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Two-leg fermionic Hubbard ladder system in the presence of state-dependent hopping
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We study a two-leg fermionic Hubbard ladder model with a state-dependent hopping. We find that, contrary to
the case without a state-dependent hopping, for which the system has a superfluid nature regardless of the sign of
the interaction at incommensurate filling, in the presence of such a hopping a spin-triplet superfluid, spin-density
wave, and charge-density wave phases emerge. We examine our results in the light of recent experiments on
periodically driven optical lattices in cold atoms. We give protocols allowing us to realize the spin-triplet superfluid
elusive in the cold atoms.
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I. INTRODUCTION

Strongly correlated one-dimensional systems have attracted
strong attention over the past decades. In general, in such
systems the excitations differ strongly from their higher-
dimensional counterparts, and for fermions are very different
from the usual Landau quasiparticles occurring in a Fermi-
liquid state [1]. Instead, many of the one-dimensional systems
belong to the universality class known to be the Tomonaga-
Luttinger liquid [2].

In particular, the system made of two coupled fermionic
chains, namely, the two-leg ladder system, has been intensively
studied in the past [2–13]. This system has been shown to
exhibit superconductivity, not only for attractive interactions
(s-wave superconductivity), but also quite remarkable for
purely repulsive ones. In the latter case the superconductiv-
ity is of d-wave symmetry. The d-wave superconductivity
emerges by doping of a Mott insulating phase at half
filling.

While the one-dimensional system has been intensively
studied as a first step towards other materials in higher
dimensions, such as the high-Tc superconductors, nowadays
it is a major subject in itself due to the relevance for some
experiments, particularly in the field of cold atomic gases [14].

Indeed, due to rapid advances in technology, cold atoms
are a promising way to investigate one-dimensional systems
with an unprecedented level of control on the interchain
hopping and interactions. Most of the atoms utilized in ex-
periments have internal degrees of freedom, which correspond
to hyperfine states when we focus on alkali-metal species,
already allowing reproduction of models such as the Hubbard
model [15,16]. More recently, ladder systems have also been
produced, both for bosonic and fermionic states [17–21].

In addition to simulating systems directly existing in
condensed matter physics, by using the unique manipulations
available in experiments, cold atoms also allow us to realize
new quantum states of matter.

One such extension, which is the focus of this paper, is
the time modulation of optical lattices [22–26]. By apply-
ing such a modulation with sufficiently high frequencies,
it is possible to tune the hopping matrix. This technique
allows one to control the hopping not just in strength but
also in sign, since the renormalized hopping is essentially
proportional to a Bessel function. In addition, by using the
state-dependent optical lattice [27,28] or applying a magnetic

field one can also control the hopping matrix element in a
state-dependent manner. In fact, such a setup has motivated
several theoretical studies on existence or nonexistence of
exotic paired states in the two-dimensional Hubbard model
[29–32], and on the presence of incommensurate density
waves and segregation in the one-dimensional Hubbard model
[33,34].

One may also expect the realization of an unconventional
superfluid in cold atoms by means of such a unique technique.
To realize a superfluid in cold atoms, so far, it is necessary
to use a Feshbach resonance, since the typical temperature in
the experiments is of the order of a tenth of the Fermi tem-
perature [14]. A weak-coupling BCS transition temperature
is extremely low compared to this temperature. A Feshbach
resonance allows one to boost the interactions enough so that
s-wave superfluidity can be routinely realized for attractive
interactions. However, other symmetries are not so easily
attainable. A p-wave Feshbach resonance is unstable due to
the atom-molecule and molecule-molecule inelastic collisions
[35]. Therefore the realization of an unconventional superfluid
with cold atoms is a highly challenging issue.

In this paper, we show how one can realize a spin-triplet
superfluid in a two-leg Hubbard ladder system. In the presence
of a state-dependent hopping, the d-wave pairing state in the
normal ladder is replaced by a spin-triplet superfluid and a
spin-density-wave (SDW) state. We also discuss the case of an
attractive interaction which would lead in the absence of state-
dependent hopping to s-wave superconductivity and which
gives an incommensurate charge-density wave (CDW) in the
presence of state-dependent hopping.

With a ladder system we thus show that we can obtain a spin-
triplet state with purely local (s-wave) repulsive interactions,
which is an attainable situation in experiments. In a single
chain such a state would have demanded an extended Hubbard
model with on-site repulsion and nearest-neighbor attraction
of the same order of magnitude [36], something which is at
the moment out of reach in cold atomic systems.

This paper is organized as follows. Section II discusses
the Hamiltonian we propose and its low-energy description
by means of the bosonization technique. In Sec. III, the
possible phases are determined by using a renormalization
group analysis. In Sec. IV, we discuss the properties of the
strong-coupling limit in the system and experimental protocols
toward its realization. Section V is the Conclusion. Technical
details can be found in the Appendix.
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II. HAMILTONIAN

We study two-component fermions confined in the two-leg
ladder geometry. Our starting point is the following two-leg
Hubbard ladder model:

H = −t‖
N∑

j=1

∑
s=↑,↓

∑
p=±1

(c†j,s,pcj+1,s,p + H.c.)

−
∑
j,s

t⊥s(c
†
j,s,1cj,s,−1 + H.c.) + U

∑
j,p

nj,↑,pnj,↓,p, (1)

where t‖ and t⊥s are, respectively, the hopping matrices along
the chain and rung directions, and j and p indicate the
chain and ladder indices. Here, the on-site Hubbard U can
correspond to both repulsive and attractive interactions, which
indeed can be realized experimentally. We focus on a system at
incommensurate filling since we are interested in the stability
of the superfluids in the presence of the state-dependent
hopping, in particular, in the presence of such a hopping along
the rung direction. The effect of the state-dependent chain
hopping has been partially discussed in Refs. [30,31,33]. In
this section and Sec. III, we discuss the weak-coupling limit
to analyze the possible phases using a field theory analysis. In
our model, this condition implies t‖ � |U |, t⊥s .

To deal with the system in the weak-coupling limit correctly,
we first move to the bonding and antibonding representation
for the fermion operators:

cj,s,0(π) = [cj,s,1 + (−)cj,s,−1]/
√

2, (2)

which allows us to diagonalize the hopping terms. While in
the absence of the rung hopping, the bonding and antibonding
bands are energetically degenerate, these are split in the
presence of the the rung hopping. In the absence of the state-
dependent rung hopping, the splitting is independent of the
states (or spins), and therefore, there are four different points
at the Fermi level, as can be seen from Fig. 1. In the presence of
the state-dependent rung hopping, however, the splitting starts
to depend on the states and leads to eight different points at the
Fermi level. At the same time, at t⊥↑ = −t⊥↓, the four-point
structure at the Fermi level is recovered, even though in this
case the degeneracies occur between (π, ↑) and (0, ↓) and

(a) (b)

FIG. 1. Band structure of the two-leg fermionic Hubbard ladder
of atoms with spin down (a) without the state-dependent hopping and
(b) with state-dependent hopping as t⊥↑ = −t⊥↓. In each case, there
are four different points at the Fermi level. If the repulsive interaction
is added, the latter leads to a spin-triplet superfluid while the former
leads to a d-wave superfluid at incommensurate filling. The band
structure of atoms with spin up does not change in the presence of
the state-dependent hopping.

between (0, ↑) and (π, ↓) (see Fig. 1). Then, the interaction
term plays the role of hybridization between the bonding and
antibonding bands, which is essential to lead to nontrivial states
of matter in the system.

We now consider the continuum limit to use the bosoniza-
tion. The fermion in the continuum limit ψ can be expressed
with conjugate phase fields φ and θ as [2]

ψsqr (x) = 1√
2πα

ηsqe
irkF xe−i[rφsq (x)−θsq (x)], (3)

with the Fermi momentum kF , index q = 0 or π for the
bonding and antibonding bands, index r = −1 or 1 for the
left or right mover, cutoff parameter α, and the phase fields
φsq and θsq to be conjugate. Here, we explicitly introduce the
Klein factor η, which guarantees the correct anticommutation
relation of the fermions and is also important to obtain correct
expressions for the bosonized Hamiltonian and correlation
functions. By substituting (3) into (1), one may obtain the
following low-energy effective Hamiltonian:

H =
∑

μ=ρ,σ

∑
ν=±

∫
dx

2π

[
uμνKμν(∇θμν)2 + uμν

Kμν

(∇φμν)2

]

+
∫

dx

2(πα)2
[cos 2φσ+{g1 cos(2φσ− − δσ−x)

+g2 cos(2φρ− − δρ−x)}
+ cos 2θρ−{g3 cos(2φσ− − δσ−x) + g4 cos 2φσ+}
− cos 2θσ−{g5 cos(2φρ− − δρ−x) + g6 cos 2φσ+}], (4)

where we introduced for φ fields,

φρ+ = 1
2 (φ↑0 + φ↓0 + φ↑π + φ↓π ), (5)

φρ− = 1
2 (φ↑0 + φ↓0 − φ↑π − φ↓π ), (6)

φσ+ = 1
2 (φ↑0 − φ↓0 + φ↑π − φ↓π ), (7)

φσ− = 1
2 (φ↑0 − φ↓0 − φ↑π + φ↓π ), (8)

and similar relations for θ fields. To obtain the above,
we neglect the umklapp scatterings, since the system
at incommensurate filling is concerned. For our original
Hamiltonian, we find δρ− = 2Kρ−(t⊥↑ + t⊥↓)/uρ−, δσ− =
2Kσ−(t⊥↑ − t⊥↓)/uσ−, gi = U (i = 1,2, . . . ,6). In addition,
uμν and Kμν are the velocity and the Tomonaga-Luttinger
parameter, respectively. We also note that to obtain the above
bosonized Hamiltonian (4), we adopt the following convention
on the ordering of the Klein factors:

η↑0η↓0η↓πη↑π = 1. (9)

III. RENORMALIZATION GROUP ANALYSIS

Based on the bosonized Hamiltonian (4), we now determine
the possible phases in this model. To this end, we employ
the renormalization group (RG) approach in the bosonized
Hamiltonian [2]. By performing the scaling of the cutoff
(α → α′ = αedl), one may obtain the set of the RG equations
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at the one-loop level (quadratic with respect to the coupling
constants), which is given by (see Appendix)

dKσ−
dl

= −K2
σ−J0(δσ−α)

[
y2

1 + y2
3

]
2

+ J0(δρ−α)y2
5 + y2

6

2
,

(10)

dKσ+
dl

= −K2
σ+

[
J0(δσ−α)y2

1 + J0(δρ−α)y2
2 + y2

4 + y2
6

]
2

,

(11)

dKρ−
dl

= −K2
ρ−J0(δρ−α)

[
y2

2 + y2
5

]
2

+ J0(δσ−α)y2
3 + y2

4

2
,

(12)

dy1

dl
= (2 − Kσ− − Kσ+)y1 − y3y4, (13)

dy2

dl
= (2 − Kρ− − Kσ+)y2 − y5y6, (14)

dy3

dl
= (2 − Kσ− − 1/Kρ−)y3 − y1y4, (15)

dy4

dl
= (2 − Kσ+ − 1/Kρ−)y4 − y1y3J0(δσ−α), (16)

dy5

dl
= (2 − Kρ− − 1/Kσ−)y5 − y2y6, (17)

dy6

dl
= (2 − Kσ+ − 1/Kσ−)y6 − y2y5J0(δρ−α), (18)

dδσ−
dl

= δσ− − Kσ−J1(δσ−α)
[
y2

1 + y2
3

]
α

, (19)

dδρ−
dl

= δρ− − Kρ−J1(δρ−α)
[
y2

2 + y2
5

]
α

, (20)

where the initial values are given as yi(0) = U/(2πvF )
(i = 1,2, . . . ,6), Kρ−(0) = Kσ−(0) = 1, Kρ+ =
1/

√
1 + U/(2πvF ), Kσ+(0) = 1/

√
1 − U/(2πvF ) with

the Fermi velocity vF . We note that since there is no cosine
term with respect to φρ+ and θρ+, which are decoupled from
the other phase fields, Kρ+ does not flow up to this order
of approximation. In addition, Jn (n = 0,1) is the nth-order
Bessel function, which plays a role in controlling the relevance
of the corresponding cosine terms. Thus one may classify the
fixed points into the following three cases:

(a) δρ− → ∞, δσ− → 0,

(b) δρ− → ∞, δσ− → ∞,

(c) δρ− → 0, δσ− → ∞.

First, let us consider the case (a), which corresponds to
the limit t⊥↑ ≈ t⊥↓. In this case, the terms proportional to
g2, g5 can be dropped due to the rapid oscillation of the
cosines. Thus the RG equations reduce to ones without the
state-dependent hopping [2], since this limit also allows us
to do the substitutions, J0(δσ−α) = 1 and J0(δρ−α) = 0. The
RG analysis shows the fixed point is given by g1 → −∞,
g3 → ∞, g4 → ∞, g6 → 0 for U > 0 and g1 → −∞, g3 →
−∞, g4 → 0, g6 → ∞ for U < 0. While regardless of the
sign of the interaction, φρ−, φσ+, and φσ− are gapped,
these minimums are different for opposite signs of the
interaction. It turns out that the minimum can be determined
by the fixed point. Then, the dominant correlations are the

d-wave superfluid for U > 0, whose pairing occurs between
the different chains, and the s-wave superfluid for U < 0,
whose pairing essentially occurs on site. The corresponding
operators are

ODSF(j ) =
∑

p

(cj,↑,pcj,↓,−p − cj,↓,pcj,↑,−p)

∼ e−iθρ+ (cos φρ− sin φσ+ sin φσ−
− i sin φρ cosσ+ cos φσ−), (21)

OSSF0 (j ) =
∑

p

(cj,↑,pcj,↓,p − cj,↓,pcj,↑,p)

∼ e−iθρ+ (cos φρ− cos φσ+ cos φσ−
+ i sin φρ− sin φσ+ sin φσ−), (22)

respectively [2]. In contrast to the single-chain Hubbard model,
we have for the ladder a superfluid regardless of sign of the
interaction.

Let us next consider the case (b), where both of the rung
hoppings t⊥ρ ≡ t⊥↑ + t⊥↓ and t⊥σ ≡ t⊥↑ − t⊥↓ are relevant
and the substitutions J0(δρ−α) = J0(δσ−α) = 0 are allowed.
In this case, the effects of g1, g2, g3, g5 can be dropped due
to the large oscillations. By solving the RG equations under
these conditions, the fixed points are shown to be g4 → ∞,
g6 → ∞ for U > 0 and g4 → −∞, g6 → −∞ for U < 0.
Thus we see θρ−, φσ+, θσ− are going to be gapped. From the
fixed point analysis, we find that the following SDW and CDW
operators are relevant for U > 0 and U < 0, respectively:

OSDWπ (j ) =
∑

p

p(c†j,↑,pcj,↑,p − c
†
j,↓,pcj,↓,p)

∼ e−iφρ+ (sin θρ− cos φσ+ cos θσ−
− cos θρ− sin φσ+ sin θσ−), (23)

OCDWπ (j ) =
∑

p

p(c†j,↑,pcj,↑,p + c
†
j,↓,pcj,↓,p)

∼ e−iφρ+ (cos θρ− cos φσ+ sin θσ−
− sin θρ− sin φσ+ cos θσ−), (24)

where π indicates the difference of the densities on the
two legs. The presence of the state-dependent rung hopping
as |t⊥↑/t⊥↓| �= 1 tries to destroy the the superfluidity for
the two-leg Hubbard ladder, and causes fluctuations toward
crystalline orders such as the SDW or CDW. Here, one may
notice the analogy with the single-chain Hubbard system in
the presence of a state-dependent hopping [33], where in the
wide range of parameters SDW and CDW are shown to be
the dominant fluctuations for U > 0 and U < 0, respectively.
Such emergences of the density wave states in the single-chain
system are natural, since one of the spin components is
reluctant to hop between different sites, However, now we
impose the spin dependence only for the rung direction. Thus
the emergence of the SDW or CDW in our model is less trivial.

Let us finally consider the case (c), which can be realized
when t⊥↑ ≈ −t⊥↓ and therefore the substitutions J0(δρ−α) =
1 and J0(δσ−α) = 0 are justified. In this case, g1, g3 can be
dropped in a manner similar to the other cases. By solving the
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RG equations, we find the fixed points to be g2 → −∞, g4 →
0, g5 → ∞, g6 → ∞ for U > 0 and g2 → −∞, g4 → 0,
g5 → −∞, g6 → −∞ for U < 0, and therefore φρ−, φσ+, θσ−
are gapped. In accordance with the fixed points, the dominant
correlations are shown to be the spin-triplet superfluid along
the z direction for U > 0 and s-wave superfluid for U < 0,
where the corresponding operators are

OTSFz (j ) =
∑

p

(cj,↑,pcj,↓,−p + cj,↓,pcj,↑,−p)

∼ e−iθρ+ (cos φρ− cos φσ+ cos θσ−
− i sin φρ− sin φσ+ sin θσ−), (25)

OSSFπ (j ) =
∑

p

p(cj,↑,pcj,↓,p − cj,↓,pcj,↑,p)

∼ e−iθρ+ (sin φρ− sin φσ+ cos θσ−
+ i cos φρ− cos φσ+ sin θσ−), (26)

respectively. We first focus on the emergence of the dominant
fluctuation of the spin-triplet superfluid for U > 0. Namely,
the sign inversion in the rung hopping regarding only one
of the spin components allows the change of nature of the
pairings from the interchain spin singlet to the interchain spin
triplet. In the bonding and antibonding representation, while
the d-wave superfluid operator has the form cj,↑,0cj,↓,0 −
cj,↑,π cj,↓,π , the spin-triplet superfluid occurring is given as
cj,↑,0cj,↓,π + cj,↓,0cj,↑,π . To understand the mechanism, we
first point out that such a sign inversion in the rung hopping
can be achieved by introducing the Peierls phases both in
charge and spin sectors by π/2. Then, what is important for the

(a)

(b)

(c)

FIG. 2. (Color online) Possible phases for the repulsive Hub-
bard interaction, U > 0: d-wave superfluid (a), spin-density wave
(b), spin-triplet superfluid along the z direction (c). The arrows
and ellipses (shaded ellipses) indicate the spins and spin-singlet
pairing (spin-triplet pairing, especially, |Sz = 0〉 = |↑↓〉 + |↓↑〉),
respectively. Since U > 0, the on-site pairing is discouraged and the
interchain pairing is selected by the many-body effect for t⊥↑ ≈ ±t⊥↓.
The SDW state realized has the alternate occupation in spin on the
two legs.

(a)

(b)

(c)

FIG. 3. Possible phases for the attractive Hubbard interaction,
U < 0: bonding s-wave superfluid (a), charge-density wave (b),
antibonding s-wave superfluid (c). The difference of the dashed
curves is that the s-wave superfluid (a) occurs for the bonding band of
the Cooper pairs while the superfluid (c) occurs for the antibonding
band of the Cooper pairs. The CDW (b) has the alternate occupation
on the two legs.

pairing is the Peierls phase in the spin sector. In fact, it has been
shown in Ref. [37] that such a Peierls phase causes the spin
rotation of the fermions for one of the chains and transforms
a spin-singlet into a spin-triplet pairing. For U < 0, on the
other hand, the difference between the s-wave superfluids in
Eq. (26) and in Eq. (22) is that if we treat the Cooper pairs
occurring in each chain as the bosons, the superfluid in the
absence of the state-dependent hopping occurs for the bonding
band of the bosons, while the superfluid in the presence of
it occurs for the antibonding band of the bosons. Compared
with the situation from the spin-singlet to spin-triplet pairings
for U > 0, the important ingredient for this change of the
s-wave superfluids for U < 0 is the Peierls phase in charge
sector. One may also accept this situation recalling that in a
Bose-Einstein condensate on a double-well potential, a BEC
on the bonding band is normally the ground state while a
BEC on the antibonding band becomes the ground state in the
presence of the sign inversion hopping [38].

The possible phases are summarized in Figs. 2 and 3.

IV. DISCUSSION

A. Strong-coupling limit

So far, we have discussed the weak-coupling limit by means
of the bosonization and RG analysis; it is also interesting to
see what happens in the strong-coupling limit in which naively
a similar phase diagram may be expected. For the U > 0
case, in fact, it may be difficult to depict a general phase
diagram analytically since a faithful effective Hamiltonian has
yet to be known, except for commensurate filling such as half
filling. In addition, the rung hopping is a relevant perturbation,
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which prevents one from starting at the single-chain Hubbard
model where the Bethe ansatz approach is available. At the
same time, the previous numerical analyses in the absence of
the state-dependent hopping show that the d-wave superfluid
state emerges even in the strong-coupling limit [2,10–13].
In addition, since the hybridization among the four different
Fermi points by the on-site repulsive interaction shown in
Fig. 1(a) is an essential ingredient of the d-wave state, we
obtain the d-wave superfluid not only for t‖ � t⊥ but also for
t‖ ≈ t⊥, in which the numerical calculation has been performed
[10–13]. Therefore the presence of the spin-triplet superfluid in
the strong-coupling limit can also be shown with the argument
in Sec. III. Namely, by using the canonical transformations
cj,s,1 → aj,s,1cj,s,−1 → ±aj,s,−1 where the sign is + for s =↑
and − for s =↓, the Hamiltonian with t⊥↑ = −t⊥↓ is mapped
onto one with t⊥↑ = t⊥↓, that is, a normal two-leg fermionic
Hubbard ladder can be obtained. Accordingly, the operator of
the spin-triplet superfluid is transformed into that of the d-wave
superfluid. Therefore, once we confirm the emergence of the
d-wave superfluid in the normal two-leg fermionic Hubbard
ladder system, we see that the spin-triplet superfluid occurring
in t⊥↑ ≈ −t⊥↓ is robust. We also note that the essence of the
spin-triplet superfluid is the manipulation on the rung hopping,
and thus, nothing happens and the d-wave superfluid remains
even if such a manipulation on the hopping is performed for
the chain direction. Thus to see the spin-triplet superfluid,
the manipulation on the hopping along the rung direction is
required. Another interesting but remaining issue may be the
possibility of segregation in the limit t↑ = 0 or t↓ = 0 [39,40].

On the other hand, for the U < 0 case, we can discuss the
possible phases in the strong-coupling limit by means of an
effective Hamiltonian approach. To see this, we first perform
the so-called particle-hole transformation [41] in this model.
Then the original model is mapped onto the system with U > 0
and spin imbalance at half filling, and therefore the effective
Hamiltonian is shown to be

H = J‖
∑

j

(�Sj,1 · �Sj+1,1 + �Sj,−1 · �Sj+1,−1)

−h
∑

j

(
Sz

j,1 + Sz
j,−1

) + J
xy

⊥
∑

j

(
Sx

j,1S
x
j,−1 + S

y

j,1S
y

j,−1

)

+ J z
⊥

∑
j

Sz
j,1S

z
j,−1, (27)

where J‖ = 4t2
‖ /|U |, J

xy

⊥ = 4t⊥↑t⊥↓/|U |, J z
⊥ = 2(t2

⊥↑ +
t2
⊥↓)/|U |, and h is a magnetic field corresponding to filling

in the original attractive model. By performing bosonization
for the above Hamiltonian [2], one may obtain

H eff =
∑

μ=s,a

∫
dx

2π

(
uμKμ(∇θμ)2 + uμ

Kμ

(∇φμ)2

)

+ 1

2(πα)2

∫
dx[J xy

⊥ cos(
√

2θa) + J z
⊥ cos(2

√
2φa)],

(28)

where φs(a) = [φ1 + (−)φ−1]/
√

2 is the phase field in
chain p, φp (p = ±1), and similar relations for the θ

field. The original spin fields and phase fields are re-
lated as Sz

p(x) = −∇φp(x)/π + (−1)x cos (2φp(x))/(πα) and

S+
p (x) = e−iθp(x)[(−1)x + cos 2φp(x)]/

√
2πα. Since J‖ �

J⊥ is concerned, we can determine the Tomonaga-Luttinger
parameters as

Ks,a = K

(
1 ∓ KJz

⊥
2πu

)
. (29)

Here K and u are the Tomonaga-Luttinger parameter and
velocity in the single-chain Heisenberg model, respectively.
The Tomonaga-Luttinger parameter K can be determined
by means of Bethe ansatz, and it is known that the pos-
sible range is 1/2 � K � 1, where K = 1/2 corresponds
to the no-magnetization case and K = 1 to the fully polarized
case [42]. Since the above consists of the linear combination
of the simple cosine terms, one can determine the ground
state with a simple scaling argument. In fact, cos

√
2θa

and cos
√

8φa have the scaling dimensions of (2Ka)−1 and
2Ka , respectively. Thus we see that cos

√
2θa is ordered for

Ka > 1/2 and the situation is reversed for Ka < 1/2. As can
be seen from Eqs. (28) and (29), Ka > 1/2, and we expect
that θa is ordered except for the limit J

xy

⊥ → 0 where φa is
ordered. To specify the ground state in the spin language,
let us introduce bonding and antibonding spin operators as
�S0 = �S1 + �S−1 and �Sπ = �S1 − �S−1, respectively. Then, one
finds that the bonding (antibonding) transverse spin-spin
correlation 〈S+

0 (r)S−
0 (0)〉(〈S+

π (r)S−
π (0)〉) is dominant for θa

to be gapped with J
xy

⊥ < 0(J xy

⊥ > 0), while the antibonding
longitudinal spin-spin correlation 〈Sz

π (r)Sz
π (0)〉 is dominant

for φa to be gapped [2]. Now, we can determine the dominant
correlation in the original model by using the particle-hole
transformation again. Since by this transformation

S−
0 →

∑
p

pcj,↑,pcj,↓,p = OSSCπ , (30)

S−
π →

∑
p

cj,↑,pcj,↓,p = OSSC0 , (31)

Sz
π →

∑
p,s

pc
†
j,s,pcj,s,p = OCDWπ , (32)

we conclude that the s-wave superfluid is dominant except
for t⊥↑t⊥↓ → 0, where the CDW correlation is dominant.
In particular, the bonding s-wave pairing state is realized
for t⊥↑t⊥↓ > 0 while the antibonding s-wave pairing state is
realized for the opposite sign case. Thus the phase structure
is compatible with the weak-coupling analysis while in the
weak-coupling limit the region of the s-wave superfluid is
rather narrow but in the strong-coupling limit the situation
is reversed. This may be explained by the observation that
the pairing gap becomes larger as the attractive interaction is
increased and the pairing in the s-wave superfluid essentially
occurs in a single site; therefore the introduction of the small
state-dependent rung hopping may not cause the disappearance
of the superfluid correlation.

B. Experimental protocol

We now discuss the realization of our model and its ground
states in cold atoms.

In order to realize the two-leg ladder geometry, we
can consider an optical superlattice [17,18]. By using this
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technology, we can obtain a system where there are a number
of two-leg ladders, each of which is weakly coupled by some
hopping parameter. To ensure the one-dimensional character
in the system, this hopping parameter should be much smaller
than a temperature [2]. Then, the two-leg ladder system
in the absence of state-dependent hopping is obtained. As
another route to realize such a ladder geometry, one may also
utilize internal degrees of freedom in an atom as discussed in
Refs. [43,44].

On the other hand, the Hubbard interaction U can be tuned
by selecting atomic species and by changing lattice depth.
Typically, 40K and 6Li have been utilized to realize the system
for U > 0 and U < 0, respectively [14]. In addition, the
Feshbach resonance is available to change the strength and
sign of the interaction.

The most important ingredient in the system discussed is
a state-dependent hopping. When it comes to a positive state-
dependent hopping, heteronuclear mixtures such as 6Li −40 K
[45] and 6Li −173 Yb [46] are available. However, since we
are also interested in a state-dependent hopping whose sign
is different between spin up and down, another scheme is
necessary.

To this end, we start with the two-leg Hubbard ladder system
in the absence of a state-dependent hopping. To obtain a state-
dependent rung hopping, we consider adding the following
time-dependent term in the Hamiltonian:∑

s=↑,↓
As cos(ωt)

∑
p=±1

pnj,s,p. (33)

If A↑ = A↓, the above time-varying linear potential can be
obtained with a sinusoidal shaking of an optical lattice along
the rung direction [24]. In order to exactly obtain the above
time-dependent term for A↑ �= A↓, a sinusoidal shaking of a
state-dependent optical lattice [27,28] or of a magnetic field
gradient [47] can be utilized. Then, an essential point is that
when �ω � t‖,t⊥,|U |, we may perform the time average of
the above oscillation term, which causes the renormalization
of the hopping parameter as t⊥ → t⊥J0(As/(�ω)) [23,26].
Since the argument of the Bessel function is now state
dependent, the Hamiltonian (1) can be obtained. We note that
the Bessel function can take a negative value, which allows
us to consider a negative hopping parameter. Indeed, such a
negative hopping parameter by the time-dependent oscillation
term has been observed in Refs. [24,25].

A particularly interesting challenge is to make the spin-
triplet superfluid realized around t⊥↑ ≈ −t⊥↓ for a repulsive
U . Here, we note that ′′ ≈′′ implies t⊥ρ/T � 1, where T is
a temperature. In this case, the effect of t⊥ρ can be dropped
in the Hamiltonian, and the effective Hamiltonian reduces to
one of t⊥↑ = −t⊥↓ [2]. In the two-leg fermionic ladder system
at incommensurate filling, we have a one-charge gap and two
spin gaps, which are exponentially small for the weak-coupling
limit but are of the order of the exchange energy for the strong-
coupling limit. (See Refs. [10–13] for numerical estimations
for the strong-coupling limit.) Since the gaps are essential to
characterize the spin-triplet superfluid state, the temperature
should be smaller than them as well as the other Hamiltonian
parameters t‖,U,t⊥,s . Thus the dominant spin-triplet superfluid
correlation should show up at the temperature satisfying these

conditions. We note that a similar argument for the realizations
of the other phases is also possible.

When it comes to the spin-triplet superfluid, we can also
utilize the technique of synthetic gauge fields [48]. Recently,
by using a Raman laser and lattice driving [47,49–52], it is
possible to introduce the Peierls phase in the hopping param-
eter. If such a Peierls phase has a state dependency, which
is indeed possible experimentally, the hopping parameter is
modified as t → teis , where s is the Peierls phase. When
↑ = −↓, such a hopping term can also be regarded as a
spin-orbit coupling. As explained in Sec. III, the essence of the
spin-triplet superfluid is the emergence of the state-dependent
Peierls phase along the rung direction as t⊥ → t⊥eis. Thus
the spin-triplet superfluid realized with this manipulation is
essentially the same mechanism as one discussed in this paper.

Finally, we give a few comments on the experimental
observability of the superfluids. An important feature is
the presence of the gaps, which may be measured by rf
spectroscopy [53]. However, the measurement of gaps alone
is not enough to distinguish different superfluids. One of the
possible solutions to this problem is to use the particle-hole
transformation [41]. Then the Hamiltonian for U > 0 at in-
commensurate filling without a spin imbalance is transformed
into one for U < 0 at half filling with a spin imbalance.
We also note that the hopping terms in Eq. (1) are invariant
under such a particle-hole transformation. On the other hand,
the operators of the d-wave and spin-triplet superfluids are
transformed into those of staggered spin-flux and bond SDW
phases, respectively [37]. The properties of such phases may
be captured by the local addressing of the flux [49,54] and
spin correlations [20,55] or by spin-sensitive Bragg scattering
of light [56].

V. CONCLUSION

We have examined a two-leg fermionic Hubbard ladder
model in the presence of a state-dependent hopping. We
have focused on a case where such a hopping exists for the
rung direction. This system can be treated as the minimal
construction of the physics of mixed dimensions [57] if the
rung hopping in one of the states (spins) is zero since another
rung hopping plays a role in connecting different chains. Due to
the state-dependent hopping, the original d-wave and s-wave
superfluids realized in the normal two-leg fermionic Hubbard
ladder model for the repulsive and attractive interactions,
respectively, become unstable. We have demonstrated that
instead the spin-triplet superfluid, SDW, and CDW states
become stable depending on the ratio t⊥↑/t⊥↓. In particular,
our proposal shows a spin-triplet superfluid state for purely
local interactions can be realized. We have also discussed the
experimental protocol and observability toward the spin-triplet
superfluid.
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APPENDIX: RENORMALIZATION GROUP EQUATIONS

In this Appendix, we wish to outline the derivation of the renormalization group equations in a similar way as Ref. [2]. We
first consider the following correlation function:

R(r1 − r2) = 〈Tτ e
iφσ+(x1,τ1)e−iφσ+(x2,τ2)〉 (A1)

where Tτ denotes the time-ordered product. By expanding the above correlation function in terms of gi up to third order, we
obtain

R(r1 − r2) ≈ e− Kσ+
2 F1(r1−r2) + (S) + (T), (A2)

where F1(r) = ln(r/α),

(S) = 1

2

(
g1

8(πα)2vF

)2 ∑
ε1,ε2=±1

∫
d2r ′d2r ′′[〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φσ−(�r ′)−φσ−(�r ′′)−δσ−(x ′−x ′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φσ−(�r ′)−φσ−(�r ′′)−δσ−(x ′−x ′′)]}〉0]

+1

2

(
g2

8(πα)2vF

)2 ∑
ε1,ε2=±1

∫
d2r ′d2r ′′[〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φρ−(�r ′)−φρ−(�r ′′)−δρ−(x ′−x ′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φρ−(�r ′)−φρ−(�r ′′)−δρ−(x ′−x ′′)]}〉0]

+1

2

(
g4

8(πα)2vF

)2 ∑
ε1,ε2=±1

∫
d2r ′d2r ′′[〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[θρ−(�r ′)−θρ−(�r ′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[θρ−(�r ′)−θρ−(�r ′′)]}〉0]

+1

2

(
g6

8(πα)2vF

)2 ∑
ε1,ε2=±1

∫
d2r ′d2r ′′[〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[θσ−(�r ′)−θσ−(�r ′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[θσ−(�r ′)−θσ−(�r ′′)]}〉0], (A3)

and

(T) = −g1g3g4

(
1

8(πα)2vF

)3 ∑
ε1,ε2,ε3=±1

∫
d2r ′d2r ′′d2r ′′′

× [〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′′)]+2ε2[φσ−(�r ′)−φσ−(�r ′′)−δσ−(x ′−x ′′)]+2ε3[θρ−(�r ′′)−θρ−(�r ′′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′′)]+2ε2[φσ−(�r ′)−φσ−(�r ′′)−δσ−(x ′−x ′′)]+2ε3[θρ−(�r ′′)−θρ−(�r ′′′)]}〉0]

−g2g5g6

(
1

8(πα)2vF

)3 ∑
ε1,ε2,ε3=±1

∫
d2r ′d2r ′′d2r ′′′

× [〈ei{φσ+(�r1)−φσ+(�r2)+2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φρ−(�r ′)−φρ−(�r ′′′)−δρ−(x ′−x ′′′)]+2ε3[θρ−(�r ′′)−θρ−(�r ′′′)]}〉0

−〈ei[φσ+(�r1)−φσ+(�r2)]〉0〈i{2ε1[φσ+(�r ′)−φσ+(�r ′′)]+2ε2[φρ−(�r ′)−φρ−(�r ′′′)−δρ−(x ′−x ′′′)]+2ε3[θρ−(�r ′′)−θρ−(�r ′′′)]}〉0]. (A4)

In the above, 〈· · · 〉0 denotes the average without the cosine terms, that is, one with the Tomonaga-Luttinger Hamiltonian. When
we focus on (T), the dominant contributions come from �r ′′′ = �r ′′ + �r or �r ′′ = �r ′ + �r for the term proportional to g1g3g4, and
from �r ′′′ = �r ′′ + �r or �r ′′′ = �r ′ + �r for one proportional to g2g5g6 with a small r . Therefore, by expanding around �r = 0, after a
straightforward calculation, we can obtain the following renormalization relations on the effective quantities:

Keff
σ+ = Kσ+ − K2

σ+
2

∫
dr

α

[
y2

1

(
r

α

)3−2(Kσ++Kσ−)

J0(2δσ−r) + y2
2

(
r

α

)3−2(Kσ++Kρ−)

J0(2δρ−r)

+ y2
4

(
r

α

)3−2(Kσ++1/Kρ−)

+ y2
6

(
r

α

)3−2(Kσ++1/Kσ−)
]

, (A5)

(
yeff

1

)2 = y2
1 − 2y1y3y4

∫
r

α

(
r

α

)1−2/Kρ−
, (A6)

(
yeff

2

)2 = y2
2 − 2y2y5y6

∫
r

α

(
r

α

)1−2/Kσ−
, (A7)
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(
yeff

4

)2 = y2
4 − 2y1y3y4

∫
r

α

(
r

α

)1−2Kρ−
J0(2δσ−r), (A8)

(
yeff

6

)2 = y2
6 − 2y2y5y6

∫
r

α

(
r

α

)1−2Kρ−
J0(2δρ−r). (A9)

By changing the cutoff α → elα = α + dα, we obtain Eqs. (10), (13), (14), (16), and (18). In a way similar to the above, the
other RG equations can also be obtained.
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[18] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera,

T. Müller, and I. Bloch, Nature (London) 448, 1029 (2007).
[19] Y.-A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman,

Nat. Phys. 7, 61 (2011).
[20] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger,

Science 340, 1307 (2013).
[21] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,

and I. Bloch, Nat. Phys. 10, 588 (2014).
[22] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev.

Lett. 67, 516 (1991).
[23] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95,

260404 (2005).
[24] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O.

Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007).
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I. Bloch, Phys. Rev. Lett. 91, 010407 (2003).

[28] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and
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Phys. 83, 1523 (2011).

013604-8

http://dx.doi.org/10.1103/PhysRevB.47.10461
http://dx.doi.org/10.1103/PhysRevB.47.10461
http://dx.doi.org/10.1103/PhysRevB.47.10461
http://dx.doi.org/10.1103/PhysRevB.47.10461
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1016/0038-1098(95)00134-4
http://dx.doi.org/10.1016/0038-1098(95)00134-4
http://dx.doi.org/10.1016/0038-1098(95)00134-4
http://dx.doi.org/10.1016/0038-1098(95)00134-4
http://dx.doi.org/10.1103/PhysRevB.53.R2959
http://dx.doi.org/10.1103/PhysRevB.53.R2959
http://dx.doi.org/10.1103/PhysRevB.53.R2959
http://dx.doi.org/10.1103/PhysRevB.53.R2959
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.14036
http://dx.doi.org/10.1103/PhysRevB.53.14036
http://dx.doi.org/10.1103/PhysRevB.53.14036
http://dx.doi.org/10.1103/PhysRevB.53.14036
http://dx.doi.org/10.1103/PhysRevB.53.11721
http://dx.doi.org/10.1103/PhysRevB.53.11721
http://dx.doi.org/10.1103/PhysRevB.53.11721
http://dx.doi.org/10.1103/PhysRevB.53.11721
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://dx.doi.org/10.1103/PhysRevB.75.245119
http://dx.doi.org/10.1103/PhysRevB.75.245119
http://dx.doi.org/10.1103/PhysRevB.75.245119
http://dx.doi.org/10.1103/PhysRevB.75.245119
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1038/nphys1801
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.67.516
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1103/PhysRevA.70.033603
http://dx.doi.org/10.1103/PhysRevA.70.033603
http://dx.doi.org/10.1103/PhysRevA.70.033603
http://dx.doi.org/10.1103/PhysRevA.70.033603
http://dx.doi.org/10.1103/PhysRevLett.103.025303
http://dx.doi.org/10.1103/PhysRevLett.103.025303
http://dx.doi.org/10.1103/PhysRevLett.103.025303
http://dx.doi.org/10.1103/PhysRevLett.103.025303
http://dx.doi.org/10.1103/PhysRevB.83.115104
http://dx.doi.org/10.1103/PhysRevB.83.115104
http://dx.doi.org/10.1103/PhysRevB.83.115104
http://dx.doi.org/10.1103/PhysRevB.83.115104
http://arxiv.org/abs/arXiv:1408.3119
http://dx.doi.org/10.1103/PhysRevLett.95.226402
http://dx.doi.org/10.1103/PhysRevLett.95.226402
http://dx.doi.org/10.1103/PhysRevLett.95.226402
http://dx.doi.org/10.1103/PhysRevLett.95.226402
http://dx.doi.org/10.1103/PhysRevB.81.224512
http://dx.doi.org/10.1103/PhysRevB.81.224512
http://dx.doi.org/10.1103/PhysRevB.81.224512
http://dx.doi.org/10.1103/PhysRevB.81.224512
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevB.49.9670
http://dx.doi.org/10.1103/PhysRevB.49.9670
http://dx.doi.org/10.1103/PhysRevB.49.9670
http://dx.doi.org/10.1103/PhysRevB.49.9670
http://dx.doi.org/10.1103/PhysRevA.89.023623
http://dx.doi.org/10.1103/PhysRevA.89.023623
http://dx.doi.org/10.1103/PhysRevA.89.023623
http://dx.doi.org/10.1103/PhysRevA.89.023623
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1103/PhysRevLett.45.1358
http://dx.doi.org/10.1103/PhysRevLett.45.1358
http://dx.doi.org/10.1103/PhysRevLett.45.1358
http://dx.doi.org/10.1103/PhysRevLett.45.1358
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.106.205304
http://dx.doi.org/10.1103/PhysRevLett.106.205304
http://dx.doi.org/10.1103/PhysRevLett.106.205304
http://dx.doi.org/10.1103/PhysRevLett.106.205304
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523


TWO-LEG FERMIONIC HUBBARD LADDER SYSTEM IN . . . PHYSICAL REVIEW A 91, 013604 (2015)

[49] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A.
Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).
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