ratio λ = ωz/ωρ . In contrast to the previous section
we choose to focus on a system with fixed mean particle
number N . The trap has a minimum at x = 0 where the peak
density of the gas occurs. Because the density is highest here,
this location also determines the onset of instability according
to when the density satisfies the critical condition presented in
the previous section. Additional complexity for the fixed N gas
arises because the precise density at trap center is determined
by the interplay of the interactions and the trapping potential
throughout the gas. For this case it is convenient to adopt
the interaction parameter Dt = CddN

1/6/(4π�ωa3
ho), where

ω is the geometric mean trap frequency and aho = √
�/mω

(also used in Refs. [26,34]).
In Fig. 3(a) we show the results for the stability of a

Fermi gas as a function of temperature at constant N for
prolate (λ = 0.1), spherical (λ = 1), and oblate (λ = 10) trap
geometries. These results demonstrate that stability increases
with increasing aspect ratio. A simple interpretation is that
for the oblate geometry the particles are mostly in a repulsive
side-by-side configuration with respect to the DDI. This tends
to expand the gas, reducing the central density and hence
delaying the onset of instability. In contrast for the prolate
trap the DDI is attractive and increases the central density.
We have also plotted the Hartree-Fock stability predictions for
these trap aspect ratios reported in Ref. [34]. These results
were determined by increasing the interaction parameter until
the procedure for calculating the self-consistent equilibrium
state became numerically unstable, e.g., forming density
spikes. We find that these predictions significantly overesti-
mate stability in the oblate trap compared to our results. In
our own investigations into the use of numerical instability to
locate the stability point, we find that the results are very
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FIG. 3. (Color online) Stability boundaries of a (a) Fermi
and (b) purely dipolar Bose gas with Hartree-Fock theory (solid)
and Hartree theory (dashed) for λ = 0.1 (blue), λ = 1 (green), and
λ = 10 (red). Corresponding results for a (a) Bose and (b) Fermi
gas are shown as faint curves. We use T 0

F = �ω(6N )1/3/kB and
T 0

c = �ω[N/ζ (3)]1/3/kB . Also shown are Hartree-Fock results from
Ref. [26] (×). The inset to (b) enlarges the double instability region
near T 0

c marked by the box.

sensitive to the numerical grids used for the calculations,
particularly in oblate trap geometries.

In Fig. 3(b) we show the results for the stability of a Bose
gas as a function of temperature for the same set of trap aspect
ratios. For these results we have restricted our attention to
the purely dipolar interactions (i.e., g = 0). For the oblate
case the stability boundary bends back on itself giving rise to
a double instability region at temperatures T < T 0

c . However,
the size of this region is smaller than the Hartree prediction.

V. CONCLUSIONS

In this paper we have used Hartree-Fock theory to predict
the stability of harmonically trapped dipolar Bose and Fermi
gases. We have developed an expression for the scaled

compressibility of the Hartree-Fock solution, and use the
divergence of this to identify the stability boundary. This
allows us to predict stability boundaries from the Hartree-Fock
solutions with high accuracy. Our results show that previous at-
tempts using numerical instability significantly overestimated
the stability boundaries in oblate trapping geometries. We
have also applied our theory to provide Hartree-Fock stability
predictions for the normal dipolar Bose gas. Importantly, we
show that in an oblate trap the double instability features
predicted in Ref. [27] is maintained, although reduced in size.
A number of analytic results for the stability boundaries are
obtained and validated against the full numerical results.

Our results indicate that exchange interactions significantly
shift the stability boundaries. At first sight this observation
seems at odds with the rather small size of momentum
distortion (arising from exchange) predicted for harmonically
trapped Bose and Fermi gases, even near instability (see
Refs. [17,18]). However, it is worth emphasizing that the
momentum distortion arises from the entire system, including
the many low-density regions away from trap center where
exchange effects are small. In contrast stability is determined
by the peak density part of the system, where locally exchange
effects are strongest (Fig. 2(a) of [39]).

An interesting direction for future work would be to
consider beyond semiclassical effects on stability, which
would require diagonalizing for the low-energy excitations
(still treating the high-energy excitations semiclassically see
Refs. [16,40]). Also, the extension of the theory to the
planar dipolar system, where one direction is tightly confined
(e.g., see Refs. [41,42]).

ACKNOWLEDGMENTS

We gratefully acknowledge the contribution of NZ eScience
Infrastructure (NeSI) high-performance computing facilities
and support by the Marsden Fund of the Royal Society of New
Zealand (Contract No. UOO1220).

APPENDIX A: DERIVATION OF ∂�E/∂n

Here we outline the basic steps used to derive our result for
∂�E(x,k)/∂n(x). First we note that

∂W (x,k)

∂n(x)
≡ ∂W (x,k)

∂μ

/
∂n(x)

∂μ

= [1 − Cddξη(x)nμ(x)]
Wμ(x,k)

nμ(x)

− ηWμ(x,k)
∂�E(x,k)

∂n(x)
. (A1)

Using this result we obtain

∂�E(x,k)

∂n(x)
≡ ∂�E(x,k)

∂μ

/
∂n(x)

∂μ

=
∫

dk′

(2π )3
Ũdd(k − k′)

∂W (x,k′)
∂n(x)

, (A2)

= [1 − Cddξη(x)nμ(x)]
∫

dk′

(2π )3
Ũdd(k − k′)

Wμ(x,k′)
nμ(x)

− η

∫
dk′

(2π )3
Ũdd(k − k′)Wμ(x,k′)

∂�E(x,k′)
∂n(x)

. (A3)
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To solve the integral equation for ∂�E(x,k)/∂n(x), we start
with ∂�E(x,k)/∂n(x) = 0 and iterate until self-consistent.

APPENDIX B: LOCAL MOMENTUM DISTORTION
AT INSTABILITY

The local momentum distortion is defined as [39]

δ(x) ≡ γkx
(x)

γkz
(x)

− 1, γν(x) ≡
∫

dk
(2π )3

ν2W (x,k), (B1)

where γkx
(x) and γkz

(x) are the local momentum moments. The
local momentum distortion at instability is shown in Fig. 4,
where the numerical values for the T → ∞ limits for the
Fermi and Bose systems are given, also the T → 0 limit for
fermions.

In the HLF theory at instability the local momentum
distortion satisfies

δ = −η
ct (1 + 2δ/3)(1 + δ)J ′(δ)

1/3 + ξ crit
η − 2/3εdd

, (B2)

where J is defined in Ref. [39], ct → 3/2 as T → ∞ and
ct → 5/2 for fermions as T → 0 with results shown in Fig. 4.
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FIG. 4. (Color online) Absolute local momentum distortion at
instability using Hartree-Fock theory of a Fermi gas (δ < 0, red),
a Bose gas (δ > 0), purely dipolar (blue), and with εdd = 6 (green).
Also shown are the HLF limits as T → ∞ (thin lines) and T → 0
(×) showing qualitative agreement with the Hartree-Fock results.
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and L. Vernac, Phys. Rev. Lett. 109, 155302 (2012).

[37] C. Ticknor, R. M. Wilson, and J. L. Bohn, Phys. Rev. Lett. 106,
065301 (2011).

[38] E. J. Mueller and G. Baym, Phys. Rev. A 62, 053605 (2000).
[39] D. Baillie and P. B. Blakie, Phys. Rev. A 86, 041603(R) (2012).
[40] C. Ticknor, Phys. Rev. A 85, 033629 (2012).
[41] Y. Yamaguchi, T. Sogo, T. Ito, and T. Miyakawa, Phys. Rev. A

82, 013643 (2010).
[42] N. Zinner and G. Bruun, Eur. Phys. J. D 65, 133 (2011).

013613-7

http://dx.doi.org/10.1103/PhysRevLett.98.080407
http://dx.doi.org/10.1103/PhysRevLett.98.080407
http://dx.doi.org/10.1103/PhysRevLett.98.080407
http://dx.doi.org/10.1103/PhysRevLett.98.080407
http://dx.doi.org/10.1103/PhysRevA.83.053628
http://dx.doi.org/10.1103/PhysRevA.83.053628
http://dx.doi.org/10.1103/PhysRevA.83.053628
http://dx.doi.org/10.1103/PhysRevA.83.053628
http://dx.doi.org/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1103/PhysRevLett.109.155302
http://dx.doi.org/10.1103/PhysRevLett.109.155302
http://dx.doi.org/10.1103/PhysRevLett.109.155302
http://dx.doi.org/10.1103/PhysRevLett.109.155302
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/10.1103/PhysRevA.62.053605
http://dx.doi.org/10.1103/PhysRevA.62.053605
http://dx.doi.org/10.1103/PhysRevA.62.053605
http://dx.doi.org/10.1103/PhysRevA.62.053605
http://dx.doi.org/10.1103/PhysRevA.86.041603
http://dx.doi.org/10.1103/PhysRevA.86.041603
http://dx.doi.org/10.1103/PhysRevA.86.041603
http://dx.doi.org/10.1103/PhysRevA.86.041603
http://dx.doi.org/10.1103/PhysRevA.85.033629
http://dx.doi.org/10.1103/PhysRevA.85.033629
http://dx.doi.org/10.1103/PhysRevA.85.033629
http://dx.doi.org/10.1103/PhysRevA.85.033629
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1140/epjd/e2011-20094-3
http://dx.doi.org/10.1140/epjd/e2011-20094-3
http://dx.doi.org/10.1140/epjd/e2011-20094-3
http://dx.doi.org/10.1140/epjd/e2011-20094-3



