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Thermal fluctuations and melting transitions for rotating single-component superfluids have been intensively
studied and are well understood. In contrast, the thermal effects on vortex states for two-component superfluids
with density-density interaction, which have a much richer variety of vortex ground states, have been much
less studied. Here, we investigate the thermal effects on vortex matter in superfluids with U(1) × U(1) broken
symmetries and intercomponent density-density interactions, as well as the case with a larger SU(2) broken
symmetry obtainable from the [U(1) × U(1)]-symmetric case by tuning scattering lengths. In the former case
we find that, in addition to first-order melting transitions, the system exhibits thermally driven phase transitions
between square and hexagonal lattices. Our main result, however, concerns the case where the condensate exhibits
SU(2) symmetry, and where vortices are not topological. At finite temperature, the system exhibits effects which
do not have a counterpart in single-component systems. Namely, it has a state where thermally averaged quantities
show no regular vortex lattice, yet the system retains superfluid coherence along the axis of rotation. In such
a state, the thermal fluctuations result in transitions between different (nearly) degenerate vortex states without
undergoing a melting transition. Our results apply to multicomponent Bose-Einstein condensates, and we suggest
how to detect some of these unusual effects experimentally in such systems.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) with a multicomponent
order parameter, and the topological defects such systems
support, represent a topic of great current interest in condensed
matter physics [1–15]. Such multicomponent condensates may
be realized as mixtures of different atoms, mixtures of different
isotopes of an atom, or mixtures of different hyperfine spin
states of an atom. The interest in such condensates from a
fundamental physics point of view is mainly attributed to the
fact that one may tune various interaction parameters over
a wide range in a BEC. This enables the study of a variety
of physical effects which are not easily observed in other
superfluid systems such as 3He and 4He.

The behavior of a single-component BEC under rotation
is well known. The ground state is a hexagonal lattice of
vortex defects which melts to a vortex liquid via a first-
order phase transition. This is well described by the London
model, where amplitude fluctuations may be ignored. Over
the years, in the context of studying vortex lattice melting
in high-Tc superconductors, many works have confirmed this
through numerical Monte Carlo simulations for systems in
the frozen gauge, three-dimensional (3D) XY, and Villain
approximations [16–25], as well as in the lowest-Landau-
level approximation [26], and by mapping it to a model of
2D bosons [27]. Single-component condensates have been
available experimentally for quite some time [28,29], and the
hexagonal lattice ground state has been verified [30].

Condensates with two components of the order param-
eter have also been studied extensively. Analytical works
focusing on determining the T = 0 ground states have
demonstrated a range of interesting possible lattice struc-
tures [5,6,10,13,14,31]. By varying the ratio between inter- and
intracomponent couplings, the ground-state lattice undergoes
a structural change from hexagonal symmetry through square

symmetry to double-core lattices and interwoven sheets of
vortices. Similar systems with three components have also
been studied [15]. Experimentally, spinor condensates have
been realized in two general classes of systems. The first option
is to use one species of atoms, usually rubidium, and prepare
it in two separate hyperfine spin states [1,2]. Vortices [3]
and vortex lattices [7] have been realized in these binary
mixtures, where both hexagonal and square vortex lattice states
were observed. The other option is to mix condensates of
two different species of atoms [4,12]. The use of Feshbach
resonances [32,33] allows direct tuning of the scattering
lengths, and by extension the inter- and intracomponent
interactions of multicomponent condensates [8,9,11].

In this paper, we consider a specific model of a two-
component BEC, which has the full range of fluctuations of
the order-parameter field included, as well as intercomponent
density-density interactions. We consider the model with
U(1) × U(1) and as SU(2) symmetries. For the U(1) × U(1)
case, we find a succession of square and hexagonal vor-
tex ground-state patterns as the intercomponent interaction
strength is varied, along with the possibility of thermal
reconstruction from a square to a hexagonal vortex lattice as
temperature is reduced.

The SU(2)-symmetric case is interesting and experimen-
tally realizable. In this case U(1) vortices are no longer
topological, in contrast to the [U(1) × U(1)]-symmetric case.
In this case, when fluctuation effects are included we find a
highly unusual vortex state where there is no sign of any vortex
lattice. Nonetheless, global phase coherence persists. This state
of vortex matter is a direct consequence of massless amplitude
fluctuations in the order parameter, when the broken symmetry
of the system is SU(2). At the SU(2) point, but at lower
temperatures, we also observe dimerized vortex ground-state
patterns.
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The paper is organized as follows. The model and def-
initions of relevant quantities are presented in Sec. II. The
technical details of the Monte Carlo simulations are briefly
considered in Sec. III. In Sec. IV, the results are presented and
discussed. In Sec. V, we discuss how to experimentally verify
the results we find. Some technical details and the investigation
of the order of the melting transitions with full amplitude
distributions included, for the cases N = 1 and N = 2, are
relegated to Appendixes.

II. MODEL AND DEFINITIONS

In this section we present the model used in the paper, first
in a continuum description and then on a three-dimensional
cubic lattice appropriate for Monte Carlo simulations. The
relevant quantities for the discussion are also defined.

A. Continuum model

We consider a general Ginzburg-Landau (GL) model of an
N -component Bose-Einstein condensate, coupled to a uniform
external field, which in the thermodynamical limit is defined
as

Z =
∫ N∏

i

Dψ ′
i e

−βH , (1)

where

H =
∫

d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2mi
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2π
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)
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+
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i |2 +
N∑
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j |2

⎤
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is the Hamiltonian. Here, the field A′
μ formally appears as

a nonfluctuating gauge field and parametrizes the angular
velocity of the system. The fields ψ ′

i are dimensionful complex
fields, i and j are indices running from 1 to N denoting the
component of the order parameter (a “color” index), α′

i and g′
ij

are Ginzburg-Landau parameters, �0 is the coupling constant
to the rotation induced vector potential, and mi is the particle
mass of species i. For mixtures consisting of different atoms
or different isotopes of one atom, the masses will depend on
the index i, while for mixtures consisting of atoms in different
hyperfine spin states, the masses are independent of i. The
inter- and intracomponent coupling parameters g′

ij are related
to real inter- and intracomponent scattering lengths aij in the
following way:

g′
ii = 4π�

2aii

mi

, (3)

g′
ij = 8π�

2aij

mij

(i �= j ), (4)

where mij = mimj/(mi + mj ) is the reduced mass. In this pa-
per we focus on using BECs of homonuclear gases with several
components in different hyperfine states; hence mi = m ∀ i.
Intercomponent drag in BEC mixtures has been considered

in previous works using Monte Carlo simulation (ignoring
amplitude fluctuations), but we will not consider this case
here [34–38].

We find it convenient for our purposes to rewrite (2) in
the following form, the details of which are relegated to
Appendix A:

H =
∫

d3r

[
1

2
(Dμ�)†(Dμ�) + V (�)

]
. (5)

Here, � is an N -component spinor of dimensionless complex
fields, which consists of an amplitude and a phase, ψi =
|ψi | exp (iθi), Dμ = ∂μ − i 2π

�0
A′

μ is the covariant derivative,
and summation over repeated spatial indices is implied. We
neglect, for simplicity, the presence of a trap and the centrifugal
part of the potential. We consider only the case where the
vector potential is applied to each component of �, as follows
from the fact that the masses are independent of species
index i.

We have studied this model in detail with N = 2, where we
write the potential in the form

V (�) = η(|�|2 − 1)2 + ω(�†σz�)2. (6)

This formulation is more relevant for our discussion, as it
immediately highlights the symmetry of �, as well as the soft
constraints applied to it. The details of the reparametrization
are shown in Appendix A.

Note that Eq. (6) may also be rewritten in the form (correct
up to an additive constant term)

V = (η + ω)(|ψ1|4 + |ψ2|4) + 2(η − ω)|ψ1|2|ψ2|2. (7)

Comparing with Eq. (2), we have g11 = g22 ≡ g = η + ω and
g12 = η − ω. The model features repulsive intercomponent
interactions provided η − ω > 0, and this is the case we will
mainly focus on. We will however briefly touch upon the
case η − ω < 0 corresponding to an attractive intercomponent
density-density interaction, which leads to ground states with
overlapping vortices in components 1 and 2. Normalizability
of the individual order-parameter components, or equivalently
boundedness from below of the free energy, requires that
η + ω > 0. Thus, while ω > η makes physical sense, ω < −η

does not. In this paper, we assume η > 0 and ω � 0.
Two-component BECs feature considerably richer physics

than a single-component BEC. Since the gauge field para-
metrizing the rotation of the system is nonfluctuating, there is
no gauge-field-induced current-current interaction between the
two condensates (unlike in multicomponent superconductors).
The only manner in which the two superfluid condensates
interact is via the intercomponent density-density interaction
2(η − ω)|ψ1|2|ψ2|2. In the limit where the amplitudes of each
individual component are completely frozen and uniform
throughout the system, one recovers the physics of two de-
coupled 3D XY models, with a global U(1) × U(1) symmetry.
The density-density interaction between ψ1 and ψ2 leads to
interactions between the topological defects excited in each
component. As a result, a first-order melting of two decoupled
hexagonal lattices is not the only possible phenomenon that
could take place. Previous experiments and numerical studies
have reported a structural change of the ground state from
a hexagonal to a square lattice of vortices as the effective
intercomponent coupling is increased [5–7]. This corresponds
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to increasing the ratio η/ω in our case. As we will see
below, other unusual phenomena can also occur, notably when
thermal fluctuations are included.

One special case of the model deserves some extra attention.
If one takes the limit ω → 0 in Eq. (6) the symmetry of the
model is expanded to a global SU(2) symmetry. One may then
shift densities from one component to the other with impunity,
as long as |ψ1|2 + |ψ2|2 is left unchanged. This effectively
leads to massless amplitude fluctuations in the components of
the order parameter. Therefore, it is possible to unwind a 2π

phase winding in one component by letting the amplitude of
the same component vanish. The introduction of this higher
symmetry leads to very different vortex ground states than
what are found in the [U(1) × U(1)]-symmetric case with
ω �= 0.

B. Separation of variables

In multicomponent GL models complex objects, such as
combinations of vortices of different colors, are often of
interest. In general, it is possible to rewrite an N -component
model coupled to a gauge field, fluctuating or not, in
terms of one mode coupled to the field and N − 1 neutral
modes [39,40]. For a more general discussion of charged
and neutral modes in the presence of amplitude fluctuations
see Refs. [41] and [42]. Considering only the kinetic part of
the two-component Hamiltionian Hk , we have the following
expression:

Hk = 1

2|�|2 |ψ∗
1 ∂μψ1 + ψ∗

2 ∂μψ2 − iAμ|�|2|2

+ 1

2|�|2 |ψ1∂μψ2 − ψ2∂μψ1|2. (8)

Hence, the first mode couples to the applied rotation, while the
second does not. This corresponds to the phase combinations
θ1 + θ2 and θ1 − θ2, respectively.

C. Lattice regularization

In order to perform simulations of the continuum model, we
define the field � on a discrete set of coordinates, i.e., �(r) →
�r, where r ∈ (ix̂ + j ŷ + kẑ| i,j,k = 1, . . . ,L). Here, L is the
linear size in all dimensions; the system size is V = L3. We use
periodic boundary conditions in all directions. By replacing the
differential operator by a gauge-invariant forward difference(

∂

∂rμ

− iAμ(r)

)
�(r) → 1

a
(�r+aμ̂e−i(2π/�0)aA′

μ,r − �r),

(9)

and introducing real phases and amplitudes ψr,i = |ψr,i |eiθr,i

we can rewrite the Hamiltonian:

H =
∑
r,μ̂
i

|ψr+μ̂,i ||ψr,i | cos(θr+μ̂,i − θr,i − Aμ,r)

+
∑

r

V (�r). (10)

The lattice spacing is chosen so that it is smaller than
the relevant length scale of variations of the amplitudes. A

dimensionless vector potential Aμ has also been introduced.
See Appendix A for details. We denote the argument of the
cosine as χ

μ

r,i , as a shorthand.

D. Observables

An important and accessible quantity when exploring phase
transitions is the specific heat of the system,

cV = β2 〈H 2〉 − 〈H 〉2

L3
. (11)

While crossing a first-order transition there is some amount
of latent heat in the system, manifesting itself as a δ-function
peak of the specific heat in the thermodynamic limit. On the
lattice one expects to see a sharp peak, or anomaly, at the
transition. This is used to characterize the transition as first
order.

A useful measure of the global phase coherence of the
system is the helicity modulus, which is proportional to the
superfluid density. It serves as a probe of the transition from
a superfluid to a normal fluid. In the disordered phase, the
moduli in all directions are zero, characterizing an isotropic
normal-fluid phase. The cause of this is a vortex loop blowout.
Moving to the ordered phase, all moduli evolve to a finite value.
If we turn on the external field we still have zero coherence in
all directions in the disordered phase. In the ordered phase,
however, the helicity modulus along the direction of the
applied rotation jumps to the finite value through a first-order
transition. The value of the transverse moduli will remain zero.
Formally, the helicity modulus is defined as a derivative of the
free energy with respect to a general, infinitesimal phase twist
along rμ [43]. That is, we perform the replacement

θr,i → θ ′
r,i = θr,i − biδμrμ (12)

in the free energy, and calculate

ϒμ,(b1,b2) = ∂2F [θ ′]
∂δ2

μ

∣∣∣∣
δμ=0

. (13)

Here, b = (b1,b2) represents some combination of the phases
θ1 and θ2, b1θ1 + b2θ2. To probe the individual moduli,
bi is chosen as bi = (1,0) or bi = (0,1). The composite
phase-sum variable is represented by the choice bi = (1,1),
while bi = (1, − 1) is the phase difference. Generally, for
a two-component model, the helicity modulus can be writ-
ten as the sum of two indivudual moduli and a cross
term [36,40],

ϒμ,(b1,b2) = b2
1ϒμ,(1,0) + b2

2ϒμ,(0,1) + 2b1b2ϒμ,12. (14)

For the model considered in this paper, the individual helicity
moduli can be written as

〈ϒμ,i〉 = 1

V

[〈∑
r

ψri
ψr+μ̂,i cos

(
χ

μ

r,i

)〉

− β

〈(∑
r

ψr,iψr+μ̂,i sin
(
χ

μ

r,i

))2〉]
, (15)
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while the mixed term has the form

〈ϒμ,12〉 = −β

〈(∑
r

|ψr,1||ψr+μ̂,1| sin
(
χ

μ

r,1

))

×
(∑

r

|ψr,2||ψr+μ̂,2| sin
(
χ

μ

r,2

))〉
. (16)

We denote the helicity modulus of the phase sum ϒμ,(1,1) as
ϒ+

μ as a shorthand.
The structure factor Si(q⊥) can be used to determine

the underlying symmetry of the vortex lattice. Square and
hexagonal vortex structures will manifest themselves as four
or six sharp Bragg peaks in reciprocal space. In a vortex liquid
phase one expects a completely isotropic structure factor.
The structure factor is defined as the Fourier transform of
the longitudinally averaged vortex density 〈ni(r⊥)〉, which is
subsequently thermally averaged,

Si(q⊥) = 1

LxLyf

〈∣∣∣∣∣
∑
r⊥

ni(r⊥)e−ir⊥·q⊥

∣∣∣∣∣
〉

. (17)

Here ni(r⊥) is the density of vortices of color i averaged over
the z direction,

ni(r⊥) = 1

Lz

∑
z

ni(r⊥,z), (18)

and r⊥ is r projected onto a layer of the system with a given
z coordinate. The vortex density is calculated by traversing
each plaquette of the lattice, adding the factor χ

μ

i,r of each
link. Each time we have to add (or subtract) a factor of 2π

in order to bring this sum back into the primary interval of
(−π,π ] a vortex of color i and charge +1 (−1) is added to this
plaquette.

In addition to the structure factor, we look at thermally
averaged vortex densities 〈ni(r⊥)〉 as well as thermally
and longitudinally averaged amplitude densities 〈|ψi |2(r⊥)〉,
defined similarly to Eq. (18),

|ψi |2(r⊥) = 1

Lz

∑
z

|ψi |2(r⊥,z). (19)

This provides an overview of the real-space configuration of
the system.

When including amplitude fluctuations, which, when the
potential term is disregarded, are unbounded from above,
it is of great importance to make sure all energetically
allowed configurations are included. To this end, we measured
the probability distribution of |ψi |2, P (|ψi |2) during the
simulations by making a histogram of all field configurations
at each measure step, and normalizing its underlying area to
unity in postprocessing.

The uniform rotation applied to the condensates is imple-
mented in the Landau gauge:

A = (0,2πf x,0), (20)

where f is the density of vortices in a single layer. Note
that this implies a constraint Lf ∈ (1,2,3, . . .) due to the
periodic boundary conditions. When probing a first-order
melting transition, it is important to choose a filling fraction
large enough that an anomaly in the specific heat is detectable.

However, if the filling fraction is too large, one may transition
directly from a vortex liquid into a pinned solid, completely
missing the floating solid phase of interest. This scenario is
characterized by a sharp jump in not only the longitudinal,
but also the transverse helicity modulus [44,45]. One must
therefore chose f small enough to assure that the vortex line
lattice is in a floating solid phase when it melts.

III. DETAILS OF THE MONTE CARLO SIMULATIONS

The simulations were performed using the Metropolis-
Hastings algorithm [46,47]. Phase angles were defined as
θ ∈ (−π,π ], and amplitudes as |ψ |2 ∈ (0,1 + δψ]. The choice
of δψ will be discussed further, as it is important to ensure
inclusion of the full spectrum of fluctuations. Both the phases
and the amplitudes were discretized to allow the use of
tables for trigonometric and square root functions in order
to speed up computations. We typically simulated systems of
size L3 = 643, with sizes up to L3 = 1283 used to resolve
anomalies in the specific heat. We used 106 Monte Carlo
sweeps per inverse temperature step, and up to 107 close
to the transition. 105 additional sweeps were typically used
to thermalize the system. In the simulations, we examined
time series of the internal energies taken during both the
thermalization runs and the measurement runs to make sure
the simulation converged. One sweep consists of picking a
new random configuration for each of the four field variables
separately in succession, at each lattice site. Measurements
were usually performed with a period of 100 sweeps, in
order to avoid correlations. Ferrenberg-Swendsen multihis-
togram reweighting was used to improve statistics around
simulated data points, and jackknife estimates of the errors are
used.

Figure 1 shows the probability distribution of the ampli-
tudes, P(|ψi |2). We get a peaked distribution for finite ω.
On the other hand, when ω = 0, this is no longer the case.
The distribution now approaches a uniform distribution on the
interval (0,1]. In this case the parameter η serves to control

FIG. 1. (Color online) The probability distribution of the am-
plitudes, P(|ψi |2), for N = 2, at inverse temperature β = 1.20,
f = 1/32, and η = 2, with ω values from 0 to 3. The distribution
is completely symmetric in i.
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the approach to uniformity, η → ∞ corresponding to the CP 1

limit.
With these initial simulation runs as a basis, we choose

δψ appropriately in order to capture the entire spectrum of
fluctuations.

IV. RESULTS OF THE MONTE CARLO SIMULATIONS

In this section, the η-ω phase diagram of ground states
is explored by slow cooling and examination of vortex
and amplitude densities, as well as structure factors. In
addition to the expected hexagonal and square vortex ground
states, several interesting regions of the parameter space are
investigated further. A special case between the square and
the hexagonal regions of the phase diagram is discovered,
where the lattice first forms a square structure, but thermally
reconstructs into a hexagonal lattice as the temperature is
decreased further. Furthermore, we consider in detail the ω = 0
line in the phase diagram, where we discover additional vortex
fluctuation effects. For ω = 0, the system features an SU(2)
symmetry. An unusual feature is an interesting state with global
phase coherence, but without a regular vortex lattice. In this
case ordinary vortices do not have topological character due to
SU(2) symmetry. Additionally, we obtain several interesting
vortex structures characterized by dimerlike configurations at
lower temperatures. Here, we observe honeycomb lattices, or
double-core lattices, and stripe configurations, consistent with
previous T = 0 results [6].

We also examine the melting transitions of the square
and hexagonal lattices with the full amplitude distribution
included, as well as the melting of the hexagonal lattice in a
model with N = 1 as a benchmark of the method. To classify
the transition, we look at thermal averages of the specific heat,
helicity moduli, and vortex structure factors. These results are
presented in Appendixes B and C.

A. The η-ω phase diagram

Adding a second matter field and intercomponent density-
density interactions results in a considerably richer set of
ground states than in the single-component case. In the absence
of a fluctuating part of the rotational “gauge field” there will
be no gauge-field-mediated intercomponent current-current
interactions. For η − ω < 0 (η,ω > 0) the effective intercom-
ponent density-density coupling η − ω is negative and the
ground state of each color of condensate has a hexagonal
symmetry, as shown in Fig. 2(a). If, on the other hand
η − ω > 0, the intercomponent coupling becomes positive.
Now, for sufficiently large ratios η/ω, the vortices arrange
themselves into two interpenetrating square lattices, shown in
Fig. 2(b). The value of the ratio η/ω for which the lattice
reconstructs depends on the strength of the rotation f . If
we neglect fluctuations, η − ω < 0 is expected to result in
a hexagonal lattice, while η − ω > 0 leads to a square lattice
for sufficiently large η/ω.

The physics of the reconstruction of the lattice can be ex-
plained by modulations of the amplitude fields. The existence
of static periodic amplitude modulations (density variations)
is due to the presence of vortices. Without vortices (f = 0)
and ω > 0, the ground state is one where both amplitudes are
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FIG. 2. (Color online) Representative configurations of the two
main ordered phases in the U(1) × U(1) region. (a) shows a square
structure at (η,ω) = (5.0,0.5), while (b) illustrates the hexagonal
structure at (η,ω) = (5.0,5.0). Each subfigure shows vortex densities
〈ni(r⊥〉 in the left column, amplitude densities 〈|ψi |2(r⊥〉 in the
right column, and structure factors (insets) of each component as
indicated. The induced vortex density and inverse temperature are
fixed to f = 1/64 and β = 1.5 in both subfigures.

equal and smooth. Vortices in one component tend to suppress
locally the corresponding amplitude, which in turn means
that the term η(|ψ1|2 + |ψ2|2 − 1)2 enhances the amplitude
of the other component. At small ω, i.e., large η − ω, there
is a strong tendency to form a square density lattice due to
this intercomponent density-density interaction. Conversely,
if ω is large enough compared to η, the density-density
interaction is not strong enough to overcome the isotropic
current-current interactions between same-species vortices. In
other words if the current-current interactions dominate the
interspecies density-density interactions, a hexagonal lattice is
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(a)

(b)

FIG. 3. (Color online) The η-ω phase diagram of the ground
states for f = 1/32 (a) and f = 1/64 (b). The simulations were
performed for a range of (η,ω) pairs to determine the zero-temperature
ground state. Approximate demarcation lines for the phase boundaries
separating hexagonal lattices, square lattices, and dimerized phases,
were drawn from these results (solid lines). I denotes the phase
where the hexagonal vortex lattices in the two components are
cocentric, II denotes the case where the hexagonal lattices are
intercalated, while III denotes the square lattice phase. The dotted
line is the line ω = η at which the intercomponent density-density
interaction 2(η − ω)|ψ1|2|ψ2|2 changes sign. See also Figs. 11 and 12
in Appendix D.

energetically favored over a square lattice, and vice versa.
Note that similarly a square vortex lattice forms in two-
component London models with dissipationless drag when
there are competing inter- and intraspecies current-current
vortex interactions [34,35].

Figures 3(a) and 3(b) show the phase diagrams for filling
fractions f = 1/32 and f = 1/64, respectively. The sepa-
ration line is approximate and drawn from several separate
simulations.

To clarify what is going in Figs. 3(a) and 3(b), we
refer to Figs. 11 and 12 in Appendix D. Here, we show
tableaus to illustrate in more detail how the density and
vortex lattices reconstruct at a temperature well below any
melting temperatures of the vortex (and density) lattices, as
the density-density interaction 2(η − ω)|ψ1|2|ψ2|2 is varied.
Specifically, we fix the interaction parameter η, as well as the
inverse temperature β and filling fraction f , while increasing
the parameter ω. This reduces the effective intercomponent

density-density interaction which favors a square lattice, until
the lattice reconstructs from square to hexagonal symmetry.

When η = ω, it is seen from Eq. (7) that the two
components of the order parameter decouple. For ω < η the
intercomponent density-density interaction is repulsive, while
it is attractive for ω > η. For ω < η, the vortex lattices (and
the density lattices) are intercalated, while for ω > η they are
cocentric. In Figs. 3(a) and 3(b) we illustrate the demarcation
line between the two situations as a dotted line in the hexagonal
phase.

Beyond the square and hexagonal lattices we also observe
dimer configurations of vortices for ω = 0, which will be
discussed further below. The calculations are consistent with
the ground states obtained in Refs. [6] and [10].

B. Thermally induced reconstruction of vortex lattices

Now we move to discussion of the effects of thermal fluc-
tuations in these systems. Figure 4 shows the vortex densities
in component 1 in reciprocal space, as β is increased, i.e., as
temperature is reduced, in a temperature range below where the
lattice melts. The actual melting of the two-component lattice
is discussed in Sec. IV C. We fix the filling fraction f = 1/64,
as well as the interaction parameters η = 2 and ω = 0.5.

For the highest temperatures shown in Fig. 4 the vortex
lattice is square. Upon cooling the system, the vortex lattice
reconstructs into a hexagonal lattice, consistent with the
ground-state phase diagram of Fig. 3(b). The density-density
interaction term 2(η − ω)|ψ1|2|ψ2|2 aids formation of a square
lattice at higher temperatures, while the current-current inter-
actions drive the lattice towards a hexagonal configuration
when it is cooled further. This means that the free energy per
vortex of the square lattice, which is lower than that of the
hexagonal lattice at β = 0.90, has become larger than that of
the hexagonal lattice when β = 1.50. This is essentially the
combination of an energetic and an entropic effect. We observe
this reconstruction not too far away from the demarcation
line separating a square and a hexagonal vortex lattice. Deep
inside the hexagonal phase in Fig. 3(b), we observe direct
vortex lattice melting from a hexagonal lattice to a vortex
liquid. We note that intermediate entropically stabilized vortex
lattice phases were a subject of interesting investigation in
the different system of U(1) × U(1) superconductors [48];
however, the vortex interaction form is different in our case.

C. SU(2) vortex states

The limit ω → 0 is quite different from the [U(1) × U(1)]-
symmetric case ω �= 0. From Eq. (6), it is seen that the
Hamiltonian is invariant under SU(2) transformations of �.
Vortices, which are topological in a U(1) × U(1) model, are
no longer topological in the SU(2) case. One may unwind
a 2π phase winding by entirely transferring density of one
component to the other, which may be done at zero energy
cost.

Figure 5 shows one of the main results of this paper. These
are simulations with SU(2) symmetry, i.e., ω = 0, as well as
η = 5.0 and f = 1/64. The top panel show the phase stiffness
associated with the phase sum, ϒ+

μ . This is the physically
relevant phase variable in this case, as it couples to the rotation.
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FIG. 4. (Color online) Thermally induced reconstruction from a
square vortex lattice in either of the components at η = 2,ω = 0.5,
to a hexagonal vortex lattice, as β is increased. Here, f = 1/64. (a)–
(f) show inverse temperatures β = {0.80,0.90,1.20,1.30,1.34,1.38},
respectively. Each subfigure shows S1(q⊥) only; S2(q⊥) is identical.
The physical reason for the reconstruction originates with the inter-
component density-density interaction term 2(η − ω)|ψ1|2|ψ2|2), and
is explained in detail in the text.

We observe that the stiffness along the z direction becomes
finite at an inverse temperature β ∼ 0.9. This is what one
would expect when a vortex lattice forms. However, the bottom
panels, which show the vortex density of component 1 at
β = 0.94, show no apparent signs of vortex ordering. Hence,
we have an unusual situation. There is a relatively large β

range where we have a finite z-directed helicity modulus of
the phase sum, but no apparent ordering of induced vortices. A
finite helicity modulus generally means that there are straight
vortex lines with very little transverse fluctuations threading
the entire system along the direction in question. In the U(1)
picture this corresponds to a regular vortex lattice. For an
SU(2) condensate, this is no longer the case. Large relative
amplitude fluctuations can occur since they have zero energy
cost in the ground state as the energy is no longer minimized
by a preferential value of |ψ1|2 − |ψ2|2. This results in many
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FIG. 5. (Color online) Illustration of the observed state with
coherence along the direction of the rotation axis without a regular
vortex lattice, seen only with SU(2) symmetry. The parameters used
are ω = 0.0, λ = 5, and f = 1/64. The top panel shows the helicity
modulus of the phase sum, ϒ+

μ . The two bottom panels show the
vortex densities n1(r⊥) at β = 0.94, where the z-directed modulus is
clearly finite. The bottom left and bottom right panels are taken from
simulations using 106 and 107 Monte Carlo sweeps, respectively. No
apparent vortex line structure is seen here, and by increasing the
number of Monte Carlo sweeps the variations of the vortex density
are smoothed out further. Note how the value of the average vortex
density seems to converge towards 1/64.

(nearly) degenerate vortex states between which the system
can fluctuate, thus greatly simplifying the effort of moving an
entire, almost straight, vortex line. We are left with a phase
where we have coherence along the z direction, but no regular
vortex lattice appears in thermal averages. Nearly straight
vortex lines will shift between a large number of degenerate, or
nearly degenerate, states at a time scale shorter than a typical
Monte Carlo run.

The bottom panels of Fig. 5 show some inhomogeneities of
the vortex densities, exemplifying that this is not an ordinary
vortex liquid with segments of vortex lines executing trans-
verse meanderings along their direction, which would yield
zero helicity modulus along the direction of the field-induced
vortices. Rather, what we have is a superposition of many lat-
ticelike states of nearly straight vortex lines, where the fluctua-
tions are largely collective excitations of entire nearly straight
lines, rather than fluctuations of smaller segments of lines.

We emphasize again that these collective excitations origi-
nate with large amplitude fluctuations due to the SU(2) softness
of the amplitudes of the components of the superfluid order
parameter, rather than with phase fluctuations. Increasing the
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FIG. 6. (Color online) Two examples of SU(2) vortex configura-
tions from a single simulation, for two different inverse temperatures.
The parameters η, f , and ω are fixed in each subfigure, at η = 1.0,
ω = 0.0, and f = 1/64. (a) shows β = 0.84, while (b) shows β =
1.50. Each subfigure shows vortex densities 〈ni(r⊥〉 in the left column,
amplitude densities 〈|ψi |2(r⊥〉 in the right column, and structure
factors (insets) of each component as indicated. This illustrates the
degeneracy of the vortex line lattice in the isotropic limit, as the
configurations evolve when β is varied. See Appendix D for more
details.

number of Monte Carlo sweeps by an order of magnitude
smooths these variations out (without noticably altering the
value of ϒ+

z ), as seen in the bottom right panel of Fig. 5. Note
how the average value of the vortex density seems to converge
towards 1/64. This is what we expect for a vortex lattice or
liquid in a [U(1) × U(1)]-symmetric model, as the density of
thermal vortices will average to zero, and f is the average flux
density per plaquette.

As the system is cooled further, the movements of large vor-
tex lines cease, and a regular vortex lattice appears. However,
degeneracy must still be present, as the exact pattern formed
by the lattice is distinctively different between simulations
(keeping all parameters equal). The lattice also has a tendency
to shift between configurations as the temperature is varied,
below the temperature of initial vortex-lattice formation. We
observe two distinct classes of vortex states, illustrated in
Fig. 6. The two are stripes [Fig. 6(a)] and honeycomb lattices
[Fig. 6(b)], both of which are seen in Ref. [6]. Note that these
vortex densities are taken from a single simulation, after the
lattice has formed. Within the accuracy of our simulations
the obtained states are not metastable. The evidence of this
is obtained by performing several independent runs from
different initial configurations. Again, we refer to Appendix D,
where Fig. 13 illustrates the degeneracy in the vortex line
lattices obtained in the isotropic limit in further detail.

V. EXPERIMENTAL CONSIDERATIONS

Hexagonal and square lattices have already been observed
in binary condensates of rubidium [7]. However, an SU(2)
condensate has not been realized experimentally. In this
section, we briefly outline under what circumstances an
observation of an SU(2) vortex state may be feasible.

In order to experimentally realize SU(2) conditions, one
requires a two-component BEC, where both intra- and inter-
component interactions are equal. As we have seen, the SU(2)
physics crucially depends on this, since even minor deviations
from this condition immediately yield U(1) × U(1) physics.
This corresponds to ω = 0 in our parametrization. Intra- and
intercomponent density-density interactions are given in terms
of scattering lengths. While tuning of these in an experiment is
possible with Feshbach resonances, it may still be a challenge
to tune two scattering lengths independently to be equal to a
third, to arrive at the SU(2) point. From what is known for
scattering lengths of real systems, it appears that a mixture
of two species of the same atom, but in different hyperfine
states, lends itself more readily to a realization of an SU(2)
condensate than a mixture of different atoms or a mixture of
different isotopes of the same atom. This is so, since in the
former case, the relevant scattering lengths typically a priori
are much more similar to each other than they are in more
heterogeneous mixtures.

One promising candidate therefore appears to be a conden-
sate of 87Rb prepared in the two hyperfine states |F = 1,mf =
1〉 ≡ |1〉 and |F = 2,mf = −1〉 ≡ |2〉. In this system, the
three relevant s-wave scattering lengths already have values
close to the point of interest, a11 = 100.4aB , a22 = 95.00aB ,
and a12 = 97.66aB , where aB is the Bohr radius [2,49].
Reference [11] reports on a magnetic Feshbach resonance at
a field of approximately 9.1 G, where control of a12 of the
order of 10aB is possible. Additionally, Ref. [50] reports on an
optical Feshbach resonance of the state |F = 1,mF = −1〉,
able to tune the intracomponent scattering length, using
two Raman lasers, with detuning parameters approximately
given by �1 = 2π × 75 MHz and �2 = 2π × 20 MHz. Here,
varying �2 tunes the value of the scattering length around
the Feshbach resonance, while varying �1 changes the width.
Hence, greater control of the resonance is possible with an
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optical Feshbach resonance compared to a magnetic one.
Presumably, there should exist optical Feshbach resonances
able to tune the scattering length of either the |1〉 or the |2〉
state, for instance the one reported to exist at 1007 G for
the |1〉 state [51]. This resonance should be far enough away
from the intercomponent resonance at 9.1 G to not cause any
interference.

This suggests one possible setup. Namely, prepare a two-
component condensate of 87Rb in the |1〉 and |2〉 states under
rotation, and tune a12 to a22 using a magnetic field. Then, tune
a11 to the same value using optical techniques, while taking
time-of-flight images of the condensate. The prediction is that
as the system is tuned through the optical Feshbach resonance,
one should observe a hexagonal composite vortex lattice
at subresonance frequencies, the nonunique vortex ordering
pattern, discussed above, at a frequency where all scattering
lengths are equal, close to the optical Feshbach resonance,
and finally the reappearance of a hexagonal vortex lattice at
frequencies above the frequency where all lengths are equal
(Fig. 6). The observation of a featureless rotating condensate
would be a direct manifestation of the loss of topological char-
acter of U(1) vortices in the SU(2)-symmetric case. It would
be interesting to study the dynamics of the vortex lattice in this
case with methods like those used in [52]. For other discussions
of SU(N) models in cold atoms see Refs. [53] and [54].

In actual experiments, a magnetic trap is used to confine
the condensate in a given lateral region. The effect of this
on thermal fluctuations in vortex matter has been studied in
detail in previous theoretical works for the one-component
case, without amplitude fluctuations [55,56]. The effect of the
trap is to yield a maximum overall condensate density at the
center of the trap, while depleting it towards the edge of the
trap. As a result, the lattice melts more easily near the edge of
the trap. As can be inferred from the work on single-component
melting [55,56], the results of the present paper, where no
inhomogeneity due to a magnetic trap has been accounted for,
is therefore most relevant to the region close to the center of
the trap.

VI. CONCLUSIONS

In this paper, we have investigated a two-component U(1) ×
U(1) and SU(2) Bose-Einstein condensate with density-
density interaction under rotation at finite temperature,
thereby extending previous works which calculated the zero-
temperature ground state numerically. In the U(1) × U(1)
case we report that thermal fluctuations can lead to a phase
transition between hexagonal and square vortex lattices with
increased temperature.

In the isotropic, SU(2), limit, we have observed an interme-
diate state of global phase coherence without an accompanying
vortex lattice in the thermally averaged measurements. In
addition, we observe a variety of dimerized vortex states,
such as dimerized stripes and honeycomblike lattices, which
exist for a wide range of temperature. These lattices could
be observed in binary Bose-Einstein condensates in two
separate hyperfine states, by precisely tuning the inter- and
intracomponent scattering lengths to the SU(2) point through
the use of Feshbach resonances.
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APPENDIX A: REWRITING THE GENERAL
HAMILTIONIAN

Here we present the details of rewriting Eq. (2) into Eq. (5),
which is more suited for our purposes. We repeat the starting
point here for convenience.

H =
∫

d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2mi

∣∣∣∣
(

∂μ − i
2π

�0
A′

μ

)
ψ ′

i

∣∣∣∣
2

+
N∑
i

α′
i |ψ ′

i |2 +
N∑

i,j=1

g′
ij |ψ ′

i |2|ψ ′
j |2

⎤
⎦ . (A1)

First, we scale the field variables and Ginzburg-Landau
parameters, to obtain some dimensionless quantities:

α′
i = α0αi, (A2)

g′
ij = g0gij , (A3)

|ψ ′
i | =

√
α0

g0
|ψi |. (A4)

This gives us the Hamiltonian,

H = α2
0

g0

∫
d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2miα0

∣∣∣∣
(

∂μ − i
�0

2π
A′

μ

)
ψi

∣∣∣∣
2

+
N∑
i

αi |ψi |2 +
N∑

i,j=1

gij |ψi |2
∣∣ψj

∣∣2

⎤
⎦ , (A5)

which on the lattice reads

H = α2
0a

3

g0

∑
r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

miα0a2

× [|ψr,i |2 − |ψr+μ̂,i ||ψr,i | cos(θr+μ̂,i − θr,i − Aμ,r)]

+
N∑
i

αi |ψr,i |2 +
N∑

i,j=1

gij |ψr,i |2|ψr,j |2
⎤
⎦ , (A6)

where a is the lattice constant, and we have introduced

Aμ = 2π

�0
aA′

μ. (A7)
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Next, we specialize to the case N = 2, α1 = α2, g11 =
g22 ≡ g, and m1 = m2, and define a2 to be equal to �

2/mα0,
which sets our length scale. Note that it should not be
confused with the coherence length in the multicomponent
case without intercomponent density-density interaction. For
the definition of coherence lengths in the presence of multiple
components and intercomponent density-density interactions,
see Refs. [57] and [58]. The energy scale is defined as J0 as
follows:

J0 = α2
0a

3

g0
. (A8)

The coupling parameters η and ω used in this paper are defined
by comparing the potential term of Eq. (A6) to the form where
the soft constraints |ψ1|2 + |ψ2|2 = 1 and |ψ1|2 − |ψ2|2 = 0
are implemented. Thus, we have

V (�) = η(|ψ1|2 + |ψ2|2 − 1)2 + ω(|ψ1|2 − |ψ2|2)2, (A9)

with

η = −α

2
− 3

2
, (A10)

ω = g − g12

2
. (A11)

The lattice version of the Hamiltionian reads

H =
∑
r,μ̂
i

|ψr+μ̂,i ||ψr,i |[cos(θr+μ̂,i − θr,i − Aμ,r)]

+
∑

r

η(|ψ1|2 + |ψ2|2 − 1)2

+
∑

r

ω(|ψ1|2 − |ψ2|2)2. (A12)

This model will then have the following continuum form:

H =
∫

d3r

[
N∑
i

1

2

∣∣(∂μ − iAμ)ψi

∣∣2 + V (�)

]
. (A13)

APPENDIX B: FIRST-ORDER LATTICE MELTING
FOR N = 1 RECONSIDERED

As a benchmark on simulations with amplitude fluctuations
included, we verify the well-established first-order melting
transition on this model with only a single component
of the order-parameter field, in the presence of amplitude
fluctuations. The added feature of the computation is that the
complete amplitude-distribution function was utilized, through
the methods described in Sec. III. In this case, the term in the
potential proportional to ω in Eq. (6) is absent, and the potential
reduces to

V (�) = η(|�|2 − 1)2. (B1)

With amplitude fluctuations neglected, this model reduces to
the much studied uniformly frustrated 3D XY model, with well-
known results as mentioned in the Introduction of the paper.
The model features a first-order phase transition manifested
as a melting of the frustration-induced hexagonal lattice of

(a)

(b)

FIG. 7. (Color online) Specific heat (a) and helicity moduli (b)
for N = 1, f = 1/16, and η = 10. At β = 0.751 we see a clear
anomaly in the specific heat accompanied by a sharp jump in the
longitudinal helicity modulus. The transverse moduli remain zero
throughout the transition.

vortices [16,18–25]. The fluctuations responsible for driving
this transition are massless transverse phase fluctuations of the
order parameter.
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FIG. 8. (Color online) Vortex density n(r⊥) and structure factor
S(q⊥) (inset) for N = 1, f = 1/16, and η = 10, at inverse tem-
peratures β = 0.749 (left) and β = 0.752 (right). This corresponds
to temperatures slightly higher and lower, respectively, than the
transition point β = 0.751.

013605-10



FLUCTUATION EFFECTS IN ROTATING BOSE-EINSTEIN . . . PHYSICAL REVIEW A 91, 013605 (2015)

(a)

(b)

FIG. 9. (Color online) Specific heat (a) and helicity moduli of
both components (b), for N = 2, f = 1/16, ω = 1.0, and η =
0.5. At β ≈ 0.53 we see a clear anomaly in the specific heat
accompanied by a sharp jump in the longitudinal helicity moduli
of both components. The transverse helicity moduli remain at zero
throughout the transition. The insets in (a) show the structure factors
at the high- and low-temperature sides of the transition, respectively,
β = 0.528 and β = 0.534. This clearly shows that the sharp anomaly
in the specific heat separates an isotropic phase from a phase with
hexagonal order.

The simulations were performed with η = 10. Figure 7(a)
shows the specific heat, which has strong signs of an anomaly
at β = 0.751. Figure 7(b) shows that the anomaly in the
specific heat is accompanied by a relatively sharp jump in
the helicity modulus in the z direction. It is also important
to note that the helicity moduli in the transverse directions
remain zero throughout the transition. This indicates that
the vortex lattice melts in a genuine phase transition, and
not as a result of thermal depinning from the underlying
numerical lattice. This is therefore a strong indication of
a first-order melting transition. Figure 8 shows the vortex
density and structure factor immediately before and after the
transition. The high-temperature side shows an incoherent
vortex liquid, characterized by a circular structure factor. The
low-temperature side shows that a clear hexagonal structure is
established as soon as the liquid freezes.

(a)

(b)

FIG. 10. (Color online) Specific heat (a) and helicity moduli of
both components (b), for N = 2, f = 1/16, ω = 1.0, and η = 2.0. At
β ≈ 1.11 we see a clear anomaly in the specific heat accompanied by
a sharp jump in the longitudinal helicity moduli of both components.
The transverse helicity moduli remain at zero throughout the
transition, except for the x-directed modulus which drops to a negative
value at a point well separated from the transition. The insets in (a)
show the structure factors at the high- and low-temperature sides of
the transition, respectively, β = 1.110 and β = 1.112. This clearly
shows that the sharp anomaly in the specific heat separates an isotropic
phase from a phase with square order.

We emphasize that these results are not unexpected. The
purpose of including them here is to demonstrate that the
method of including amplitude fluctuations into the computa-
tion of the vortex lattice melting reproduces the known result
for N = 1, previously obtained in the absence of amplitude
fluctuations [16,18–25], but generally believed to be correct
also when amplitude fluctuations are included.

APPENDIX C: FIRST-ORDER LATTICE MELTING
FOR N = 2

We next consider the melting transition for N = 2,
where the intercomponent density-density interaction 2(η −
ω)|ψ1|2|ψ2|2 term in the potential energy in Eq. (7) comes
into play. We consider the [U (1) × U (1)]-symmetric case, i.e.,
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FIG. 11. (Color online) Tableau illustrating the different density and vortex lattices in real space, as the parameter ω increases, i.e., as the
intercomponent density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square density and vortex lattice. The
parameters f , β, and η are fixed to f = 1/64, β = 1.5, and η = 5 while ω is increased from 0.0 to 6.0 horizontally. The six rows show, from top
to bottom the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of components
1 and 2. For ω = 0, which is the SU(2)-symmetric case, the system exhibits a dimerized phase in component 1, which is complementary to
a dimerized phase in component 2, shifted with respect to that of component 1 by an amount corresponding to the lattice constant of the
density lattice. The ground state, where the roles of components 1 and 2 are interswitched, is degenerate with the illustrated phase. Note that
an area of the system with a high vortex density always corresponds to an area with a low amplitude density. For the SU(2)-symmetric case,
U(1) vortices are not topological. When ω �= 0, the SU(2) symmetry is broken down to U(1) × U(1), and U(1) vortices are topological. The
reduction of the interaction 2(η − ω)|ψ1|2|ψ2|2 reduces the tendency towards formation of square density and vortex lattices, leading to an
eventual reconstruction to a standard hexagonal vortex lattice, and hence a hexagonal density lattice.

ω �= 0. Again, the full spectrum of amplitude fluctuations is
included, using the methods described in Sec. III.

For parameters (η,ω,f ) = (0.5,1.0,1/16) and (η,ω,f ) =
(2.0,1.0,1/16) the lattices are clearly hexagonal and square,

respectively. The hexagonal lattice obtained for η = 0.5 and
ω = 1.0 was found to have a melting transition at β ≈ 0.53.
Figure 9(a) shows the specific heat with a δ-function-like
anomaly at this temperature. Around this point, we have
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FIG. 12. (Color online) Tableau illustrating the different density and vortex lattices in real space, as the parameter ω increases, i.e., as the
intercomponent density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square density and vortex lattice. The
parameters f , β, and η are fixed to f = 1/64, β = 1.5, and η = 3 while ω is increased from 0.0 to 5 horizontally. The six rows show, from top
to bottom, the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of components
1 and 2.

used a closely spaced set of temperatures, in order to get
a proper resolution of the anomaly. Figure 9(b) shows the
helicity moduli of both components. Both of the z-directed
stiffnesses have a zero expectation value in the disordered
phase, indicating no phase coherence. In the ordered phase,
both of 〈ϒz,i〉 develop finite expectation values which means
that the system has superfluidic properties along the direction
of rotation. The two phases are divided by a sharp jump in
the longitudinal phase stiffness, a characteristic of a first-order

transition. The drop is even sharper than was obtained for the
N = 1 case, indicating an even larger latent heat associated
with the transition. The x- and y-directed stiffnesses remain
zero in the ordered state, which rules out any possibility of
numerical pinning effects [44,45]. Looking further at the insets
of Fig. 9(a), which show the structure factors in the disordered
and ordered phases, we see clear evidence of an incoherent
vortex liquid at β < 0.53 in the left inset, while the right inset
shows an ordered hexagonal vortex liquid lattice at β > 0.53.
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FIG. 13. (Color online) Tableau illustrating the different SU(2) density and vortex lattices in real space, as the parameter β increases. The
parameters f , η, and ω are fixed to f = 1/64, η = 1.0, and ω = 0.0 while β is increased from 0.9 to 1.3 horizontally. The six rows show,
from top to bottom, the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of
components 1 and 2. Note how the vortex structures and the density structures always track, that is, an area of the system with a high vortex
density always corresponds to an area with a low amplitude density.

Turning to the square lattice, now the parameters in question
are η = 2.0 and ω = 1.0. The transition point is located at
β ≈ 1.11. Figure 10(a) shows the specific heat. Again, an
anomaly is located at the transition point. The helicity moduli,
shown in Fig. 10(b), also show first-order behavior. Both z-
directed components are zero on the high-temperature side,
and develop a finite value through a sharp jump at the low-
temperature side. It is important to also consider the transverse

components. Both 〈ϒx,i〉 and 〈ϒy,i〉 are zero throughout the
area of interest. Here we note that the x-directed modulus drops
to a tiny negative value at a point after the transition. This is
a nonphysical effect, most likely caused by a metastable state.
We believe this is simply a numerical artifact, as we used a
lower amount of Monte Carlo time away from the transition.
Turning our attention to the structure factors, shown in the
insets of Fig. 10(b), we again see the isotropic vortex liquid in
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the disordered side of the transition; the ordered side shows a
square fourfold symmetry.

Thus, both the square and the hexagonal lattices undergo
first-order melting transitions from their respective ordered
phases, into an isotropic vortex line liquid.

APPENDIX D: INTERCOMPONENT INTERACTION, AND
ITS EFFECT ON DENSITY AND VORTEX LATTICES

In this Appendix, we include more detailed figures of the
vortex and density structures in real and reciprocal space, as
the intercomponent interaction 2(η − ω)|ψ1|2|ψ2|2 is varied,
to supplement the points made in Secs. IV A and IV C.

Figures 11 and 12 illustrate how the vortex lattice and
the component densities reconstruct as the intercomponent
density-density interaction (η − ω)|ψ1|2|ψ2|2 changes. We do
this by fixing η at 5.0 and 3.0, respectively, and tuning ω. The
inverse temperature β is also fixed in both tableaus. Common
in both figures is that the vortices first form two interlaced
square lattices for sufficiently small ω, and, by extension, large
intercomponent coupling. Then the lattices reconstruct into a
hexagonal structure. Note that the hexagonal lattices of the two
components start out slightly shifted with respect to each other,
but become completely cocentered when ω > η. This final
state corresponds to an attractive intercomponent coupling.

The behavior of the amplitude densities is explained in
Sec. IV A, and we can compare the reasoning to the top two
rows of Figs. 11 and 12. First of all, the presence of a vortex
locally suppresses the amplitude, which again may affect
the immediate neighborhood, depending on the value of the
intercomponent coupling. For strong repulsive couplings a

suppression of the amplitude of one color in an area leads to an
enhancement of the amplitude of the other color in the same
area. The absence of vortices in the neighborhood then leads
to the opposite effect. This causes staggering of the amplitude
densities and formation of distinct vortex sublattices.
Considering carefully the range of variation in the amplitudes,
it is seen that there are rather large gradients for the square
structures. When the coupling is only weakly repulsive or even
attractive there is a much less dramatic effect. The variations
in the amplitudes are much smaller; there is little to no
staggering.

The first column of Figs. 11 and 12 is in a different
class from the rest. Here ω = 0, and we are in the SU(2)
regime. Figure 13 further illustrates the wide variety of ground
states obtainable here. This tableau, in contrast to the two
previous ones, has a fixed η and ω, while we vary the inverse
temperature β from column to column. These pictures are
all taken from a single simulation, evolved through Monte
Carlo sampling from a single randomized initial state as
β is increased. The vortex lattice initially forms at around
β = 0.7 and evolves continuously. It continues to evolve even
at the lowest temperatures (β = 1.5) used in the simulation.
This pattern is common in all simulations done with similar
parameter sets.

The common features in the SU(2) lattices are clearly seen
in Fig. 13. The vortices tend to form dimers, which usually
have some global alignment. The alignment is evident in the
Bragg peaks, as we in most cases have two opposing peaks
of higher intensity than the rest. The vortex dimer complexes
always arrange themselves in a hexagonal structure, which is
also seen in the structure factors.
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