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Phase structure of spin-imbalanced unitary Fermi gases
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We investigate the phase structure of spin-imbalanced unitary Fermi gases beyond mean-field theory by means
of the functional renormalization group. In this approach, quantum and thermal fluctuations are resolved in a
systematic manner. The discretization of the effective potential on a grid allows us to accurately account for
both first- and second-order phase transitions that are present on the mean-field level. We compute the full phase
diagram in the plane of temperature and spin imbalance and discuss the existence of other conjectured phases
such as the Sarma phase and a precondensation region. In addition, we explain on a qualitative level how we
expect that in situ density images are affected by our findings and which experimental signatures may potentially
be used to probe the phase structure.
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I. INTRODUCTION

The ever-growing advances in the experimental probe and
control of ultracold quantum gases continuously enrich our
understanding of strongly correlated quantum systems [1]. In
particular, the preparation of locally equilibrated many-body
systems allows for the exploration of their thermodynamic
properties such as the phase structure or the equation of state.
Furthermore, the experimental determination of these key
observables facilitates the solid benchmarking of theoretical
methods for interacting quantum systems.

By populating distinct hyperfine states of a specific class of
fermionic atoms (e.g., 6Li or 40K), it is possible to emulate two-
or higher-component fermion systems [2–6] (see Refs. [7,8]
for reviews). This enables the realization of ensembles which
are reminiscent of a variety of many-body systems at very
different energy scales such as solid-state materials or neutron
stars and gives us an unprecedented opportunity to study the
effects of, e.g., spin imbalance and temperature in strongly
coupled systems [9–13]. The BCS-BEC crossover of two-
component fermions close to an atomic Feshbach resonance
smoothly interpolates between a superfluid of Cooper pairs and
a condensate of composite bosons. In three dimensions, the
strongly coupled unitary Fermi gas (UFG), where the s-wave
scattering length diverges, is realized at resonance. Here, the
scale for all physical observables is set solely by the Fermi
momentum. The high precision in this universal regime on
the experimental side opens up the possibility for detailed
benchmarks of the large variety of available theoretical
methods, such as (quantum) Monte Carlo calculations [14], ε

expansions [15], T -matrix approaches [16], Dyson-Schwinger
equations [17], 1/N expansions [18], two-particle irreducible
methods [19], renormalization-group flow equations [20–23],
ladder resummation techniques [24], and exact as well as
universal relations [25].

In conventional superconductors, a sufficiently large im-
balance between spin-up and spin-down electrons destroys
superconductivity due to the mismatch of the associated Fermi
energies. Such a polarization can be realized in a solid-state
material by the application of an external magnetic Zeeman
field. Since for ultracold atoms the effective spin degree of

freedom originates from their individual hyperfine states, this
spin imbalance can be tuned at will by means of a difference
in population. In a microscopic model, this manifests itself
in a difference in chemical potentials. Hereafter, μ1 and μ2

denote the chemical potentials of atoms in states |1〉 and |2〉,
respectively. We assume the former to be the majority species,
i.e., μ1 � μ2, without loss of generality.

While the ground state of the spin-balanced UFG is
commonly believed to be a homogeneous superfluid, the
phase structure in the imbalanced case is less clear. In fact,
given μ1 > 0, the density of minority atoms vanishes for
μ2 � −0.6μ1 [26–33]. This suggests that superfluidity has to
break down at a finite critical value of the spin imbalance. For
a BCS superfluid, this already happens for an exponentially
small mismatch of Fermi surfaces [34,35]. However, since
the UFG has less pronounced Fermi surfaces, the energy gain
from pairing might still compensate the mismatch and hence
be energetically favorable. We shall discuss below that within
our approximation superfluidity at zero temperature persists
down to μ2 � 0.09μ1, where it vanishes at a first-order phase
transition.

Besides the breakdown of superfluidity, the existence of ex-
otic phases has been conjectured for the spin-imbalanced UFG.
In the mean-field approximation [36–38], the homogeneous
Sarma phase [39], a homogeneous superfluid with gapless
fermionic excitations, is unstable at zero temperature. This
scenario has been found to persist upon inclusion of bosonic
fluctuations [40]. Furthermore, inhomogeneous phases such as
the Fulde-Ferrell or Larkin-Ovchinnikov states [41,42] may
be energetically favored over the homogeneous superfluid
ground state. Hence, such inhomogeneities have to be taken
into account for a complete study of the phase structure. This,
however, is beyond the scope of the present work, and we
restrict our discussion to homogeneous phases only.

In this work we study the phase structure of the spin-
imbalanced three-dimensional UFG beyond the mean-field
approximation by means of the functional renormalization
group (FRG). This allows us to include the effect of bosonic
fluctuations on the many-body state. Besides a large quantita-
tive improvement, such an analysis of fluctuation effects is also
mandatory for a solid understanding of the qualitative features
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of the phase diagram. In fact, it is known that the mean-field
approximation fails to predict the correct order of phase
transitions in some cases. In addition, a commonly encountered
situation is the suppression of long-range order due to
fluctuations of the Goldstone modes which can be captured
by our RG approach. Finally, we note that our approach does
not suffer from the infamous sign problem which complicates
ab initio Monte Carlo calculations of imbalanced systems. To
surmount this problem, new techniques have recently been
developed [43,44] and successfully applied to imbalanced
Fermi gases [45]. From this point of view, our present study
may also provide useful guidance for future studies of the
phase diagram of spin-imbalanced Fermi gases with Monte
Carlo simulations.

This paper is organized as follows: In Sec. II we provide
details about our studied system and its phase structure on the
mean-field level. Next, we discuss the truncation and numerical
implementation of the FRG setup used to include fluctuations
beyond the mean-field level. Results on the phase structure
of the imbalanced UFG including fluctuations are presented
in Sec. IV. We discuss experimental signatures reflecting the
phase diagram in Sec. V. Our concluding remarks are given in
Sec. VI.

II. MODEL

We consider two-component ultracold fermions close to a
broad s-wave Feshbach resonance (FR). The scattering physics
can be described by the two-channel model [17,46], in which
the closed channel is incorporated by means of a bosonic field
φ. For a broad FR this is equivalent to a purely fermionic one-
channel model: both result in the same universal low-energy
physics. In the purely fermionic picture, the bosons emerge
as a pairing (or order-parameter) field in the particle-particle
channel, φ ∼ ψ1ψ2. The assumption of a broad FR is valid,
e.g., for 6Li, for which the resonance is located at B0 = 832.2 G
with a width �B � 200 G [47].

The microscopic action of the two-channel model reads

S[ψσ ,φ] =
∫

X

[ ∑
σ=1,2

ψ∗
σ (∂τ − ∇2 − μσ )ψσ

+φ∗(∂τ − ∇2/2 + ν
)φ − g(φ∗ψ1ψ2 + H.c.)

]
.

(1)

It serves as the starting point for our computations. The atoms
in hyperfine state |σ 〉 are represented by a Grassmann-valued
field ψσ (τ,�x) with imaginary time τ [48,49]. We employ
units such that � = kB = 2M = 1, where M is the mass of
the atoms. The imaginary-time domain is compactified to a
torus of circumference T −1 in the standard way, and we write∫
X

= ∫
dτ

∫
d3x.

We allow for an imbalance in the chemical potentials of the
individual species μ1 and μ2. Moreover, we assume the atoms
in state |1〉 to be the majority species such that

δμ = h = μ1 − μ2

2
� 0 , μ = μ1 + μ2

2
. (2)

The spin imbalance δμ is frequently also referred to as the
Zeeman field h. We can thus write μ1,2 = μ ± δμ, where μ is
the average chemical potential in the system.

The model in Eq. (1) is valid on momentum scales much
smaller than the (large) momentum cutoff 
. In practice
one can choose 
 to be sufficiently large compared to the
many-body scales determined by density or temperature but
well below the inverse van der Waals length. The details of
the interatomic interaction are then irrelevant. We further
assume the interactions to be of zero range. The detuning
from resonance, ν
 ∝ (B − B0), has to be fine-tuned such
that a−1 = 0. With this renormalization, thermodynamic ob-
servables become independent of 
 and a−1. The Feshbach
coupling g2 ∝ �B is related to the width of the resonance,
which we assume to be large in the following.

We employ a functional integral representation of the
quantum effective action �[ψσ ,φ] in terms of coherent states.
The effective action is the generating functional of one-
particle irreducible correlation functions. When evaluated at
its minimal configuration, it is related to the partition function
according to �0 = − ln Z(μ,δμ,T ). For a comprehensive
introduction to functional methods in the context of ultracold
atoms see, e.g., Refs. [23,50].

In the present approach, the fermion fields only appear
quadratically and can be integrated out, leaving us with a
description in terms of only the pairing field φ. In the BCS-
BEC crossover, the pairing field has the intuitive interpretation
of Cooper pairs and composite diatomic molecules in the BCS
and Bose-Einstein condensate (BEC) limits, respectively. For
the UFG, however, such a simple picture has not been found
yet. Loosely speaking, the many-body state in this limit is
instead a strongly correlated quantum soup with both bosonic
and fermionic features. We assume the boson field expectation
value to be homogeneous in the following, φ0 	= φ0(�x). Below
we discuss why this should be a reasonable assumption for
the spin-imbalanced UFG. A nonvanishing field expectation
value φ0(μ,δμ,T ) = 〈φ〉 	= 0 then signals superfluidity of the
system.

The field expectation value is determined by the minimum
of the full effective potential,

U (ρ = φ∗φ) = �−1 �[φ] ,

where � = V/T , with V being the three-dimensional vol-
ume and φ = const. Due to global U(1) invariance of the
microscopic action, the effective potential depends only on
the U(1)-invariant ρ = φ∗φ. Without loss of generality we
assume φ0 to be real valued. For fixed μ and T , the amplitude
of φ0 is a (not necessarily strictly) monotonously decreasing
function of δμ. At the critical imbalance δμc(μ, T ), the global
minimum of U (ρ) approaches ρ0 = 0 either discontinuously
or continuously, resulting in a first- or second-order phase
transition, respectively.

In the mean-field approximation the effective action is
computed from a saddle-point approximation of the functional
integral, here under the assumption of a homogeneous field
expectation value. For convenience, we parametrize it in terms
of the gap parameter, �2 = g2ρ, rather than ρ itself. For the
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FIG. 1. (Color online) Mean-field phase diagram of the spin-
imbalanced UFG. We show the superfluid-to-normal transition and
the Sarma crossover. The location of the phase boundaries can be
obtained from the mean-field expression for the grand-canonical
potential, Eq. (3), or from the FRG flow by omitting bosonic
fluctuations. In the latter approach it is possible to additionally resolve
the precondensation line (black dotted line), below which a minimum
at �0,k appears during the RG flow but vanishes for k → 0, thereby
leaving the system in the normal phase. We discuss the phenomenon
of precondensation in Sec. IV in detail.

UFG we find

U (�2,μ,δμ,T ) =
∫

d3q

(2π )3

[(
q2 − μ − Eq − �2

2q2

)

− T ln(1 + e−(Eq−δμ)/T )

− T ln(1 + e−(Eq+δμ)/T )

]
, (3)

with Eq =
√

(q2 − μ)2 + �2 (see, e.g., [36,38,51]). The
mean-field phase boundary is found from the global minimum
�2

0 of the effective potential U (�2). Note that the mean-field
approximation can be recovered from the FRG equation when
all bosonic fluctuations are neglected (see our discussion
below). This allows us to study the impact of fluctuations
in a unified approach. We show the mean-field phase diagram
in Fig. 1.

The mean-field analysis predicts a first-order phase tran-
sition at zero temperature at δμc/μ = 0.807 (red solid
line). This is often referred to as Chandrasekhar-Clogston
limit [34,35]. At this point, the field expectation value
jumps from �0/μ = 1.162 to zero. The second-order phase
transition (blue dashed line) of the balanced case occurs at
Tc/μ = 0.665. As a reaction to nonzero spin imbalance, the
transition changes from second to first order at the tricritical
point (δμCP/μ, TCP/μ) = (0.704, 0.373), in agreement with
previous findings (see Refs. [52,53] for reviews). Also shown
in Fig. 1 are the Sarma crossover (green dot-dashed line) and
the so-called precondensation line (black dotted line). These
features are discussed in detail in Sec. IV when we compare the
mean-field phase structure to the results from our RG analysis
including fluctuations.

III. FUNCTIONAL RENORMALIZATION GROUP

We now include the feedback of bosonic fluctuations
onto the effective potential. This is particularly important

for the regime with spontaneously broken symmetry, where
a massless Goldstone mode appears. The FRG approach
allows us to systematically include the effect of the latter
and is free of infrared divergences (see, e.g., Refs. [54] for
a general introduction to the method and Refs. [21–23,55] for
an overview on the application in the cold-atom context).

The FRG is based on an exact flow equation for the effective
average action �k[ψσ ,φ]. The latter interpolates smoothly
between the microscopic action at large momentum scales
and the full quantum effective action at low momentum
scales, �k=
 = S and �k=0 = �, respectively. Herein k is a
flowing momentum scale, and S is given by the microscopic
model in Eq. (1) for the present analysis. The flow equation
reads

∂k�k[ψσ ,φ] = 1

2
STr

(
1

�
(2)
k [ψσ ,φ] + Rk

∂kRk

)
, (4)

where �
(2)
k is the second functional derivative with respect to

the field content of the theory and Rk is an infrared regula-
tor [56]. Accordingly, (�(2)

k + Rk)−1 is the full propagator of
the regularized theory. STr denotes a supertrace (see, e.g.,
the detailed discussion in [57]). Equation (4) is an exact
equation that is very convenient for practical purposes due
to its one-loop structure. However, the presence of the full
propagator on the right-hand side makes the use of truncations
necessary in most cases of interest.

The effective average action is a functional of the mean
fields of fermions and bosons, ψσ and φ, respectively. To
approximately resolve its functional form we apply the ansatz

�k[ψσ ,φ] =
∫

X

[ψ∗
σPψσ,k(∂τ , − i∇)ψσ

+φ∗Pφ,k(∂τ , − i∇)φ + Uk(ρ = φ∗φ)

− gk(φ∗ψ1ψ2 + H.c.)]. (5)

In this way we parametrize the system in terms of the inverse
fermion and boson propagators Pψσ and Pφ , the effective
potential U , and the Feshbach coupling g. The scheme used
in this work builds on a scale-dependent derivative expansion
of the boson propagator while keeping the fermion propagator
in its microscopic form. Accordingly, we have

Pψσ,k(Q) = Pψσ,k(iq0,�q) = iq0 + q2 − μσ , (6)

Pφ,k(Q) = Pφ,k(iq0,�q) = Aφ,k

(
iq0 + q2

2

)
. (7)

Systematic extensions of this truncation are possible and
yield quantitative improvement (see our discussion below and,
e.g., [57]).

The key ingredient of our analysis is keeping the full
functional form of the effective average potential Uk(ρ). In
this way we are able to properly resolve first-order phase
transitions and also to quantitatively improve results beyond
a Taylor expansion of Uk(ρ) in powers of the field. The flow
equation for the effective potential is obtained from Eq. (4) for
a constant background field φ. It is given by

U̇k(ρ) = U̇
(F )
k (ρ) + U̇

(B)
k (ρ), (8)
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where the superscripts F and B indicate the contributions from
fermionic and bosonic loops, respectively. The dot denotes a
derivative with respect to RG time t = ln(k/
). We discuss
Eq. (8) in detail in Appendix A. Here we focus on the most
important aspect for the present analysis, which is the interplay
between U̇ (F ) and U̇ (B).

The explicit form of the β function on the right-hand side
of Eq. (8) depends on the choice of truncation for �k and the
regulators Rφ and Rψσ for bosons and fermions, respectively.
To exemplify the key features we now discuss its form obtained
for the truncation (5) with the regulators from Eqs. (13)
and (15). The general equation is displayed in Appendix A.
For clarity, we restrict the formulas to the zero-temperature
case for the moment. We then find

U̇
(F )
k (ρ) = − k2

3π2
√

1 + g2ρ/k4
θ (

√
k4 + g2ρ − δμ)

× [(μ + k2)3/2θ (μ + k2) − (μ − k2)3/2θ (μ − k2)]

(9)

for the fermionic part, where θ (x) is the Heaviside step
function. There is no direct feedback of Uk(ρ) onto its flow
from the expression in Eq. (9). In fact, the integration of
only this contribution yields the mean-field effective potential.
However, also including bosonic fluctuations has an indirect
impact on U̇ (F ) owing to the running Feshbach coupling gk .

Due to the presence of the bosonic contribution in Eq. (8),
we are faced with a coupled flow equation where fermionic
and bosonic terms compete. The corresponding flow at zero
temperature reads

U̇
(B)
k (ρ) =

√
2 k5

3π2

(
1 − ηφ

5

)

× Aφk2 + U ′
k(ρ) + ρU ′′

k (ρ)√
[Aφk2 + U ′

k(ρ)][Aφk2 + U ′
k(ρ) + 2ρU ′′

k (ρ)]
,

(10)

where primes denote derivatives with respect to ρ. The
appearance of U ′

k(ρ) and U ′′
k (ρ) on the right-hand side of the

flow equation necessitates a good resolution of Uk(ρ) during
the flow. For this purpose we discretize the function Uk(ρ) on
a grid of typically � 100 points.

The initial condition for the flow of Uk(ρ) is given by
U
(ρ) = ν
ρ. During the flow, the effective average potential
acquires a more complex form, which is accounted for by the
discretization on the grid. We keep track of the scale-dependent
minimum ρ0,k and determine the phase structure from the order
parameter �2

0 = �2
0,k=0 at k = 0.

The boson dynamics are encoded in the inverse boson
propagator Pφ [see Eq. (7)]. Here we apply a scale-dependent
derivative expansion, where Pφ(Q) is expanded in powers of
iq0 and q2 for each scale k separately. Due to the presence of
the regulator in the flow equation, this is expected to give a
good approximation of the one-loop integral in Eq. (4). We will
now argue why the simple form (7) is expected to be sufficient
to describe the phase structure. In general, the leading-order

terms in the expansion of Pφ read

Pφ,k(Q) = Aφ,k

(
iZφ,kq0 + 1

2
q2 + Vφ,kq

2
0 + . . .

)
. (11)

At the microscopic scale, Aφ,
 = Zφ,
 = 1 and Vφ,
 = 0. By
taking two functional derivatives of Eq. (4) one can derive
the flow equation for Pφ and thus for the running couplings
parametrizing it (see, e.g., [57]).

From studies of bosonic systems it is known that Zφ,k

vanishes like k3−d as k → 0 in d < 3 spatial dimensions and
vanishes logarithmically for d = 3 [58–61]. Hence, the linear
frequency term is replaced by a quadratic frequency depen-
dence with Vφ,k > 0 in the infrared Goldstone regime [59].
In order to describe the boson dynamics consistently, both
Zφ,k and Vφ,k need to be taken into account. Without Vφ,k

the propagator at a low scale k would become frequency
independent. However, in three dimensions the running of
Zφ,k with k is only logarithmic, and there is no strict need
to incorporate Vφ,k . For instance, at the scale k where �0,k

saturates, Zφ,k typically still has a substantial size � 0.5,
and Vφ,kq

2
0 represents a subleading term. Moreover, it has

been demonstrated previously that the inclusion of Zφ,k leads
to corrections of only a few percent in, e.g., the critical
temperature (see [57]). Furthermore, these modifications are
counterbalanced to some extent by the running of Vφ,k . Hence
we choose the following consistent approximation:

Zφ,k = 1, Vφ,k = 0 (12)

for all k. The flow of Aφ,k , on the other hand, is incorporated
by means of the anomalous dimension ηφ,k = −∂t ln Aφ,k . The
corresponding flow equation is given in Appendix A.

The regulator functions Rφ and Rψσ which enter the flow
equation (4) have to meet several conditions [54] but can
otherwise be chosen freely. If there was no truncation of the
effective average action, the fact that the regulator functions
vanish for k → 0 would entail that the result is independent
of the regulator. In practice, the truncation introduces a
spurious dependence on the choice of regulator, which may be
employed for an error estimate by comparing results obtained
for different regulators (see, e.g., [62]).

In order to regularize the fermion propagator we apply two
regulator choices separately. They read

R
Q
ψσ ≡ R

Q
ψ = [k2sgn(ξq) − ξq]θ (k2 − |ξq |) (13)

and

R
Q
ψσ = [k2sgn(ξqσ ) − ξqσ ]θ (k2 − |ξqσ |), (14)

with ξq = q2 − μ and ξqσ = q2 − μσ , respectively. Both
forms regularize only spatial momenta q2 and constitute a
generalization of the fermion regulators used for the balanced
case in previous works. Remarkably, the choice (13), where
both species are regularized around the average chemical po-
tential μ, is sufficient to render all flows finite and furthermore
allows us to derive analytic flow equations for both Uk(ρ) and
Aφ,k . In contrast, for the second choice, Eq. (14), the loop
integral has to be performed numerically. We find that the
resulting phase diagrams for both choices coincide within the
numerical error (see Appendix B).
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For the bosons we use

R̄
Q
φ = AφR

Q
φ = Aφ(k2 − q2/2)θ (k2 − q2/2) , (15)

as in previous balanced case studies. The full set of flow
equations for the running couplings is given in Appendix A.

We restrict this investigation to the stability of homo-
geneous superfluid order. A competing effect from inho-
mogeneous order is expected to show precursors in the
renormalization-group flow. One of those is the vanishing of
Aφ,k at some nonzero momentum scale k > 0 [63]. At this
point, the truncation employed here would become insuffi-
cient. Since we do not detect signs of such a behavior anywhere
near the superfluid phase, it seems reasonable to restrict
ourselves to a homogeneous order parameter �0 	= �0(�x). A
more detailed discussion of the appearance of inhomogeneous
order in the presence of spin and mass imbalances from an
FRG perspective will be given in [64].

IV. RESULTS

We now discuss the phase structure of the system as
obtained from the FRG setup described in the previous section.
In particular, we show results computed with the fermionic
regulator (13) from above. As we demonstrate in Appendix B
below, these results agree very well with the ones obtained
using the regulators (14) but are numerically more stable due
to the analytic expressions for the β functions.

A. Phase diagram

The phase diagram of the spin-imbalanced UFG beyond
mean-field theory is shown in Fig. 2. The overall phase
structure is qualitatively similar to the mean-field result
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FIG. 2. (Color online) Phase diagram of the spin-imbalanced
UFG beyond the mean-field approximation. The phase boundaries are
obtained from the FRG evolution of the effective potential including
the feedback of bosonic fluctuations. The critical temperature of the
balanced system is found to be Tc/μ = 0.40. For small δμ/μ we find
a second-order phase transition with a reduced critical temperature.
For low temperatures, spin imbalance results in a breakdown of
superfluidity by means of a first-order phase transition. We extract
δμc/μ = 0.83 for the critical imbalance at zero temperature. The
second-order line terminates in a tricritical point (CP). We indicate the
Sarma crossover by the green dash-dotted line. The region between
the precondensation line (black dotted line) and the phase boundary
gives an estimate for the pseudogap region, as explained in the main
text.

(see Fig. 1). Noticeably, however, the critical temperature
is reduced drastically when fluctuations are included. In the
balanced limit we find a second-order phase transition (blue
dashed line) with Tc/μ = 0.40. This is in good agreement
with recent measurements [13] as well as quantum Monte
Carlo (QMC) calculations [14] and is consistent with previous
FRG calculations based on a Taylor expansion of the effective
potential [57].

As the spin imbalance is increased, the transition changes
from second to first order in a tricritical point located at
(δμCP/μ,TCP/μ) = (0.76,0.20). Below this point we find a
first-order transition line, which appears to extend down to
T ≈ 0 (red solid line). From an extrapolation of the transition
line computed for T � 0.01, we deduce a first-order phase
transition for δμc/μ = 0.83 at vanishing temperature. This is
in reasonable agreement with the recent experimental finding
of a first-order transition at δμc/μ = 0.89 [65].

Notably, the critical imbalance at zero temperature lies
above the mean-field value (δμMFA

c /μ = 0.807). This is an
interesting observation since, usually, bosonic fluctuations
tend to destroy ordering. In the present case, however, the
nontrivial feedback of those fluctuations into the flow also
modifies the fermionic “mean-field” contributions from U̇

(F )
k .

In this way, for large enough δμ and small enough T , the
nontrivial minimum of Uk is stabilized rather than washed out.
This illustrates how the competition of fermionic and bosonic
contributions results in nontrivial effects on the phase structure
of the system. Unfortunately, the nonlinear structure of the
FRG flow equations inhibits a straightforward interpretation
of these observations in terms of customary many-body
phenomenology. A more detailed investigation in this respect
is left for future work.

Note that it is numerically impossible to calculate observ-
ables at exactly k = 0. However, the flow usually freezes out
at a finite scale below the relevant many-body scales present
in the theory. In order to reliably extract the phase structure
we may hence stop the integration of the flow equation at
any sufficiently small k such that �0,k � �0,k=0 is frozen
out. Especially in the first-order region at low temperatures
T/μ � 0.15, the complexity of the flow equation makes
it harder to reach the deep infrared. Due to accumulating
numerical errors, the flow needs to be stopped at relatively
high k < 1. This entails that a sufficient convergence of �0,k

inside the superfluid phase might not be achieved yet. However,
we will argue in Sec. IV B that the position of the first-order
phase transition is not affected and can still be determined
accurately. A conservative estimate of the domain where the
IR scale is modified is indicated by the gray band in Fig. 2.

Concerning the regulator dependence, we find the result for
the phase boundary to differ by less than 5% for the two choices
of fermion regulators in Eqs. (13) and (14). We compare
both phase diagrams in Fig. 5 and provide a more detailed
discussion in Appendix B. The insensitivity of the critical
line to the regularization scheme indicates the stability of our
predictions within the given truncation scheme for the effective
average action. We would also like to note here that, at least for
small spin imbalances, one may employ a Taylor expansion
for the effective potential U (ρ) as recently done in Ref. [66].
At least for an expansion up to order ρ2 we observe that the
results for the critical temperature from a Taylor expansion
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of the effective potential are larger than those from our study
with a discretized effective potential, which naturally includes
higher-order couplings. Moreover, the difference between the
critical temperatures increases with increasing spin imbalance;
see Fig. 6 in Appendix B for a more detailed discussion.

In addition to the superfluid-to-normal transition we also
show the crossover to the so-called Sarma phase [39], which
we determine from the criterion 0 < �0 � δμ. If the latter
condition is fulfilled, the lower branch of the dispersion of
fermionic quasiparticles,

Ep =
√

(p2 − μ)2 + �2
0 − δμ, (16)

extends below zero. Strictly speaking, the Sarma phase is
well defined only for T = 0, where one finds a momentum
interval [pmin,pmax] which is occupied macroscopically. In
turn, this also results in gapless fermionic excitations in the
homogeneous superfluid. For an extended discussion of the
Sarma phase in the BCS-BEC crossover we refer to [40,53].

Already on the mean-field level the Sarma phase is found
to be absent at low T . The Sarma crossover meets the first-
order transition line just below the critical point. For lower
temperatures, the Sarma criterion cannot be fulfilled anymore
since the gap jumps to zero from �0 > δμc. This situation
persists beyond the mean-field level, as can be seen in Fig. 2.
In fact, the Sarma phase shrinks at low imbalance, occurring
only in the close vicinity of the superfluid-to-normal transition.
Interestingly, the opposite effect has been observed on the
BCS side of the crossover in two spatial dimensions: there
it is found that the inclusion of bosonic fluctuations beyond
mean-field theory changes the transition from first to second
order, entailing the presence of a Sarma phase even at T = 0
(see Ref. [67]).

B. Scale evolution and precondensation

In Fig. 3 we show the scale evolution of the minimum of
the effective average potential as a function of the RG scale
k for fixed T/μ = 0.17 and two different spin imbalances,
δμSF = 0.78μ and δμNF = 0.79μ. For large k the running of
couplings is attracted to an ultraviolet fixed point. This scaling
regime is left when k becomes of the order of the many-
body scales (see Appendix A). For low enough temperatures
local symmetry breaking occurs at k2 � μ, associated with
a nonzero minimum of the effective potential, �0,k > 0.
Competing bosonic and fermionic fluctuations then determine
whether the nonvanishing gap remains (red solid line) or
vanishes (blue dashed line) in the infrared, i.e., for k → 0.

The two values of δμ shown in Fig. 3 are chosen such that
they lie on the opposite sides of the first-order phase boundary.
In both cases a nonvanishing gap, �0,k > 0, is generated during
the flow at tsb. Only for δμ = δμSF does it persist for t →
−∞, leading to superfluidity (SF) and symmetry breaking
in the IR. For δμ = δμNF, instead, �0,k jumps back to zero
at the finite scale tsr = −7.69, below which the symmetry
remains restored such that one finds a normal fluid (NF). In
both cases, the effective potential at intermediate k exhibits
two local minima (inset C), but for δμNF the nontrivial one is
raised above Uk(ρ = 0) and disappears (inset D) during the
flow.

FIG. 3. (Color online) Scale evolution of the minimum �0,k of
the effective average potential close to a first-order phase transition at
δμc. The evolution proceeds from the ultraviolet (k = 
, t = 0) to the
infrared (k → 0, t → −∞). The insets show the shape of the effective
potential Uk(�) at several points along the scale evolution. The solid
red lines correspond to a point in the broken phase (δμSF = 0.78μ),
where the global minimum of the effective potential is nonzero in the
infrared. The dashed blue line represents a point with δμNF = 0.79μ,
where the global minimum in the infrared is located at �0,k=0 = 0.
For all plots, T/μ = 0.17.

The appearance of a nonzero �0,k in a limited range ksr <

k < ksb is called precondensation; see, e.g., [23]. It can be
interpreted as the formation of pairs and local phase coherence,
although long-range order is destroyed due to fluctuations.
The associated coherence length can be estimated by k−1

sr . An
analogous phenomenon exists in relativistic theories [68]. In
Fig. 2 the precondensation region is enclosed by the black
dotted line and the phase boundary.

The phenomenon of precondensation is closely related to
pseudogap physics, which refers to a situation where the
gas is in the normal phase, although low-lying fermionic
excitations are gapped. We refer to [69,70] for a discussion
of the latter in the context of superconductivity and [71–
74] for pseudogap physics in ultracold Fermi gases. In our
case, superfluidity is absent due to �0 = 0, but excitations
with momentum ksr < k < ksb, which is typically on the
order of kF, are energetically disfavored. This leads to a
strong suppression in the density of states and thus of the
contribution of these modes to the many-body properties of
the system. For instance, a common experimental signature
for both pseudogap and precondensation phenomena would
be a suppression of entropy above the critical temperature
compared to the high-temperature limit. Radio-frequency
spectroscopy allows us to deduce the pseudogap regime from
the spectral function of cold atomic gases. With this method
a pseudogap regime above the critical temperature has indeed
been observed for the UFG [71,72,74].

Moreover, we compare our finding for the precondensation
temperature in the balanced case, Tpc/μ = 0.51, to analogous
values obtained with other methods. A suppression of the
entropy above the critical temperature, and thus a deviation of
the specific heat from the normal gas expectation, is reported in
Ref. [14] below T0/μ = 0.55(5). From the above consideration
on the entropy we conclude that this constitutes an estimate
for Tpc, which is in good agreement with our result. Our
value Tpc/Tc = 1.25 is also in line with the results in [75,76]
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from a T -matrix approach, where different definitions of the
pseudogap have been distinguished.

For vanishing or small spin imbalance, �0,k approaches
zero continuously in the precondensation region (see, e.g., Fig.
28 in Ref. [23]). For configurations with large δμ/μ and low
T/μ as in Fig. 3, a jump of �0,k can be observed instead. This
behavior is possible only in the vicinity of a first-order phase
transition. It is generated by a second nontrivial local minimum
of the effective potential which is raised above Uk(ρ = 0) dur-
ing the flow (see insets C and D). An interesting consequence
is that this type of precondensation is not necessarily induced
by bosonic fluctuations alone. In fact, even in the mean-field
approximation, where the bosonic fluctuations are absent, we
find a pseudogap regime for large δμ/μ (see Fig. 1).

Furthermore, the peculiar k dependence of the gap at the
first-order transition region can be exploited numerically. A
smooth decrease to zero of �0,k , which occurs close to a
second-order phase transition, may take arbitrarily long in
RG time. Therefore, an IR scale of about t ≈ −11 should
be considered as an upper limit for the reliable extraction of
results for finite �0,k=0. However, for T/μ � 0.15 (shaded
area in Fig. 2), t ≈ −9 is often the utmost that can be reached
due to the increasing stiffness of the flow equations. Thus,
the estimate for the value of �0,k=0 > 0 in the superfluid
phase is less reliable for such low temperatures. In contrast, the
position of the first-order phase transition is determined by the
occurrence of a sudden breakdown of the condensate. Indeed,
we find that this jump to �0,k = 0 always occurs at some
t > −8 for T/μ � 0.15. Since these scales are not affected
by the IR problems mentioned above, we conclude that our
results for the position of the phase transition can be trusted
even in the shaded area.

As a final remark, we mention that the scale evolution
of Uk(ρ) as shown in Fig. 3 allows us to check the quality
and consistency of truncation, regularization, and initial
conditions. For example, it can be seen in inset D that the
FRG-evolved effective potential is convex for k → 0 within
our truncation (see [77]). This exact property is reproduced
by FRG flows [54,78]. It can, however, be spoiled by an
insufficient truncation. The mean-field approximation, for
instance, is included in the FRG equation as a truncation that
neglects all bosonic contributions (see our discussion above).
However, the mean-field effective potential is nonconvex in
the infrared.

V. EXPERIMENTAL SIGNATURES

Our findings on the phase structure of the spin-imbalanced
UFG have immediate consequences for the qualitative shape
of in situ density profiles n(�r) obtained for this system in
experiment. Here we briefly recapitulate the phenomenology
of second- and first-order phase transitions in an external
potential and also discuss the impact of the precondensation
region on the interpretation of experimental results. To this
end, we define the density and population imbalance by

n(μ,δμ,T ) = n1 + n2 =
(

∂P

∂μ

)
δμ,T

, (17)

δn(μ,δμ,T ) = n1 − n2 =
(

∂P

∂δμ

)
μ,T

, (18)

respectively. Here P is the pressure, and nσ is the density of
atoms in hyperfine state |σ 〉.

For an ultracold quantum gas confined to an external
trapping potential V (�r), the thermodynamic equilibrium state
depends on the particular shape of the trap. In many cases,
however, we can apply the local-density approximation (LDA),
which assigns a local chemical potential μ(�r) = μ0 − V (�r)
to each point in the trap. Here μ0 is the central chemical
potential. In this way, thermodynamic observables computed
for the homogeneous system are translated into those of the
trapped system. Note that T and δμ are assumed to be constant
throughout the trap within the LDA. The LDA can be applied
if the length scale �0 associated with the trap is much larger
than all other scales of the many-body system. For instance,
in a harmonic trap, V (�r) = Mω2

0r
2/2, the former scale is

given by the oscillator length �0 = √
�/Mω0. The many-body

length scales of the UFG are given by k−1
F ∝ (2Mμ/�

2)−1/2,
(2Mδμ/�

2)−1/2, and λT = (MkBT/2π�
2)−1/2, respectively.

Often, the LDA is a good approximation for sufficiently high
densities. However, it breaks down in the outer regions of
the trap, where the gas is extremely dilute, and close to a
second-order phase transition, where the correlation length
diverges (and thus becomes larger than �0).

If the central chemical potential μ0 is sufficiently larger
than T , the inner region of the trapped system is superfluid.
Above a certain critical radius rc, the superfluid core vanishes
and is replaced by a quantum gas in the normal phase. The
critical radius is related to the critical chemical potential
μc(T ,δμ) according to μc = μ0 − V (�rc). At a first-order phase
transition, the density at μc exhibits a jump. Accordingly, the
superfluid inner region and the normal region are separated by
a jump in the density at rc. We sketch this in Fig. 4. In contrast,
the transition is continuous for a second-order phase transition.
In this way, the order of the phase transition and our prediction
for the temperature of the tricritical point, TCP/μ0 = 0.20,
may potentially be verified from in situ images at different
temperatures.

In experiments with cold atoms, the imbalance between spin
partners is introduced by different atom numbers N1 � N2

FIG. 4. (Color online) Schematic in situ density profile nσ (r) for
a population-imbalanced ensemble with N1 > N2 at low temperature.
The blue (dark gray) and red (light gray) points correspond to atoms in
hyperfine states |1〉 and |2〉, respectively. For T < TCP the superfluid
transition is of first order, such that the superfluid inner region is
separated from the polarized normal gas by a jump in density at the
critical radius rc.
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for atoms in states |1〉 and |2〉, respectively. The influence
of a nonzero polarization p = (N1 − N2)/(N1 + N2) is very
distinct for trapped systems in comparison to homogeneous
ones [79–81]. For a trapped system, the particle numbers Nσ

are obtained from an integral over the whole cloud, Nσ =∫
�r nσ (�r). As a consequence, phase separation takes place in

real space by means of a superfluid core and a surrounding
normal region. Both are separated by the above-mentioned
jump in the density.

With state-resolved detection of individual densities, n1(�r)
and n2(�r), it is possible to measure the local in situ polarization
p(�r) of the trapped gas. According to our finding that there is
no Sarma phase at zero temperature, a nonzero polarization
inside the superfluid core of the cloud can be detected only
at T > 0 [40]. As we find the Sarma phase appears only at
very high temperatures and close to the phase boundary, a
substantial local polarization p(�r) of the superfluid should be
detectable only for r � rc.

To mimic the effect of a trap potential in our RG study,
one may consider the length scale �0 associated with a trap as
an infrared cutoff, kf ∼ �−1

0 . In fact, in a harmonic oscillator
potential, the energy of the one-particle states is bounded from
below by the oscillator frequency ω0. Due to the presence
of this infrared scale, long-range fluctuations are cut off. In
a first attempt to simulate trap effects, one may therefore
identify the infrared cutoff kf with �−1

0 and stop the RG flow at
this scale. However, despite being intuitively reasonable, the
relation kf = �−1

0 has to be taken with some care and can, at
best, give qualitative insights [82–84].

In our analysis we find a substantial precondensation region
in the phase diagram (Fig. 2), where a minimum ρ0,k > 0
appears during the flow but is eventually washed out such that
ρ0 = ρ0,k=0 = 0. The restoration of symmetry is due to long-
wavelength fluctuations on length scales k−1 → ∞. However,
if long wavelength fluctuations are cut off by a trap with scale
�0, a superfluid order parameter ρ0 ≈ ρ0,k=kf can be observed
experimentally even in the precondensation phase.

As discussed in Sec. IV B, the first-order transition is barely
influenced by the final scale kf , as long as the latter is below
the relevant many-body scales. Therefore it may be possible
to detect the first-order transition and its location even in a
trap. On the other hand, for smaller spin imbalance, where the
transition is of second order, this effect can be substantial. As a
consequence, we expect that the second-order phase boundary
of the homogeneous system is likely to be overestimated by
applying the LDA to a trapped gas.

VI. CONCLUSION AND OUTLOOK

In this work we have discussed the phase structure of the
spin-imbalanced unitary Fermi gas as obtained from an FRG
study. This method presents a tool to study the impact of
fluctuations in a systematic manner. In particular, there is
a truncation that is equivalent to the standard saddle-point
(mean-field) approximation. From this starting point, we have
additionally included order-parameter fluctuations that are
missing in mean-field theory.

Technically, the discretization of the effective potential on a
grid allows us to resolve multiple local minima, and therefore it
opens up the possibility to reliably determine first-order phase

transitions. Moreover, the full functional form of the effective
potential is included in such an approach.

Our results show that the qualitative phase structure persists
beyond mean-field theory: There is a second-order phase
transition in the balanced case that changes to first order in a
tricritical point at finite imbalance. At vanishing temperature,
superfluidity breaks down in a first-order transition. Quan-
titatively, however, the influence of bosonic fluctuations is
more drastic: in the balanced case, the critical temperature
is lowered from TMF/μ = 0.665 to TFRG/μ = 0.40, in good
agreement with other theoretical predictions [57], QMC
calculations [14], and experimental results [13]. At T = 0
we find that fluctuations enhance the critical imbalance in
comparison to the mean-field value. This, again, is in line with
recent experiments [65].

Furthermore, the FRG provides access to the full-scale
evolution of observables, from microscopic to macroscopic
scales. This puts us in the position to discuss the physics
of precondensation, which is related to the formation of a
condensate at intermediate scales k. Interestingly, already
in the mean-field approximation we find a precondensation
temperature that is significantly higher than the critical tem-
perature at high imbalance. This suggests that the formation
of a pseudogap is not solely triggered by order-parameter
fluctuations. Beyond the mean-field level, the precondensation
temperature is substantially above the critical one throughout
the whole phase diagram.

Building on the framework presented here, several in-
teresting directions can be pursued in the future: For ex-
ample, it has been conjectured that the UFG might fea-
ture a more exotic phase, such as Sarma [37,39,40,53]
and/or inhomogeneous (Fulde–Ferrell-Larkin–Ovchinnikov)
phases [41,42,53,64,85–87]. Furthermore, the study of mass
imbalance is possible in a similar theoretical fashion [64] and
has gained experimental interest recently.

While the UFG is an interesting system that features
strong correlations, our approach is not confined to this
setting. The inclusion of finite inverse scattering lengths is
straightforward, and the imbalanced BCS-BEC crossover is
accessible [40]. Moreover, the extension of our approach to the
two-dimensional BCS-BEC crossover is straightforward. In
the latter case, the importance of a grid solution for the effective
potential is even more pronounced due to the vanishing
canonical dimension of the boson field in two dimensions.
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APPENDIX A: FLOW EQUATIONS

In this Appendix we derive the flow equations for the
effective potential and the boson anomalous dimensions in the
spin-imbalanced UFG. The expressions are given in general
form (for frequency- and momentum-independent vertices)
and then specialized to our particular choice of truncation and
regularization scheme. In order to simplify the comparison
to previous works on the FRG approach to the BCS-BEC
crossover we remark here that we derive the flow equations
for only the unrenormalized couplings. The latter are often
displayed with an overbar, which we omit here.

The regularized fermion propagator with respect to the field
(ψ1,ψ2,ψ

∗
1 ,ψ∗

2 ) in our truncation reads

Gψ (Q) = 1

detQF12det−Q
F12

(
A B

C D

)
, (A1)

with

A = gφ

(
0 detQF12

−det−Q
F12 0

)
, (A2)

B =
(

L
−Q
ψ2 detQF12 0

0 L
−Q
ψ1 det−Q

F12

)
, (A3)

C =
(

−L
Q
ψ2det−Q

F12 0
0 −L

Q
ψ1detQF12

)
, (A4)

D = gφ

(
0 −det−Q

F12

detQF12 0

)
. (A5)

We denote L
Q
ψσ = Pψ (Q) + R

Q
ψσ and detQF12 = L

−Q
ψ1 L

Q
ψ2 +

g2ρ. For the fermion regulator we insert either Eq. (13) or (14).
The regulator matrix reads

Rψ (Q) =

⎛
⎜⎜⎜⎝

0 0 −R
−Q
ψ1 0

0 0 0 −R
−Q
ψ2

R
Q
ψ1 0 0 0
0 R

Q
ψ2 0 0

⎞
⎟⎟⎟⎠ . (A6)

The resulting contribution to the flow of the effective potential
is given by

U̇ (F )(ρ) = −1

2
Tr(GψṘψ ) = −

∫
Q

L
−Q
ψ1 Ṙ

Q
ψ2 + L

Q
ψ2Ṙ

−Q
ψ1

detQF12

.

(A7)

The regularized boson propagator in the conjugate field
basis (φ,φ∗) is given by

Gφ(Q) = 1

detB(Q)

(
−ρU ′′(ρ) L

−Q
φ

L
Q
φ −ρU ′′(ρ)

)
, (A8)

with L
Q
φ = Pφ(Q) + R

Q
φ + U ′(ρ) + ρU ′′(ρ) and detQB =

L
−Q
φ L

Q
φ − [ρU ′′(ρ)]2. The corresponding regulator matrix

reads

R̄φ(Q) =
(

0 R̄
−Q
φ

R̄
Q
φ 0

)
. (A9)

We arrive at

U̇ (B)(ρ) = 1

2
Tr(GφṘφ) = 1

2

∫
Q

L
Q
φ

˙̄R−Q
φ + L

−Q
φ

˙̄RQ
φ

detQB
(A10)

for the bosonic contribution to the flow of the effective
potential.

We project the flow of the gradient coefficient Aφ from the
φ2φ2 component of the inverse boson propagator; that is, we
have

ηφ = − 1

Aφ

∂2

∂p2
Ġ−1

φ,22(P )

∣∣∣∣
P=0,ρ=ρ0,k

, (A11)

where (δ2�[φ]/δφ2δφ2)(Q,Q′) = G−1
φ,22(Q)δ(Q − Q′) (see,

e.g., [57]). In the following we assume regulators which do
not depend on the frequency, RQ = R(q2), but the derivation
can also be performed for Q-dependent regulators. We define

Rx(q2) = ∂R

∂q2
(q2), Rxx(q2) = ∂Rx

∂q2
(q2) . (A12)

We then find ηφ = η
(F )
φ + η

(B)
φ , with

η
(F )
φ = 2Aφg2

∫
Q

(
Ṙψ1

(
1 + Rx

ψ2 + 2q2Rxx
ψ2/d

)
(
detQ12

)2

+ Ṙψ2
(
1 + Rx

ψ1 + 2q2Rxx
ψ1/d

)
(
detQ12

)2 − 4q2/d

detQF12

× [
Ṙψ1L

−Q
ψ1

(
1 + Rx

ψ2

)2 + Ṙψ2L
Q
ψ2

(
1 + Rx

ψ1

)2])
(A13)

and

η
(B)
φ = 4Aφρ(U ′′)2

∫
Q

˙̄Rφ(q2)

(
1 + 2Rx

φ + 4q2Rxx
φ /d

det2B(Q)

− 2q2
(
1 + 2Rx

φ

)2
LS

φ(Q)/(Aφd)

det3B(Q)

)
. (A14)

In the last line we have introduced the symmetric component
LS

φ(Q) = (LQ
φ + L

−Q
φ )/2 and employed d = 3. Note that in

order to evaluate the integrals it is convenient to smear out the
step functions θ (x) in the regulators, e.g., θε(x) = (e−x/ε +
1)−1 with small ε > 0.

For large k � 
 the running of couplings is attracted to an
approximate ultraviolet fixed point where ηφ = 1 [21,57]. To
simplify the early stage of the flow we start at the fixed-point
solution. This corresponds to the initial values

g2

 = 6π2
, ν
 = 
2 (A15)

within our truncation and regularization scheme. The value for
ν
 is fine-tuned such that the resonance condition, a−1 = 0,
is fulfilled. The couplings start to deviate from the ultraviolet
fixed point once the flow parameter reaches the many-body
scales, i.e., k2 � μ,T ,δμ. We choose μ/
2 = 10−6, which is
sufficient to suppress the contributions of many-body effects to
the early stages of the flow. The scale k2 = μ then corresponds
to an RG time t = ln(

√
μ/
) = −6.9.
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For the optimized cutoffs employed in this work, an overall
Ṙψσ ( ˙̄Rφ) implies that 1 + Rx

ψσ ≡ 0 (1 + 2Rx
φ ≡ 0) in the

integral. Accordingly, we find

η
(B)
φ = 16Aφρ(U ′′)2

d

∫
Q

˙̄Rφ(q2)
q2Rxx

φ

det2B(Q)
(A16)

for the bosonic contribution to the anomalous dimension. For
the fermionic contribution the simplification occurs only with
the choice Rψ1 = Rψ2 = Rψ , with Rψ being from Eq. (13). In
this case we arrive at

η
(F )
φ = 8Aφg2

d

∫
Q

Ṙψ

q2Rxx
ψ

(detQ12)2
. (A17)

The flow equations for the effective potential and the boson
anomalous dimension can be expressed in closed analytic form
for the choice of cutoffs Rψ1 = Rψ2 = Rψ from Eq. (13) and
Rφ from Eq. (15). We then find

U̇ (F )(ρ) = − 8vdk
d+2

d
√

1 + w3
�u(μ̃)[1 − NF (

√
1 + w3 − δμ̃)

−NF (
√

1 + w3 + δμ̃)] (A18)

and

U̇ (B)(ρ) = 4vd2d/2kd+2

d

(
1 − ηφ

d + 2

)
2 + w1 + w2√

(1 + w1)(1 + w2)

×
{

1

2
+ NB[

√
(1 + w1)(1 + w2)]

}
, (A19)

with δμ̃ = δμ/k2 and

w1 = U ′
k(ρ)

Aφk2
, w2 = U ′

k(ρ) + 2ρU ′′
k (ρ)

Aφk2
, w3 = g2ρ

k4
.

(A20)

We define vd = [2d+1πd/2�(d/2)]−1, and

NF (z) = 1

ek2z/T + 1
, NB(z) = 1

ek2z/T − 1
, (A21)

with N ′
F/B(z) = ∂zNF/B(z), and

�u(x) = θ (x + 1)(x + 1)d/2 − θ (x − 1)(x − 1)d/2, (A22)

�η(x) = θ (x + 1)(x + 1)d/2 + θ (x − 1)(x − 1)d/2 . (A23)

The contributions to the anomalous dimension read

η
(F )
φ = 4vdAφg2kd−4

d(1 + w3)3/2
�η(μ̃){[1 − NF (

√
1 + w3 − δμ̃)

−NF (
√

1 + w3 + δμ̃)]

+
√

1 + w3[N ′
F (

√
1 + w3 − δμ̃)

+N ′
F (

√
1 + w3 + δμ̃)]} (A24)

and

η
(B)
φ = 8vd2d/2Aφρ0(U ′′)2kd−4

d[(1 + w1)(1 + w2)]3/2

×
{

1

2
+ NB[

√
(1 + w1)(1 + w2)]
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FIG. 5. (Color online) Regularization scheme dependence of the
phase boundary. We display the phase diagram obtained by applying
the fermion regulator Rψσ from Eqs. (13) (blue long-dashed line,
“Reg. 1”) and (14) (red short-dashed line, “Reg. 2”).

−
√

(1 + w1)(1 + w2)N ′
B[

√
(1 + w1)(1 + w2)]

}
.

(A25)

In the expressions for ηφ we evaluate the β functions for ρ =
ρ0,k . In the balanced limit, where δμ̃ = 0, we recover the flow
equations given in Ref. [21].

APPENDIX B: STABILITY OF THE PHASE STRUCTURE

Here we discuss the stability of the FRG phase structure
with respect to the choice of regulator as well as a different
expansion of the flow equation.

As we have discussed in the main text, without truncations
to the flow equations, all permissible regulators should
reproduce the same physics in the IR. In practice, however, one
has to resort to truncations as well as stop the flow at a finite,
if low, infrared scale. This entails that the strict regulator inde-
pendence is lost. However, for a stable truncation, differences
should be small. This is what we demonstrate in Fig. 5: The
blue solid and long-dashed lines show the superfluid-to-normal
transition in the second- and first-order regions, obtained with
the regulator equation (13). The location of the tricritical point
is also indicated. The red short-dashed and dot-dashed lines
show the same for the regulator equation (14). As can be seen,
the two lines lie close to each other throughout the whole phase
diagram. Deviations in the critical temperature are below 5%,
and we attribute them mostly to the presence of numerical
integrals with Eq. (14). Hence we can safely claim that our
results are stable with respect to a change in the regulator
function.

Furthermore, we have compared our results to those from
a commonly used truncation scheme for FRG equations: the
Taylor expansion of the effective potential in powers of ρ − ρ0.
In Fig. 6 we again show our full phase diagram calculated on a
grid, with an added line (brown dotted line) denoting the result
of our Taylor expansion to order ρ2 . While the transition
indeed lies close to the grid result at vanishing imbalance
(within ∼3%), the deviation increases to ∼15% − 30% at high
δμ. This indicates that, even at low imbalance, the impact
of higher-order terms in the effective potential is sizable.
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FIG. 6. (Color online) Using a Taylor expansion of the effective
average action Uk(ρ) to order ρ2 ∼ φ4 (brown dotted line) in
the flow equation, the location of the second-order line deviates
quantitatively from the grid solution (blue dashed line) as we increase
δμ/μ.

At high imbalance, the Taylor expansion eventually breaks
down owing to the presence of an additional minimum at the

first-order transition. In this case, the coefficient of ρ2 can
turn negative. Since this is the highest coupling in the system,
this entails that the potential becomes unbounded from below
and hence unstable. Taking into account higher orders in the
Taylor expansion can extend its domain of applicability. To
accurately resolve all minima of the potential, however, very
high orders are needed. Alternatively, one can expand about
multiple minima separately or use an expansion around a fixed
value of ρ, rather than an expansion around the minimum [88].
Interpreting the breakdown of the Taylor expansion as a signal
of proximity to the critical point, one would be led to a too low
δμCP as well as a too high TCP, at least in this low expansion
order. An expansion of the effective average potential to order
φ4 has recently been applied to a spin-imbalanced Fermi
gas with weak attractive interactions [66]. Accordingly, the
superfluid transition was found to be of second order. While the
inclusion of higher-order terms might diminish the discrepancy
in the second-order line to some extent [88], the resolution of
the first-order transition is more challenging within a Taylor
expansion.
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