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High-temperature limit of the resonant Fermi gas
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We use the virial expansion to investigate the behavior of the two-component, attractive Fermi gas in the
high-temperature limit, where the system smoothly evolves from weakly attractive fermions to weakly repulsive
bosonic dimers as the short-range attraction is increased. We present a formalism for computing the virial
coefficients that employs a diagrammatic approach to the grand potential and allows one to easily include an
effective range R∗ in the interaction. In the limit where the thermal wavelength λ � R∗, the calculation of the
virial coefficients is perturbative even at unitarity and the system resembles a weakly interacting Bose-Fermi
mixture for all scattering lengths a. By interpolating from the perturbative limits λ/|a| � 1 and R∗/λ � 1, we
estimate the value of the fourth virial coefficient at unitarity for R∗ = 0 and we find that it is close to the value
obtained in recent experiments. We also derive the equations of state for the pressure, density, and entropy, as
well as the spectral function at high temperatures.
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I. INTRODUCTION

It was long ago argued that the separate phenomena of
BCS pairing of fermions, observed in conventional super-
conductors, and Bose-Einstein condensation (BEC) can be
smoothly connected [1–3]. Such a BCS-BEC crossover may
be realized by increasing the strength of attractive interactions
between spin-↑ and ↓ fermions, so that the system evolves
from weakly bound ↑-↓ pairs in the BCS limit to strongly
bound bosonic dimers in the BEC regime. This scenario has
been successfully achieved in recent experiments on ultracold
atomic Fermi gases [4–9]. In the low-temperature superfluid
phase, the same U (1) symmetry is broken in the BCS and
BEC limits, and for s-wave pairing one expects a smooth
crossover between these limits without any phase transition.
However, the nature of the low-energy quasiparticle excitations
changes markedly as the interactions are varied and this affects
the behavior of the system above the superfluid transition
temperature Tc: For weak attraction, the normal state at low
temperatures corresponds to a Fermi liquid, while for strong
attraction, one instead obtains a weakly repulsive Bose liquid
just above Tc [10]. Thus, the BCS-BEC crossover at zero
temperature is associated with a crossover from fermionic to
bosonic behavior in the normal state.

The different character of the two limits has been dra-
matically revealed in spin-imbalanced Fermi gases. At zero
temperature, if one has a large difference in the spin densities
nσ , i.e., n↑ � n↓, then one obtains a first-order phase transition
between a Fermi-liquid phase and a superfluid phase composed
of a Bose-Fermi mixture [11–13]. Moreover, in the limit of
extreme imbalance where n↓ → 0, it was shown that the
ground state of a single spin-down particle undergoes an abrupt
transition from a fermionic to bosonic quasiparticle as the
attraction is increased [14–17]. However, for the unpolarized
case, the manner in which fermions evolve into bosons at
finite temperature is not well understood, in part because of
the difficulty in theoretically treating the intermediate regime
of attraction between the BCS and BEC limits. Here, we
elucidate the Fermi-Bose crossover of the unpolarized gas in

the high-temperature limit, where one can perform a controlled
calculation by exploiting the virial expansion.

The high-temperature limit corresponds to a gas far from
quantum degeneracy, where the thermal wavelength λ � k−1

F ,
with the Fermi wave vector kF = (3π2n)1/3 and density n =
n↑ + n↓. Assuming short-range interactions characterized
by scattering length a, the crossover in this limit is thus
parametrized by the dimensionless ratio λ/a, with the system
becoming a gas of bosonic dimers once λ/a is sufficiently
large (Fig. 1). This is to be contrasted with the BCS-BEC
crossover at zero temperature, which is instead dependent
on 1/kF a. Here, the crossover from fermionic to bosonic
behavior may be defined as the point where the chemical
potential μ crosses zero, since this is where BCS mean-
field theory predicts a qualitative change in the quasiparticle
dispersion [2,18]. Indeed, a very recent experiment performed
at temperatures T � Tc has observed the breakdown of Fermi-
liquid behavior at an interaction 1/kF a close to this point [19].
The low-temperature crossover is qualitatively different from
its high-temperature counterpart since it is connected with
the existence of a Fermi surface rather than with the thermal
dissociation of dimers. However, both temperature regimes are
strongly interacting near unitarity 1/a = 0, since one cannot
perform a perturbative expansion in a around a noninteracting
system, unlike in the opposite limit |a| → 0.

The virial or cluster expansion is one way of perturbing
around a noninteracting limit for arbitrary a. In this case,
the noninteracting system is the classical Boltzmann gas
and the expansion parameter is the fugacity z = eβμ, where
β−1 = kBT and kB is the Boltzmann constant (which we set to
1 in the following). The coefficients of the different powers of z

in the virial expansion are then functions of λ/a and determine
the crossover from fermionic atoms to bosonic dimers for a
given value of z. While the second-order virial coefficient
for short-range interactions was determined long ago [20],
despite early attempts at extending the expansion—see, e.g.,
Ref. [21]—the extension of the virial expansion to higher
powers in fugacity has only recently been achieved, mainly
motivated by high precision experiments on ultracold Fermi
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FIG. 1. (Color online) Different interaction regimes for the high-
temperature unpolarized Fermi gas at density n � λ−3. When the
scattering length a < 0 and the thermal de Broglie wavelength λ �
|a|, the system corresponds to a weakly attractive Fermi gas. In the
opposite limit, where λ � a > 0, the system instead resembles a
weakly repulsive gas of bosonic dimers once the two-body binding
energy εb � kBT log(

√
2/nλ3), where T is the temperature. In the

crossover region λ/|a| � 1, the system is strongly interacting in the
sense that each coefficient of the virial expansion cannot be obtained
from a perturbative calculation around a noninteracting system. This
region can be made perturbative by introducing a large effective range
parameter R∗ > λ.

gases. In particular, at unitarity, virial coefficients for the
expansion up to z4 have been determined both theoretically
[22–25] and experimentally [26,27]. However, the complexity
of the problem increases exponentially with the order of the
coefficient, and indeed it is already challenging to accurately
compute the fourth virial coefficient, as exemplified by the
current discrepancy between the theoretical prediction [25]
and experiment [26,27] at unitarity. For a recent review of the
virial expansion as applied to the strongly interacting Fermi
gas we refer the reader to Ref. [28].

One route to simplifying the calculation of the virial
coefficients is to consider an interaction with an effective
range, characterized by the additional length scale R∗.1 In
the limit of a “narrow resonance” R∗/λ � 1, we can then
perform a perturbative expansion in λ/R∗ for any a, as
depicted in Fig. 1. This is analogous to the situation at zero
temperature, where the calculation for the BCS-BEC crossover
is perturbative when kF R∗ � 1 [29]. In contrast to Ref. [30],
we regard the narrow-resonance case as weakly interacting
since the limit R∗ → ∞ corresponds to a noninteracting
mixture of fermionic atoms and bosonic dimers, as discussed
below. Note that such a weakly interacting system can still
exhibit a large interaction energy (e.g., at unitarity) owing to
the contribution of the binding energy of the dimers.

In this paper, we present the virial expansion of the resonant
Fermi gas throughout the Fermi-Bose crossover for various
R∗/λ. To this end, we develop a formalism for computing
virial coefficients that employs a diagrammatic approach to the
grand potential similar to that in Ref. [31], but where we use a
T -matrix rather than an S-matrix description for the scattering

1The effective range occurring for zero-range interactions should,
of course, be distinguished from a finite range interaction, such as
used in Ref. [56].

of particles. We show that our expression for the second virial
coefficient is equivalent to the well-known Beth-Uhlenbeck
formula involving scattering phase shifts [20]. We also, for the
first time, extend the virial expansion to higher powers of z

for finite R∗. By considering the perturbative limits λ/|a| �
1 and R∗/λ � 1, we extrapolate our results and obtain an
approximate value for the fourth virial coefficient at unitarity
and R∗ = 0. We also determine the equation of state in the
high-temperature limit and compare with the results from the
recent experiment of Ku et al. [27].

The paper is organized as follows. In Sec. II we introduce
the resonant Fermi gas as described by a two-channel model,
and we discuss the role of the parameters of the model. In
Sec. III we present the formalism for the virial expansion;
for generality, we consider any possible spin and mass
imbalance, any dimensionality, and any short-range model of
the interactions. Section IV then concerns the virial expansion
as applied to the resonant Fermi gas; we discuss the high-
temperature crossover from the Fermi to Bose regime, partic-
ularly the limiting behavior of the virial coefficients, as well
as how the system evolves towards a noninteracting system
upon increasing the ratio of the effective range to thermal
wavelength. We present exact calculations of the second and
third virial coefficients, and a perturbatively exact calculation
of the fourth. In Sec. V we display the high-temperature
behavior of thermodynamic quantities, i.e., pressure, density,
and entropy. In Sec. VI we discuss the momentum-resolved
radio-frequency spectrum which one would measure in the
resonant Fermi gas, focusing on the difference between broad
and narrow resonances. We conclude in Sec. VII.

II. RESONANT FERMI GAS

To describe the resonant Fermi gas, we use a specific model
relevant to ultracold atomic gases with short-range s-wave
interactions, namely the two-channel model, introduced for
bosons in Ref. [32]. This model describes how the interaction
between two atoms scattering freely (in the open channel) can
become resonant when they are coupled to a molecular state
(closed channel) and the energy of the collision is close to
that of the molecule. For the two-component Fermi gas, the
Hamiltonian is

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
p

(
ω0 + p2

4m

)
b̂†pb̂p

+ g√
V

∑
kp

(
b†pĉ p

2 +k,↑ĉ p
2 −k,↓ + H.c.

)
, (1)

where the operator ĉ
†
kσ (ĉkσ ) creates (annihilates) a fermionic

atom with spin σ , momentum k, mass m, and single-particle
energy εk = k2/2m; b̂

†
p (b̂p) creates (annihilates) a closed-

channel molecule with momentum p. g denotes the strength
of the coupling which converts a pair of atoms into a
closed-channel molecule—we take this to be constant up to
an ultraviolet momentum cutoff 	. ω0 is the bare detuning, V

is the volume, and we set � = 1.
Following renormalization of the contact interaction, this

Hamiltonian leads to the two-body T matrix,

T2(E) = 4π/m

a−1 − √−mE + mR∗E
, (2)
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where the bare detuning ω0 is parametrized by the scattering
length a = ( 2	

π
− 4πω0

mg2 )−1 and range parameter R∗ = 4π
m2g2 .

For positive scattering length, there exists a two-body bound
state (dimer) with binding energy,

εb = [
√

1 + 4R∗/a − 1]2

4mR∗2
. (3)

This corresponds to a pole of the T matrix with residue,

g2Z = 4π

m2R∗

(
1 − 1√

1 + 4R∗/a

)
. (4)

The gas in the resonant regime is characterized by a
scattering length a which greatly exceeds the van der Waals
range of the interactions Re, and we shall assume this to be the
case in the following. Indeed, near a magnetic field Feshbach
resonance, the scattering length behaves as

a = abg

[
1 − 
B

B − B0

]
, (5)

and can be much larger than the off-resonant background
scattering length abg which is typically of the order of the van
der Waals range. Here B is the magnetic field, while B0 and

B are the location and magnetic field width of the Feshbach
resonance. The effective range r0, on the other hand, remains
nearly constant across the resonance. It is typically set by the
van der Waals range, but it is large and negative for Feshbach
resonances which are narrow in magnetic field width such
that μrel|
B| � 1/mR2

e with μrel the difference in magnetic
moment of the two channels. Then it is convenient to define
instead [33],

R∗ = −r0/2 = 1

mabgμrel
B
, (6)

which relates the effective range to the experimental param-
eters. Thus, in the following we can use the two-body T

matrix (2) to describe a realistic Feshbach resonance where
the scattering length a can diverge, while the range parameter
R∗ is either negligible or positive.

At finite temperature, where we have thermal wavelength
λ = √

2π/mT , the spin- and mass-balanced Fermi gas de-
scribed by the Hamiltonian (1) contains three dimensionless
parameters:

z, λ/a, λ/R∗. (7)

The fugacity controls the accuracy of the virial expansion,
while the second parameter λ/a determines the crossover from
a weakly attractive Fermi gas to a weakly repulsive Bose gas. In
order to have well-defined dimers, we clearly require εb � T

or equivalently λ/a � 1. However, entropy also plays a role at
high temperature such that we always recover a Boltzmann gas
of unbound atoms for sufficiently small z, i.e., for |μ| � εb.
Thus, we must also consider the chemical potential (or density)
of the gas when determining the regime where we have a gas
of dimers. As shown in the following sections, the density in
the limit z � 1 and εb � T is given by

n 
 2

λ3
(z + 2

√
2eβεbz2 + · · · ). (8)

The second term effectively corresponds to a Boltzmann gas
of dimers (where μBose = 2μ + εb) while the first term is

the usual Boltzmann expression for unbound atoms. Thus,
we obtain the bosonic dimer regime when the second term
dominates over the first, i.e., 2

√
2eβεbz � 1. This yields

the condition nλ3 � √
2e−βεb , which is equivalent to the

expression in the caption of Fig. 1. Note, further, that when
the majority of particles are bound into dimers, one obtains
μ � −εb/2. Thus, z � 1 always, which naively suggests that
the virial expansion holds all the way down to T = 0. However,
this instead means that we must modify the virial expansion
to reflect the change in quasiparticles so that the relevant
expansion parameter is now z∗ = eβεb/2z—see also Ref. [31]
and Sec. IV.

The third dimensionless parameter λ/R∗, in turn, allows a
perturbative expansion in small λ/R∗ of the virial coefficients
themselves. This is a consequence of the typical collision ener-
gies, set by the temperature, greatly exceeding the interaction
energy scale ∼g4 ∝ 1/R∗2, rendering the system effectively
perturbative in the bare coupling constant. This behavior
mimics that of the many-body problem at zero temperature,
which is perturbative for all scattering lengths if R∗ greatly
exceeds the average interparticle spacing [29]. Indeed, in
that work a narrow Feshbach resonance was defined as one
fulfilling kF R∗ � 1, and here we extend this definition to
mean any resonant Fermi gas for which the typical interaction
energies greatly exceed that set by the bare coupling. Thus,
in the high-temperature limit of the resonant Fermi gas, the
broad (narrow) resonance limits correspond to λ/R∗ � 1
(λ/R∗ � 1), respectively.

III. VIRIAL EXPANSION

We now present the virial expansion of the grand poten-
tial for a two-component (↑,↓) Fermi system with contact
interspecies interaction. For the sake of generality, we do not
restrict ourselves to a system described by the Hamiltonian (1);
instead we consider the problem in d dimensions and for
arbitrary mass ratio m↑/m↓. We note that the formalism
outlined in this section may be straightforwardly extended to
more fermionic components, a Bose gas, or even a Bose-Fermi
mixture. In Sec. IV we apply the results of the present
section to the resonant Fermi gas described by the two-channel
Hamiltonian (1).

For a Hamiltonian Ĥ , the grand potential is given by (see,
e.g., [34])

−β� =
∑
{Nσ }

[Tr{Nσ } Âe−β(Ĥ−∑
σ μσ N̂σ )]c

=
∑
N↑N↓

z
N↑
↑ z

N↓
↓ [TrN↑N↓ Âe−βĤ ]c, (9)

where N̂σ is the number operator of σ particles, μσ is
the chemical potential for each spin, and zσ = eβμσ . The
suffix c indicates that only connected diagrams are kept and
the operator Â represents the sum of all identical particle
permutations with negative signs affixed in front of odd
permutations: Â ≡ ∑

P (−1)P P where P is a permutation
acting only among identical particles, with (−1)P the sign
of the permutation. The sum over non-negative Nσ is such that
the total number of particles

∑
σ Nσ is positive. The trace on

states of the system is taken at fixed particle number. When the
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temperature is high or the system dilute, the thermodynamics
of the system can be accurately described by the first few
terms of the above power series. That is, the thermodynamics
is essentially determined by few-body physics. However, to
establish such a connection, it is convenient to separate the
dynamical (microscopic) and statistical information [31].

As a starting point, we define the Green’s operators (see
also Ref. [31]),

Ĝ(E) = 1

E − Ĥ
, Ĝ0(E) = 1

E − Ĥ0
, (10)

such that

e−βĤ =
∮

dE

2πi
e−βEĜ(E). (11)

This formulation exactly achieves the goal of separating the
statistical information from the dynamical, since Ĝ does not
depend on temperature. Here, the Hamiltonian Ĥ = Ĥ0 + Ĥint

consists of the noninteracting part Ĥ0 and the interactions Ĥint.
E is a complex variable and the counterclockwise contour
encloses the structure of the Green’s operator on the real axis,
i.e., the integral picks out the spectrum of Ĥ . (We let

∮
denote

a counterclockwise contour throughout this work.) For brevity,
we define the linear operator,∮ ′

E

≡
∮

dE

2πi
e−βE, (12)

such that Eq. (11) reads

e−βĤ =
∮ ′

E

Ĝ(E). (13)

The operator
∮ ′
E

is the Laplace transform which connects
the few-body dynamics to the statistical physics. Substituting
Eq. (13) in Eq. (9), we obtain

−β� =
∑
N↑N↓

z
N↑
↑ z

N↓
↓

∮ ′

E

[TrN↑N↓ ÂĜ(E)]c. (14)

Physically, the imaginary part of [. . . ]c on the real axis
(ImE → 0+) is the spectral density of the few-body system
and the contour integral with a Boltzmann factor is therefore
equivalent to counting all accessible states in the system.

Note that one must be careful when dealing with processes
which contain identical subclusters: If a diagram has M distinct
sub-clusters, the ith of these appearing ci times, then a factor
of (c1!c2! · · · cM !)−1 must be introduced when applying Â

to avoid double counting. This will become clear when we
consider the noninteracting contributions in Sec. III A.

We define the virial coefficients, BN↑N↓ , such that

−β� = V

λd
r

∑
N↑N↓

BN↑N↓z
N↑
↑ z

N↓
↓ , (15)

where the “reduced” thermal wavelength is given by λr ≡√
π/mrT , with the reduced mass m−1

r = m−1
↑ + m−1

↓ . From
Eqs. (14) and (15) we identify

BN↑N↓ = λd
r

V

∮ ′

E

[TrN↑N↓ ÂĜ(E)]c. (16)

The indices N↑ and N↓ indicate the number of ↑,↓ particles in
the connected few-body cluster and therefore BN↑0 and B0N↓

correspond to the ideal-gas contributions from ↑ and ↓ species,
respectively. If both N↑ and N↓ are finite, BN↑N↓ is nonzero
only when the interspecies interaction is present.

In the particular case of a spin- and mass-balanced Fermi
gas, i.e., m ≡ mσ , μ ≡ μσ , z ≡ zσ with σ = ↑,↓, Eq. (15)
reduces to

−β� = 2V

λd

∑
N�1

bNzN, (17)

where the thermal wavelength takes its usual form: λ = λr =√
2π/mT . The virial coefficients in this case are related to

those occurring in Eq. (15) above by 2bN = ∑N
N ′=0 BN ′,N−N ′ .

In addition, one may separate out the effects of interaction,
i.e., bN = bfree

N + 
bN . The ideal-gas contribution is given
by 2bfree

N = BN0 + B0N and the effect of interactions are
contained in 2
bN = ∑N−1

N ′=1 BN ′,N−N ′ . We note further that
in a mass-balanced system, BNN ′ = BN ′N .

It is straightforward to connect the virial coefficients for
the uniform system in Eq. (17) to those for a gas confined
in an isotropic harmonic trap V (r) = 1

2mω2r2, where ω

is the trapping frequency. Assuming we are in the limit
where βω � 1, the grand potential in the trap is given by
−β�trap = 2(βω)−d

∑
N�1 b

trap
N zN . Applying the local density

approximation to Eq. (17) and comparing expressions then
simply yields bN = Nd/2 b

trap
N . This procedure may be easily

extended to the case where mσ , μσ and/or the trapping
frequencies for each spin are all different.

A. N↓ = 0

In this section, we consider the ideal Fermi gas contribution
to the grand potential. For N↑ = 1 and N↓ = 0 the Green’s
operator is simply

Ĝ(E) = (18)

where the straight line denotes the one-particle propagator.
Taking the trace then requires the state on the left and right to
be the same, i.e.,

Tr10ÂĜ(E) = (19)

where the repeated index indicates that the endpoints have
been contracted. Thus we write down the virial coefficient,

B10 = λd
r

V

∮ ′

E

∑
p

(E − εp↑)−1 =
(

m↑
2mr

) 3
2

. (20)

Here and in the following the trace is evaluated in momentum
states, with the single-particle energy εpσ = p2/2mσ .

Next we let N↑ = 2 and write down the Green’s operator,

Ĝ(E) = (21)

Since there is no intraspecies interaction, each particle can
only propagate as a free particle. Thus, few- and many-body
correlations can only arise through exchange of identical
particles. Applying the exchange operator and taking the trace,
we obtain

Tr20ÂĜ(E) = 1

2!
(22)
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The factor 1/2! accounts for the fact that there are two identical
clusters (one-particle propagators) in the operator Ĝ. We see
that the two propagators in the first term are not connected and
thus only the second term contributes to the virial coefficient,

B20 = λd
r

V

∮ ′

E

∑
p

−1

2!
(E − 2εp↑)−1 =

(
m↑
2mr

) 3
2 −1

2 × 2
d
2

,

Note that the consequence of the trace is that each particle
carries the same momentum.

For N↑ = 3, there are 3! permutations, two of which are
connected; hence,

[Tr30ÂĜ(E)]c = 1

3!
.

This leads to

B30 = λd
r

V

∮ ′

E

∑
p

2

3!
(E − 3εp↑)−1 =

(
m↑
2mr

) 3
2 1

3 × 3
d
2

.

It is easy to verify that for any N↑ > 0, there are (N↑ −
1)! connected diagrams each with identical contribution and
permutation sign (−1)N↑−1. Hence, the virial coefficients of a
free Fermi gas are given by

BN↑0 =
(

m↑
2mr

) 3
2 (−1)N↑−1

N↑ × N
d
2

↑
. (23)

In a spin- and mass-balanced Fermi gas, Eq. (23) yields
bfree

N = 1
2 (BN0 + B0N ) = (−1)N−1

N×Nd/2 , as expected.

B. N↑ = N↓ = 1

In order to deal with interactions, we use the fact that the
full Green’s operator can be written in terms of the free Green’s
operator and the T matrix, defined such that T̂ −1(E) = Ĥ−1

int −
Ĝ0(E). For the case of N↑ = N↓ = 1, we write down the
Green’s operator,

Ĝ(E) = Ĝ0(E) + Ĝ0(E)T̂2(E)Ĝ0(E) = (24)

where denotes the two-body T operator T̂2(E) and particles
of different species are depicted by different colors. Then, the
trace of Ĝ is given by

Tr11Ĝ(E) = (25)

Since the two particles are distinguishable there are no addi-
tional exchange terms. Discarding the disconnected diagram,
one obtains

[Tr11Ĝ(E)]c = = Tr11Ĝ0(E)T̂2(E)Ĝ0(E) (26)

= Tr11 T̂2(E)
d

dE
T̂ −1

2 (E), (27)

where in the last step we used the cyclic property of the trace
and the identity: d

dE
T̂ −1(E) = − d

dE
Ĝ0(E) = Ĝ2

0(E).
The two-body T matrix is given by

T̂2(E) =
∑

P

∑
�,�z

T2,�(E − P 2/2M) |P,� 〉〈P,�| , (28)

where P denotes the center-of-mass momentum, � (�z) the total
(magnetic) angular momentum quantum number, and M =
m↑ + m↓ is the total mass. The T matrix is independent of the
magnetic quantum number, resulting in the degeneracy factor
ξ� ≡ ∑

�z
: This takes the value 2� + 1 in three dimensions,

2 − δ0,� in two dimensions, and 1 in one dimension (where �

is restricted to 0 or 1). Both P and � are conserved quantities
and thus T̂2 is diagonal in this representation. The inverse of
this operator is thus given by

T̂ −1
2 (E) =

∑
P,�

ξ�T
−1

2,� (E − P 2/2M)|P,�〉〈P,�|. (29)

As a result, Eq. (27) reads

=
∑
P,�

ξ�T2,�

(
E − P 2

2M

)
d

dE
T −1

2,�

(
E − P 2

2M

)
. (30)

Hence, the second virial coefficient is given by

B11 =
(

M

2mr

) d
2
∮ ′

E

∑
�

ξ�T2,�(E)
d

dE
T −1

2,� (E), (31)

which is identical to that obtained in Ref. [24]. The prefactor
results from integrating out the center-of-mass motion, i.e.,
(λ3

r /V )
∑

P exp[−β P 2

2M
] = ( M

2mr
)3/2.

The second virial coefficient (31) can be shown to be
equivalent to the well-known Beth-Uhlenbeck formula. To see
this, we consider the contributions from the bound states and
the scattering states separately. The former is easy to extract.
Near an energy pole E = −εb, the T matrix is proportional
to (E + εb)−1 and thus T2,�(E) d

dE
T −1

2,� (E) → (E + εb)−1. As
a result, the contour integral picks up this simple pole to give

B
poles
11 =

(
M

2mr

) d
2 ∑

b

eβεb ,

where the sum is over all bound states—even if these are
degenerate, they should be counted separately. To tackle the
scattering states, we deform the contour to the real axis,
yielding (mass ratio factor and partial-wave sum omitted)

−
∫ ∞

0

dE

π
e−βEIm

[
d

dE
ln T −1

2,� (E + i0)

]
.

Noting that T2,�(E + i0) ∝ [k cot δ�(k) − ik]−1 with k =√
2mrE, the integral above reduces to∫ ∞

0

dE

π
e−βE dk

dE
δ′
�(k).

Replacing E with k2/2mr , we recover the Beth-Uhlenbeck
formula (see, e.g., [35]),

B11=
(

M

2mr

) d
2

[∑
b

eβεb+
∑

�

ξ�

∫ ∞

0

dk

π
e− βk2

2mr δ′
�(k)

]
. (32)

Finally, we note that in the spin- and mass-balanced system,
the part of the virial coefficient arising from interactions is
obtained from the relation 2
b2 = B11.
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C. N↑ = 2; N↓ = 1

In this section, we consider the contribution to the grand
potential from the few-body cluster with two ↑ and one ↓
atoms. In this case the Green’s operator reads

Ĝ(E) = (33)

We see that the first diagram corresponds to free propagation
and is disconnected. The second term appears, at first glance, to
be disconnected but we shall see that the one-particle and two-
particle subclusters can be connected via exchange. Since the
largest subcluster in the second term contains two particles, we
will call this term the “two-body” contribution. The remaining
terms are fully connected and thus we refer to these collectively
as the “three-body” contributions.

In the next step, we apply the permutation operator and take
the trace. After discarding the free propagator, we have

The three-body parts of the series in the above equation may be
replaced by three-body propagators, but first it is instructive to
reorganize the diagrams into two groups: (i) diagrams where
the T2’s on the left and right are labeled by the same indices and
(ii) those where they are labeled by different indices. Following
the reorganization, the two sets of diagrams are

It is clear that the leftmost term in the first set is disconnected
and therefore does not contribute to the virial coefficient.

We then define the three-body T matrix t3:

(34)

where t3 can be obtained from solving the Skorniakov–Ter-
Martirosian integral equation [36], properly generalized to the
present problem. For details, see Appendix A. Hence, the virial
coefficient reads

B21 = λd
r

V

∮ ′

E

=
(

M21

2mr

) d
2
∮ ′

E

∑
p

⎡
⎣χ21(p,p; E)

dT −1
2

(
E − p2

2m21

)
dE

− T2(E − p2/2m21)

(E − 2εp↑ − ε2p↓)2

−
∑

p′

χ21(p,p′; E)

(E − εp↑ − εp′↑ − εp+p′↓)2

⎤
⎦ , (35)

with χ21(p,p′; E) ≡ T2(E − p2

2m21
)t↑↑↓

3 (p,p′; E)T2(E − p′2
2m21

).
In the last step, the center-of-mass motion is integrated out, giv-
ing the factor ( M21

2mr
)

d
2 . Here, the total mass is M21 = 2m↑ + m↓

and the atom-pair reduced mass m−1
21 = (m↑ + m↓)−1 + m−1

↑ .
Note that the interacting part of the virial coefficient in

the spin- and mass-balanced case is given by 
b3 = 1
2 (B21 +

B12) = B21.

D. N↑ = N↓ = 2

For two ↑ and two ↓ atoms, we write down the Green’s
operator, similarly to the previous cases:

(36a)

(36b)

(36c)

(36d)

. (36e)

Here, Eq. (36a) depicts the free part and the two-body
contributions, Eq. (36b) the three-body contributions, and
Eqs. (36c)–(36e) the four-body contributions. In Eq. (36b), the
infinite diagrammatic series can be replaced by the three-body
propagator t3, and thus can be calculated in full. On the other
hand, we only write down explicitly the diagrams containing
exactly three T2’s in Eq. (36c) and four T2’s in Eqs. (36d)
and (36e). The terms with five or more T2’s are omitted here
and in the following. While not completely general, this may
be shown to correspond to a perturbative approach (the Born
approximation) in certain limits, as discussed in Sec. II, and
explicitly shown in Sec. IV.

To obtain the virial coefficient, one follows the framework
outlined in previous sections. All relevant diagrams can be
obtained by keeping only the connected diagrams resulting
from the trace of the Green’s operator under the exchange
operator. We note, however, that the third term in Eq. (36a)
contains identical two-atom subclusters and thus a factor of
1/2! is required to avoid overcounting.

E. N↑ = 3; N↓ = 1

Here we consider the other possible interacting four-body
cluster—three ↑ and one ↓ atoms (there is, of course, an
equivalent diagram with three ↓ and one ↑ atoms). As before,
we write down the Green’s operator of this few-body system,

(37a)

(37b)

In Eq. (37a), the first term denotes the free propagator,
the second the two-body contribution, and the terms in the
bracket the three-body contributions which can be calculated
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exactly by means of the STM integral equation. The four-body
contribution is written down in Eq. (37b) where the diagrams
containing more than four T2’s are omitted. Again we note that
this can be shown to correspond to a perturbative approach in
certain limits.

All relevant diagrams can be obtained by applying the
exchange operator to the diagrams above and taking the
trace. We note that the two-body diagram [the second term in
Eq. (37a)] contains two identical single-particle propagators
and thus a factor of 1/2! must be introduced.

IV. VIRIAL COEFFICIENTS OF THE RESONANT
FERMI GAS

After the quite general discussion of the virial expansion
above, we now confine ourselves to the specific case of a spin-
and mass-balanced Fermi gas in three dimensions, described
by the Hamiltonian (1).2 We present the second, third, and
fourth virial coefficients for the resonant Fermi gas, calculated
using the technique described in the preceding section. Our
calculation of the fourth virial coefficient is perturbative for
a narrow resonance where T � 1/mR∗2, and approximate in
the broad resonance case. All other results are numerically
exact.

A. Second virial coefficient

In the spin- and mass-balanced gas, the second virial coeffi-
cient takes the value −2−5/2 in the absence of interactions—see
Eq. (23). The part of the second virial coefficient arising
from interactions can be obtained by inserting the two-body T

matrix (2) in the expression for the second virial coefficient,
Eq. (31). This yields


b2 =
√

2
∮ ′

E

mR∗ + m

2
√−mE

a−1 − √−mE + mR∗E
. (38)

As depicted in Fig. 2, 
b2 increases monotonically from the
Fermi regime, through unitarity, to the Bose regime. Consider
first the limits |a| � λ where the temperature is much smaller
than the energy scale of few-body physics. Owing to the
Boltzmann factor exp[−βE], the leading contribution of the
contour integral over E then comes from an interval of length
∼T starting at the leftmost point of the nonanalytic structure
of the T matrix. Using this to evaluate the virial coefficient
in the Fermi limit λ/a � −1, the asymptotic form is 
b2 =
−a/λ + 3πR∗a2/λ3 for |a| � R∗ � λ. On the other hand, in
the Bose limit λ/a � 1, we have 
b2 = √

2eβεb − a/λ for
R∗ � λ. Here, the leading term may be understood as arising
from the first term of the virial expansion of a noninteracting
Bose gas. Indeed, we identify the contribution to the grand
potential (17) from the two interacting fermions with that of a
single boson,

− 1

β

2V

λ3

b2z

2 = − 1

β

V

λ3
Bose

bBose
1 zBose. (39)

2For the virial expansion in two dimensions, see, for instance,
Refs. [47,57].
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FIG. 2. (Color online) The interaction part of the second virial
coefficient as a function of interaction strength for several values of
R∗/λ. As λ/a → ∞ the virial coefficient approaches

√
2eβεb and we

normalize by this factor (taking εb = 0 for a � 0).

The factor two on the left-hand side is due to the two fermionic
species. Using the first virial coefficient of the ideal Bose gas,
bBose

1 = 1, as well as the relation between the bosonic and
fermionic chemical potentials μBose = 2μ + εb, the fugacity
zBose = eβμBose , and the thermal wavelength λBose = λ/

√
2, we

arrive at the asymptotic form of 
b2. We emphasize that
this form of the virial coefficient implies that the system is
a noninteracting Bose gas of dimers.

We next consider the evolution of 
b2 at unitarity, as a
function of R∗/λ. For broad resonances (where R∗ may be
taken to vanish), or for temperatures T � TR∗ ≡ 1/mR∗2, the
virial coefficient takes the well-known value 1/

√
2. On the

other hand, for temperatures T � TR∗ the virial coefficient is
approximately 
b2 ≈ √

2 − λ
πR∗ . This increase of the virial

coefficient from 1/
√

2 to
√

2 as temperature increases above
the scale set by TR∗ has been taken to imply that the two-
particle system becomes more strongly interacting [30,37].
We, however, argue the opposite, namely that the system
approaches a noninteracting limit. To understand this, it is
convenient to introduce the pair propagator,

D(E) ≡ T2(E)/g2 = 1

E + mg2

4π
(−√−mE + a−1)

. (40)

At unitarity, this has the limiting behavior,

D(E) ∼
{
R∗E−1/2 if E ∼ T � TR∗

E−1 if E ∼ T � TR∗ .

That is, the pair propagator evolves from a resonance in
the low-temperature limit into a free propagator of a zero-
energy state as temperature increases beyond the energy scale
set by the effective range. Thus, the two fermions simply
populate this (noninteracting) pair state which, as discussed
in the above paragraph, has virial coefficient

√
2. Indeed, the

above discussion carries over to the Fermi regime where, as
long as |a| � R∗, the virial coefficient becomes that of the
noninteracting pair, approaching

√
2 as seen in Fig. 2.

B. Third virial coefficient

In the absence of interactions, the third virial coefficient
in the spin- and mass-balanced gas takes the value 3−5/2;

013606-7



NGAMPRUETIKORN, PARISH, AND LEVINSEN PHYSICAL REVIEW A 91, 013606 (2015)

FIG. 3. (Color online) The interaction part of the third virial
coefficient as a function of interaction parameter. In the Bose regime
the virial coefficient is proportional to eβεb —see Eq. (42)—and
we normalize by this factor (taking εb = 0 for a � 0). (a) In the
broad resonance limit, R∗/λ = 0, we compare 
b3 (solid) with the
two-body contribution which dominates in the Fermi regime (short
dashed), and the results of the Beth-Uhlenbeck formula (42) including
s wave only (dot-dashed), s and p wave (long dashed), and up to
d wave (dotted). The circle at λ/a = 0 depicts the experimentally
determined virial coefficient from Refs. [26,27]. (b) The effect of a
finite range parameter on 
b3 (solid), and the approximation given
by including only the diagrams of Eqs. (43a)–(43c) (dashed).

see Eq. (23). We now proceed to calculate the effect of
interactions, which is encapsulated in 
b3 = B21, with B21

defined in Eq. (35). The calculation now requires one to
solve the three-body problem in full, which has been the
subject of several works in the literature. Here we mainly
follow Refs. [38,39], but see also Ref. [40] for a related
framework for the calculation of the third virial coefficient.
For completeness, we include a discussion of the three-body
problem in Appendix A.

Consider the crossover from the Fermi to the Bose regimes,
as depicted in Fig. 3. In the broad resonance case shown in
Fig. 3(a), our results completely match those of Refs. [22,23] in
the whole range of interactions, and Refs. [24,25] at unitarity.
The results do not match those of Ref. [41], in which the three-
body problem was confined to the s-wave channel. We first
discuss the asymptotic limits in which the few-body energy
scale set by the two-body scattering length is much greater
than temperature, focusing on the broad resonance case for
simplicity. Then, we have the scaling of the three contributions
of Eq. (35) to the interaction part of the virial coefficient:

λ3

V

∮ ′

E

∼
{(

a
λ

)
eβεb Bose(

a
λ

)2
Fermi

, (41a)

λ3

V

∮ ′

E

∼
{(

a
λ

)3
eβεb Bose

a
λ

Fermi
, (41b)

λ3

V

∮ ′

E

∼
{(

a
λ

)3
eβεb Bose(

a
λ

)2
Fermi

, (41c)

where the explicit expressions for the diagrams is clear from
Eq. (35). In the Fermi limit, the scaling follows from all
momenta and energies being set by λ. Therefore, T2 ∼ a/m

and t3 ∼ mλ2. On the other hand, in the Bose limit, the Boltz-
mann factor in the two-body T matrix forces the energy E =
−εb + Ecol to be within a collision energy Ecol ∼ 1/mλ2 of
the binding energy. Thus T2(−εb + Ecol) ≈ 8π

m2a
1

Ecol
∼ λ2/ma

and t3 ∼ ma2. In Eq. (41c), due to the exchange process,
two momenta are integrated over, and only one of these is
suppressed by the Boltzmann factor; consequently, in this
diagram the momenta count as 1/λ and 1/a, respectively.

As may be anticipated, the two-body contribution,
Eq. (41b), is the dominant contribution in the weakly inter-
acting Fermi regime. On the other hand, in the Bose limit,
Eq. (41a) is the leading contribution. This has a very natural
interpretation: Due to the lack of exchange of the external legs,
this diagram corresponds to atom-dimer scattering, and thus to
an effective two-body process. Then we may recast the virial
coefficient in Beth-Uhlenbeck form, similarly to the two-body
problem in Eq. (31). The result is


b3
λ�a≈ 3

3
2 eβεb

∑
�

ξ�

∫ ∞

0

dk

π
e−β 3k2

4m δ′
ad,�(k), (42)

where δad,� is the atom-dimer phase shift in the �th partial wave.
For details on the derivation of Eq. (42), see Appendix B.
If the temperature is negligible compared with the binding
energy, only the low-energy behavior of the scattering phase
shifts matter, i.e., the atom-dimer scattering length aad =
− limk→0 k−1 tan δad,�(k) = 1.18a [36]. For decreasing λ/a

we need to take the derivative of the phase shifts obtained
in Refs. [39,42]. The result is shown in Fig. 3(a) and yields a
good approximation to the virial coefficient for λ/a � 5.

Next we investigate the behavior of the virial coefficient
for a finite range parameter—see Fig. 3(b). First of all, we see
that increasing R∗/λ tends to suppress the virial coefficient
for fixed λ/a. Secondly, we see that a perturbative approach
works very well already at R∗/λ = 1. The particular approach
we use is to take the first Born approximation of the three-body
T matrix, i.e., keeping only the first term in Eq. (34). That is,
the three diagrams contributing to 
b3 take the form,

= −
∑

p

T 2
2

(
E − 3p2

4m

) dT −1
2 (E− 3p2

4m
)

dE

E − 3p2

m

, (43a)

= −
∑

p

T2
(
E − 3p2

4m

)
(
E − 3p2

m

)2 , (43b)

=
∑
p,p′

T2
(
E − 3p2

4m

)
T2

(
E − 3p′2

4m

)
(E − εp − εp′ − εp+p′)3

. (43c)

The idea is that keeping the exact pole structure of the
two-body T matrix may help control the approximation in
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FIG. 4. (Color online) The interaction part of the third virial
coefficient (solid line) at unitarity as a function of R∗/λ. The
dashed line depicts the result of considering only the diagrams of
Eqs. (43a)–(43c), corresponding to replacing the full three-body T

matrix by its Born approximation. The dotted curve is the narrow
resonance asymptote—see Eq. (44).

the regime where R∗ ∼ λ. The close agreement between the
exact calculation and our approximation observed in Fig. 3(b)
appears to validate our approach. The main difference between
the perturbative approach and the exact takes place for a broad
resonance in the Bose regime: The source of the discrepancy
is that for a broad resonance the Born approximation of
atom-dimer scattering predicts aad = 8a/3, while the exact
calculation gives aad = 1.18a [36], and thus the atom-dimer
interaction is overestimated in the Born approximation. We
further illustrate the comparison between the exact, approxi-
mate (in the above sense), and truly perturbative [expanding
T2(E) in powers of 1/R∗] approaches in Fig. 4. It is seen that
our approximation provides a very good agreement with the
exact virial coefficient, even as R∗/λ approaches zero. We find
the exact value at R∗ = 0 to be 
b3 
 −0.3551, in agreement
with Refs. [22,23,25].

Finally, we note that 
b3 at unitarity is nonmonotonic as a
function of R∗/λ, a feature which is present in both the exact
and approximate results—see Fig. 4. This reflects how at small
R∗/λ a new interaction channel becomes available, increasing
the magnitude of the virial coefficient, whereas at large R∗/λ
the interactions are suppressed. In the limit R∗/λ � 1 we
evaluate the asymptotic form of the virial coefficient:


b3
λ�R∗
≈ −2

√
2

3π

λ

R∗ + 4(5
√

3π − 18)

27π2

(
λ

R∗

)2

. (44)

In Fig. 4 we see that this asymptotic expression works very
well for R∗/λ � 2.

C. Fourth virial coefficient

In the absence of interactions, the fourth virial coefficient
takes the value: bfree

4 = −4−5/2. In order to obtain the con-
tribution to the virial coefficient arising from interactions,
one may in principle extend the above diagrammatic analysis;
however, the task of solving the four-body problem exactly is
numerically taxing. Instead, we take a pragmatic approach and
consider the Born approximation of the four-body problem,
summing all diagrams containing at most four two-body
propagators. This includes the first Born approximation of the
dimer-dimer scattering T matrix. The relevant diagrams are

FIG. 5. (Color online) The interaction part of the fourth virial
coefficient as a function of the interaction parameter λ/a. In the
Bose regime, 
b4 → e2βεb/4 and we normalize by this factor, taking
εb = 0 for a � 0. (a) For a broad resonance with R∗/λ = 0 we
display our approximate value of 
b4 (solid), along with the dominant
two-body contribution in the Fermi regime (short dashed), and the
dominant contribution in the Bose limit, Eq. (45), taking add ≈ 0.6a

(dotted). The circle represents the experimental measurement [26,27]
and the square the calculation of Ref. [25]. (b) Taking the effective
range into account, we display the virial coefficient for R∗/λ = 0,
1/2, 1, 2 (bottom to top).

shown in Secs. III D and III E. This is the same approximation
which was shown above to work very well for 
b3 once
R∗/λ � 1; at unitarity, it even gave a reasonable result once
R∗ → 0. The two- and three-body contributions to 
b4 are
computed exactly.

Figure 5(a) depicts the virial coefficient within our approx-
imation for a broad resonance with R∗/λ = 0. We see that in
the weakly interacting Fermi limit of λ/a � −1, the two-body
contribution dominates. On the other hand, in the Bose limit
where λ/a � 1, the four fermions may be approximated by
two deeply bound dimers. The virial coefficient is then a
sum of a contribution arising from the second-order term
of a noninteracting Bose gas, and one from the dimer-dimer
interaction. Employing for the former the same arguments
which related the second virial coefficient of the Fermi gas with
the first of a noninteracting Bose gas [see Eq. (39)], and for the
latter the same arguments which lead to the Beth-Uhlenbeck
expression for the third virial coefficient in the Bose regime,
Eq. (42), we find


b4
λ�a≈ e2βεb

[
1

4
+ 8

∑
�

ξ�

∫ ∞

0

dk

π
e−β k2

2m δ′
dd,�(k)

]

≈ e2βεb

(
1

4
− 8

add

λ

)
, (45)
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FIG. 6. (Color online) The interaction part of the fourth virial
coefficient at unitarity (1/a = 0) as a function of the effective
range R∗/λ. The four-body contribution to the virial coefficient is
approximated as explained in the text.

where we approximate −k−1 tan δdd,0(k) ≈ add and ignore all
phase shifts other than the s wave. The correct dimer-dimer
scattering length is add = 0.6a, as derived in Ref. [33]; for
a diagrammatic derivation closer to the present formulation,
see Refs. [43,44]. We see that the asymptote (45) gives
a much smaller dimer-dimer interaction shift of the virial
coefficient compared to our approximate result. This is because
our approach contains only the leading diagram of the Born
approximation of dimer-dimer scattering, which overestimates
the dimer-dimer repulsion and yields add = 2a. Nevertheless,
we expect our result to recover the qualitative behavior of 
b4

across the crossover. In particular, we see that the coefficient is
positive in the Fermi regime and changes sign close to unitarity
mainly due to the dimer-dimer repulsion at large positive
λ/a. Finally, it changes sign again and becomes positive—
using add = 0.6a in Eq. (45) we estimate this to occur for
λ/a ≈ 19.

Increasing the range parameter for fixed scattering length
suppresses the dimer-dimer interaction—see Ref. [39]. Con-
sequently, as shown in Fig. 5(b), already at R∗/λ = 1/2 we
do not expect that the virial coefficient changes sign in the
crossover. As in the three-body case, we expect the virial
coefficient calculated within our approximation to work well
once R∗/λ � 1.

Consider finally the unitary Fermi gas, where we find

b4 ≈ 0.06 for a broad resonance—see Fig. 6. This is in
contrast to the previous theoretical work of Ref. [25], where

b4 was found to be negative.3 We note, however, that our

b4 is still smaller than the experimental value 
b

exp.

4 ≈
0.096 [26,27], most likely due to the overestimation of the
dimer-dimer repulsion within our approximation. Our results
also illustrate the difficulty in determining the fourth virial
coefficient, as the coefficient is expected to show a strong
nonmonotonic behavior in the vicinity of the resonance. For
large R∗/λ we see that the two-body contribution to the
virial coefficient dominates and 
b4 → 1/4. This is again an
illustration of how the system evolves towards a noninteracting

3Note that the authors of Ref. [25] recognized that their calculation
did not predict the correct fourth virial coefficient.

Bose gas in this limit. The first correction to this result arises
from both two- and the three-body contributions, and we find
the limiting behavior,


b4
λ�R∗
≈ 1

4
+ 9 − 4

√
3

12π

λ

R∗ , (46)

for a narrow resonance at unitarity.

D. Higher virial coefficients in the Fermi and Bose regimes

It is clear from the preceding discussion that the interaction
part of the virial coefficient in the weakly interacting Fermi
regime is dominated by the two-body contribution, i.e., for
λ/a � −1 we have 
bN ≈ 
b

2-body
N . For reference, we give

this here up to arbitrary order,


b
2-body
N = (−1)N

N5/2

∮ ′

E

m
π
T2(E)√−mE

N−2∑
j=0

(N − j − 1)

×
[
eζN (1 + 2ζN )(1 + Erf[−

√
ζN ]) − 2

√
ζN√
π

]
,

(47)

where ζN = −βE[N − 2 − 1
N

(N − 2j − 2)2]/2.
In the opposite limit where λ/a � 1, the virial coefficients


bN are related to those of a noninteracting Bose gas.
Specifically, as λ/a → ∞ the virial coefficients approach

e− N
2 βεb
bN →

√
2

{
bBose

N/2 = (N/2)−5/2 N even
0 N odd

. (48)

This result holds even at unitarity when R∗/λ � 1. For even
N , this formula follows from comparing the contributions to
the grand potential from N interacting fermions with that of
N/2 noninteracting bosons, as in the case of the second virial
coefficient—see Eq. (39).

The asymptotic form of the virial coefficients in the Bose
limit where the virial coefficients grow exponentially, Eq. (48),
prompts us to define the effective fugacity,

z∗ =
{
z if a � 0
eβεb/2z if a > 0

, (49)

such that all coefficients in the power series in z∗ remain of
order unity throughout the crossover.

V. THERMODYNAMICS

Having calculated the virial coefficients, we now turn to the
investigation of the thermodynamics of the resonant Fermi gas.
In the grand canonical ensemble, the thermodynamic variables
of a homogeneous system are functions of the chemical
potential, temperature, and volume. That is, the grand potential
is � = �(μ,T ,V ) from which all thermodynamic variables
can be obtained. The pressure is given by

P = −�

V
= P0 + 2T λ−3

∑
N�2


bNzN, (50)

where the ideal Fermi gas pressure is given by P0 =
2T λ−3[−Li5/2(−z)], with Liν the polylogarithm. The density
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FIG. 7. (Color online) The pressure P , density n, and entropy
density s in the grand canonical ensemble as a function of expansion
parameter z∗ for a broad resonance R∗ = 0. We compare the results
from the virial expansion at second and fourth order in the fugacity,
for three different values of the interaction parameter λ/a: From top
to bottom we consider the Bose regime with λ/a = 1.5, unitarity, and
the Fermi regime with λ/a = −2. For the latter, the virial coefficients
are dominated by the two-body contribution (47), the result of which
is shown as a thick dashed line.

reads

n = − ∂

∂μ

�

V

∣∣∣∣
T ,V

= n0 + 2

λ3

∑
N�2

N
bNzN, (51)

where n0 = 2λ−3[−Li3/2(−z)] is the density of an ideal Fermi
gas. Finally, we write down the entropy density s ≡ S/V :

s = − ∂

∂T

�

V

∣∣∣∣
μ,V

= 5

2

P

T
− μ

T
n + 2

λ3

∑
N�2

T
∂
bN

∂T
zN . (52)

Note that we only have ∂
bN/∂T appearing in s since the ideal
Fermi gas virial coefficients do not depend on temperature.

In Fig. 7 we display the pressure, density, and entropy for
a broad resonance in the Fermi regime, at unitarity, and in the
Bose regime. We see from the comparison between the second-
and fourth-order results that the virial expansion breaks down

as z∗ approaches 1, as expected. In the Fermi regime where
λ/a � −1, the virial coefficients are dominated by those of
the ideal Fermi gas, the leading correction due to interactions
arising from the two-body contributions (47). In the figure, this
approximation is seen to give a clear improvement compared
with the second-order virial expansion. On the other hand, in
the Bose regime where λ/a � 1, the virial coefficients are
dominated by those arising from the noninteracting gas of
dimers, Eq. (48), and we have

P ≈ 2
√

2T λ−3Li5/2(z∗2), (53a)

n ≈ 4
√

2λ−3Li3/2(z∗2), (53b)

s ≈
√

2λ−3[5Li5/2(z∗2) − 2β(2μ + εb)Li3/2(z∗2)]. (53c)

The leading correction arises from the dimer-dimer scattering
length contribution to 
b4—see Eq. (45). We do not display
the Bose limit expressions in the figure, as we see from
Fig. 5(a) that these are not expected to be accurate for the
broad resonance until larger λ/a.

We see in Fig. 7(a) that, contrary to what one might naively
expect, the pressure appears to increase as we go from the
Fermi to the Bose regime. The point is that this happens at
a fixed expansion parameter, causing the density to increase
simultaneously, as seen in Fig. 7(b). This effect may also be
understood as arising from the fact that the grand potential
� decreases from the Fermi to the Bose regime, due to the
formation of pairs.

In Fig. 8, we consider the behavior of the thermodynamic
variables at unitarity as a function of the range parameter,
R∗/λ. As discussed in Sec. IV, in the narrow resonance limit
we may relate the virial coefficients of the two-component
Fermi gas with those of a noninteracting Bose gas of pairs
at zero energy. Thus the thermodynamic variables at unitarity
become those of Eqs. (53a)–(53c), where in this case z∗ = z.
We see that, as R∗/λ increases, the thermodynamic variables
quickly approach those of the noninteracting Bose gas. This
further underlines how the narrow resonance limit is not
strongly interacting. We also see that the virial expansion
appears to work better in the narrow resonance limit, i.e.,
the second-order result becomes closer to the fourth-order
result. This is mainly because the odd orders of the expansion
(e.g., third order) are suppressed as the system evolves into a
noninteracting gas of dimers.

In Fig. 9, we compare the virial expansion of the pressure
and density to the experimental data from Ref. [27], which was
conducted for a broad resonance in the unitary limit, 1/a = 0.
Although our approximation for the interaction part of the
fourth virial coefficient, 
bBorn

4 ≈ 0.06, is smaller than the
best fit to the experimental data, 
b

exp.

4 ≈ 0.096 [26,27], we
observe a clear improvement when comparing to the result
of the previous theoretical estimate which had a negative
sign [25]. We also apply the results of the virial expansion
ansatz developed in Ref. [45] up to 20th order in the fugacity,
and this approach is seen to work quite well for the pressure
and somewhat worse for the density. Finally, we would like to
point out that the fourth virial coefficient may even be slightly
larger than the reported value of 0.096, as this would provide a
better fit to the experimental data in the region around z ∼ 0.5,
particularly in the case of the density. The fit as one approaches
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FIG. 8. (Color online) The pressure, density, and entropy at
resonance. We compare the second and fourth orders of the virial
expansion for various resonance widths. In the narrow resonance
limit, the limiting behavior of the thermodynamic variables is given
in Eqs. (53a)–(53c).

z = 1 is less important since any deviation of the fourth-order
virial expansion can be easily compensated by the inclusion
of higher orders of the virial expansion.

Thus far, we have worked in the grand canonical ensemble.
This is quite natural in ultracold atomic gases, where the
chemical potential across the external trap can typically be
treated in the local density approximation, μ(r) = μ − Vext(r).
However, in a uniform system it is often advantageous to
consider the density instead of the chemical potential. It is
then convenient to work in the canonical ensemble, where the
relevant thermodynamic potential is the Helmholtz free energy
F = F (n,T ,V ). In practice, one fixes the density and solves for
the fugacity using Eq. (51), where the power series in fugacity
is truncated at a chosen order. When determing thermodynamic
quantities P , s, we only truncate the contribution arising from
interactions and we treat the ideal gas contribution exactly,
i.e., the quantity 
� ≡ � − �0 is expanded instead of the
grand potential �. The advantage of this approach is that we
recover the ideal Fermi gas to all orders in the Fermi limit.
However, the different truncation schemes should not lead to

FIG. 9. (Color online) Comparison between experiment [27] and
various theories for the pressure and density at unitarity for a broad
resonance.

significantly different results when the fugacity is small, which
is a required condition for the virial expansion.

To determine the region of validity of the virial expansion
in this parameter space, we calculate the fugacity as a function
of temperature T/TF and interaction strength 1/kF a using the

virial expansion up to third order. Here, TF = εF = k2
F

2m
, with

TF and εF the Fermi temperature and energy, respectively.
In Fig. 10, we see that the effective expansion parameter
z∗, defined in Eq. (49), becomes comparable to unity for
temperatures T ∼ TF , as expected, and thus one should apply

FIG. 10. Contour plot of the effective fugacity z∗ in the T/TF

versus 1/kF a plane for a broad resonance with R∗ = 0. The high-
temperature expansion is considered up to the third virial coefficient,
since our Born approximation for the fourth virial coefficient
overestimates the effective dimer-dimer repulsion in the Bose regime.
Note that we observe qualitatively similar behavior for a narrow
resonance, and also if we limit ourselves to the virial expansion up to
second order in the fugacity.
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FIG. 11. (Color online) The crossover behavior of the pressure P and entropy density s for both broad and narrow resonances. The solid
lines correspond to the results of the virial expansion where the noninteracting Fermi gas contribution is treated exactly while the interacting
part is only calculated up to the second virial coefficient. The solid circles mark the Fermi-Bose crossover point where nλ3 ≈ √

2e−βεb . The
dashed lines illustrate the thermodynamic values expected for an ideal Bose gas of dimers.

the virial expansion at a lower temperature with some care.
In addition, we note that at a given temperature T/TF , z∗ has
a minimum on the Bose side near unitarity, corresponding to
the point where the atomic and molecular states are roughly
equally accessible, and the density is spread between these
states. Further into the Bose (Fermi) regimes, the density of
dimers (atoms) builds up and the system approaches quantum
degeneracy.

Figure 11(a) depicts the crossover behavior of the pressure
and entropy density for various temperatures and range
parameters. We see how in the Fermi regime 1/kF a � −1,
these thermodynamic quantities are close to those of the ideal
Fermi gas, whereas in the opposite regime they approach those
of the ideal Bose gas. Note that our results deviate from the
expected value in the Bose limit because the virial expansion
we use only determines the interaction part up to second order
in z and therefore we only calculate the Bose gas up to first
order in zBose. The crossover to tightly bound dimers occurs
when the binding energy εb � kBT log(

√
2/nλ3), as discussed

previously. Interestingly, for a given T/TF , this crossover point
can be connected with particular values of P/P0 and s/s0,
which appear to stay roughly constant as we vary R∗.

VI. SPECTRAL FUNCTION

Finally, we consider the spectral function A(k,ω) =
−2ImG(k,ω). This quantity is of great practical relevance,
as it may be probed in cold atom experiments by the use of
radio-frequency spectroscopy, allowing a direct investigation
of many-body effects. For instance, Ref. [6] used this technique
to observe the formation of a pairing gap both above and
below the critical temperature for superfluidity. A typical
experiment starts from the strongly interacting state, and
applies a radio-frequency pulse to transfer one of the ↑,↓
spin states into an initially unoccupied state. In the absence
of interactions between the final and initial spin states, the
transfer rate is

I (k,ω) ∝ nF (ω)A(k,ω),

within linear response. Here, the Fermi distribution nF (ω) =
(eβω/z + 1)−1 accounts for the probability of the initial state
being occupied. As usual, the Dyson equation G−1 = G−1

0 −
� links the interacting with the noninteracting single-particle
Green’s function. The self-energy can be expanded in powers
of fugacity (see, for instance, Refs. [46,47]), and the lowest
order contribution is

�(k,ω) = z
∑

q

e−βεq+kT2

(
ω + μ − εk + εq

2

)
. (54)

FIG. 12. (Color online) The occupied part of the spectral func-
tion for various values of the interaction parameter 1/kF a (top to
bottom) and effective range kF R∗ (left to right) near the crossover.
They all correspond to the expansion parameter zeβεb/2 ≈ 0.2. The
short-dashed line corresponds to the free particle dispersion.
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The transition rate I (k,ω) is illustrated in Fig. 12. In
the absence of interactions this would simply correspond
to a narrow peak at the free dispersion, indicated by a
dashed white line in the figures. However, interactions broaden
the peak and profoundly modify the spectrum: For positive
scattering length, we see that the spectral function develops
a gap which separates the lower band associated with paired
atoms from the sharper upper peak corresponding to unpaired
atoms. Furthermore, the atomic peak is seen to shift upward
(downward) for sufficiently large positive (negative) scattering
lengths. We also consider the effect of a finite effective range.
Here, we clearly see that the atomic peak becomes sharper and
approaches the free dispersion, even at unitarity. This once
again indicates that the system approaches a noninteracting
limit for increasing kF R∗.

VII. CONCLUSION

In this work, we have developed a diagrammatic formalism
for computing the coefficients of the virial expansion, and we
have used it to elucidate the high-temperature behavior of the
resonant Fermi gas. We have focused on the crossover from
the regime of unpaired atoms to the regime of strongly bound
pairs, and described the corresponding limiting behaviors of
the virial coefficients and thermodynamics. While the unitarity
point is special in the sense that it is nonperturbative in a

and independent of an interaction length scale for a broad
resonance, it is still possible to estimate values of the ther-
modynamic variables at this point since all virial coefficients
are continuous functions of λ/a and R∗/λ throughout the
crossover. In particular, our approximate calculation of the
fourth virial coefficient for a broad resonance is likely to
be qualitatively very similar to the exact result, being an
interpolation between known limits. Likewise, we believe our
result of 
b4 ≈ 0.06 for the fourth virial coefficient at unitarity
is close to the (currently unknown) exact value, and indeed it
compares favorably with current experiment. However, the
strong nonmonotonic behavior close to the resonance also
explains why it has been difficult to determine this coefficient
accurately.

We have also explored the behavior of the virial coefficients
once a finite effective range is introduced. Here we have
shown that the coefficients can be determined perturbatively,
and we have calculated the third and fourth virial coefficients
for the first time. We have argued that the narrow resonance
limit R∗ � λ corresponds to a noninteracting mixture of
closed-channel molecules and atoms. We have illustrated this
point by considering the behavior of the virial coefficients,
thermodynamic variables, and the spectral function. This
should be contrasted to the interaction energy which, for
a resonant gas at zero temperature, indeed increases with
increasing kF R∗ [30]. However, this phenomenon is simply
due to the depletion of the Fermi sea as noninteracting pairs
with zero energy are formed, and we consider this to be a
trivial pairing effect.

The formalism we have developed for the virial expansion
is quite general and is written in Sec. III for a generic
short-range interaction in d dimensions, for any mass ratio,
and for any spin imbalance. Thus, there are a number of
immediate extensions to our work on the resonant Fermi gas.

For instance, one could consider the spin-imbalanced gas,
where there are now two expansion parameters due to the two
different chemical potentials, μ↑ > μ↓. In this case, the high-
temperature crossover should be considered as a crossover
from a Fermi-Fermi mixture with expansion parameters eβμ↑

and eβμ↓ , to a Bose-Fermi mixture described by effective
expansion parameters eβ(μ↑+μ↓+εb) and eβμ↑ , assuming that
μ↑ − μ↓ is comparable to εb in this limit.

One can expect even richer behavior from the mass-
imbalanced system due to the possibility of additional scatter-
ing resonances. We have already described how the third and
the fourth virial coefficients in the Bose regime λ/a � 1 may
be related to the derivatives of the low-energy atom-dimer and
dimer-dimer scattering phase shifts, respectively. Whenever
the few-body system is near resonant, these derivatives will
change from 0 to π/2 over a small energy range compared
with the dimer binding energy, and consequently the virial
coefficients can be enhanced close to the formation of few-
body bound states, as discussed in Refs. [21,48]. In particular,
one expects an enhancement of the p-wave contribution to
the virial coefficient B21 when m↑/m↓ approaches 8.2, the
critical value for the formation of trimers in the p-wave
channel when a � R∗ [49]. Even below the critical mass
ratio, such as in a potassium-lithium mixture with mass
ratio 40:6, the atom-dimer scattering is strongly enhanced,
as discussed in Refs. [39,42] and demonstrated in a recent
experiment [50]. Likewise, tetramers are predicted to exist in
the ↑↑↑↓ problem [51,52] leading to an enhancement of the
coefficient B31 close to the critical mass ratio of 9.5 close
to unitarity [52]. Indeed, the sign change of the third virial
coefficient at unitarity as a function of mass ratio [53] results
from the resonantly enhanced p-wave channel becoming
dominant. Thus, few-body effects can profoundly impact the
normal state of a heteronuclear Fermi gas.

Finally, one may consider particles with other statistics.
Thus far, the virial expansion of the Bose gas has only been
developed up to the third virial coefficient at unitarity [54], the
results showing an intriguing dependence on the three-body
parameter introduced by Efimov physics [55]. It would thus
be interesting to consider the behavior across resonance, as in
the present work.
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APPENDIX A: THREE-BODY PROBLEM

The three-body problem with short-range interactions
is described completely by the Skorniakov–Ter-Martirosian
(STM) integral equation. Originally introduced to calcu-
late neutron-deuteron scattering length [36], the diagram-
matic representation of the STM equation reads (see also
Ref. [38,39])

(A1)
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Here Tad is the atom-dimer scattering T matrix; the solid lines denote free atom propagators and the dotted lines the two-body
T matrix. We then write Eq. (A1) for an ↑↑↓ system as an integral equation,

Tad(k,k0; p,p0; E) = ζ

[
g2ZG↓(−k − p,E − k0 − p0)

−
∫

d3q
(2π )3

∫
dq0

2πi
G↑(q,q0)G↓(−p − q,E − p0 − q0)T2(−q,E − q0)Tad(k,k0; q,q0; E)

]
. (A2)

We let the incoming (outgoing) atom and dimer have four-
momenta (k,εk) and (−k,E − εk) [(p,εp) and (−p,E −
εp)], respectively. The free atom propagators is given
by G↑,↓(k,k0) = (k0 − k2/2m↑,↓ + i0)−1 and T2(q,q0) ≡
T2(q0 + q2/2(m↑ + m↓) + i0) is the two-body T matrix.
The residue at the pole of the two-body T matrix—g2Z ≡
lims→0 s × T2(−εb + s)—is included for correct normaliza-
tion of the external dimer propagators. The factor ζ in Eq. (A2)
describes the quantum statistics and is equal to −1 for the
fermionic case, +1 for heteronuclear bosons, and +2 for
identical bosons.

The integration over q0 can be done by closing the contour
in the lower half plane. This encloses one pole coming
from G↑(q,q0) at q0 = εq. Next, we take the partial wave
projection and use the on-shell conditions: k0 = εk and p0 =
εp. Equation (A2) becomes

Tad,�(k,p; E) = ζ

[
g2Zg�(k,p; E) +

∑
q

g�(p,q; E)

× T2(E − q2/2m21)Tad,�(k,q; E)

]
, (A3)

where m−1
21 = m−1

↑ + (m↑ + m↓)−1.
The partial wave projection is defined as follows (energy

omitted):

Tad,�(p,q) =
∫ 1

−1

dx

2
P�(x)Tad(p,q),

(A4)
Tad(p,q) =

∑
��0

(2� + 1)P�(x)Tad,�(p,q),

where x = cos(p̂ · q̂) and P�(x) denote the Legendre poly-
nomials. Similarly, one may write down the partial-wave
projected ↓ propagator,

g�(p,q) =
∫ 1

−1

dx

2
P�(x)G↓(p + q,E − εp − εq)

= m↓
pq

Q�

[
m↓
pq

(
E − p2 + q2

2mr

)]
, (A5)

where Q�(z) = ∫ 1
−1(z − x)−1P�(x) dx/2 is the Legendre func-

tion of the second kind.
In general, there might not exist a two-body bound state,

e.g., when a < 0 in three dimensions. It is thus useful to define
the three-body T matrix t3 ≡ Tad/g

2Z such that the external
dimer propagators are removed from Eq. (A1). Therefore, we

have

t3,�(k,p; E) = ζ

[
g�(k,p; E) +

∑
q

g�(p,q; E)

× T2(E − q2/2m21)t3,�(k,q; E)

]
. (A6)

APPENDIX B: BETH-UHLENBECK EXPRESSION FOR �b3

IN THE BOSE REGIME

In the Bose limit, the three-body problem reduces to
the much simpler atom-dimer scattering problem. This is
effectively a two-body problem and thus one may readily
modify the Beth-Uhlenbeck formula, see Eq. (32), to obtain
the third virial coefficient. Indeed, we have shown that the
dominant diagram in this limit is the one describing atom-
dimer scattering—see Eq. (41a). That is, we have

B21
λ�a≈ λ3

V

∮ ′

E

=
(

M21

2mr

) d
2
∮ ′

E

∑
p

t3(p,p; E)

× T 2
2

(
E − p2

2m21

)
d

dE
T −1

2

(
E − p2

2m21

)
.

As E → −εb, the “free” atom-dimer propagator is given by

〈k|Ĝad(E)|k〉 ≈ T2
(
E − k2

2m21

)
g2Z

≈ 1

Ecol − k2

2m21

, (B1)

where ±k are the momenta of the atom and dimer in
their center-of-mass frame, the collision energy is given by
Ecol = E + εb, and g2Z is the residue at T2’s pole given in
Eq. (4). In addition, we note that the atom-dimer forward
scattering T matrix is given by

Tad(k2/2m21) = g2Zt3(k,k; k2/2m21 − εb). (B2)

Therefore, we obtain

B21
λ�a≈

(
M21

2mr

) d
2
∮ ′

E

∑
p,�

ξ�Tad,�(Ecol)(
Ecol − p2

2m21

)2

≈
(

M21

2mr

) d
2

eβεb

∮ ′

E

∑
p,�

ξ�Tad,�(E)(
E − p2

2m21

)2 , (B3)

where we used d
dE

T −1
2 ≈ g2Z and in the last step, the energy

origin is shifted to −εb. The full scattering T matrix is given
by the partial wave sum Tad(s) = ∑

� ξ�Tad,�(s), where we
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have used the fact that only forward atom-dimer scattering is
present in Eq. (B2).

As shown in Sec. III B, the sum over p is in fact the sum
over the two-body spectrum which is equal to the derivative of
the inverse two-body T matrix. That is, we have

∑
p

(
E − p2

2m21

)−2

≡ d

dE

∑
�

ξ�T
−1

ad,�(E). (B4)

Following the same analysis, we recast Eq. (B3) in the Beth-
Uhlenbeck form,

B21
λ�a≈

(
M21

2mr

) d
2

eβεb
∑

�

ξ�

∫ ∞

0

dk

π
e
−β k2

2m21 δ′
ad,�(k), (B5)

which concludes this Appendix.
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