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Kinetics of Bose-Einstein condensation in a dimple potential
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We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight
“dimple” whose depth can be controlled. Experimental investigations have found that such dimple traps provide
an efficient means of achieving condensation. In our kinetic equations, we include two- and three-body processes.
The two-body processes populate the dimple, and lead to loss when one of the colliding atoms is ejected from
the trap. The three-body processes produce heating and loss. We explain the principal trends, give a detailed
description of the dynamics, and provide quantitative predictions for time scales and condensate yields. From
these simulations, we extract optimal parameters for future experiments.
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I. INTRODUCTION

A. Overview

Cold-atom physics faces ever-increasing challenges related
to kinetics. Experimentalists are trying to produce ever-more
complicated states of matter which are intrinsically difficult
to cool [1–5]. To further complicate matters, the techniques
used to produce these states add mechanisms for heating.
One paradigm for addressing these challenges is to divide
the system into two parts: a “reservoir” which can readily be
cooled, coupled to a smaller subsystem which has interesting
properties [6–15]. The prototypical example of such a separa-
tion are the “dimple traps” pioneered by Pinkse et al. [6], and
more recently explored by several other groups [7–11]. The key
to such programs is an understanding of the kinetic processes
through which energy and particles move between the two
subsystems. Here, we model the loading and equilibration of
a dimple trap in a gas of weakly interacting Bosons.

The initial dimple experiments were motivated by a desire
to reduce the complexity of cooling atomic gases, and explore
fundamental questions of condensate growth [16–35]. Dimples
have been key to proposals to study atom lasers [11,36,37].
They also have promising applications in atom interferome-
try [38], quantum tweezers for atoms [39], controlling soliton-
sound interaction [40], ultraslow light propagation [41], and
studying analogs of cosmological physics [42].

Stellmer et al. describe a typical dimple experiment in
Ref. [43]. They precool a cloud of bosonic atoms to hundreds
of nanokelvin, and trap them in a large but shallow optical
trap. At this point, the phase-space density is well below
the threshold for condensation. Next, a laser beam focused
in a small region near the trap center creates a strongly
attractive dimple potential, causing a great increase in the
local atom density without much change in temperature. As
the density in the dimple grows, they see the development of
a condensate. Theoretical steps have been taken to understand
Bose condensation by this method [10,16,44–50] (see Sec. I B
for a brief review). However, a detailed quantitative study
of how the condensate fraction, the temperature, and the
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characteristic time scales depend on the trap parameters and
the initial conditions is, to our knowledge, still lacking. Here,
we take a simple quantum kinetic approach towards achieving
this goal.

Since in experiments like those of Stellmer et al., the
phase-space density in the reservoir stays small, we model
it as a classical Boltzmann gas in a three-dimensional (3D)
harmonic well. We assume that the collision rate in the
reservoir is fast compared to the condensation dynamics so
that the reservoir is always in quasithermal equilibrium: the
occupation of a mode of energy ε is nr

ε(t) = e−[ε−μr (t)]/kBTr (t),
where the temperature Tr and the chemical potential μr depend
on time. Many cold-atom experiments are described by such
a quasiequilibrium [6,7,10]. For simplicity, we assume that
the harmonic well is isotropic. We model the dimple as a
3D square well, and consider the case where it is turned on
suddenly at t = 0. This is a prototypical protocol for turning
on the dimple [10,16,24,46]. In Sec. II A, we outline the
physical parameters relevant to the dynamics. In Sec. II B,
we analyze the two-body scattering processes responsible
for the transfer of atoms from the reservoir to the dimple
and their redistribution among the momentum states of the
dimple. In particular, the dimple is populated via two-body
collisions: one particle enters the dimple, transferring energy
to the second. This permits us to write rate equations for the
populations of the dimple states. Due to the symmetry of
kinetic processes, the population of a dimple state depends
only on its energy. Since in most present-day experiments
the dimple contains thousands of energy levels [10,11],
we describe their populations by a continuous distribution
function f (E,t), treating the ground-state occupation (N0)
separately. As the collision processes also change the number
of atoms (Nr ) and the energy (Er ) in the reservoir, we arrive
at coupled rate equations for f (E,t), N0, Nr , and Er .

In Sec. III A, we discuss the short-time dynamics after
turning on the dimple. We find that energy levels near
half the dimple depth start filling up first. When the atom
density in the dimple becomes comparable to that in the
reservoir, particle scattering between energy levels initiates
thermalization. Denoting the collisional mean-free time in
the reservoir by τcoll, we find that for t � 8τcoll, f (E,t) is
well approximated by a thermal distribution. The states in
the high-energy tail take longer to thermalize than those near
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the bottom of the dimple. During thermalization, for large
enough dimple depths, we notice that f (E,t) passes through a
bimodal shape, which should show up in time-of-flight images
in experiments. We find that N0(t) grows slowly at first until
it becomes sufficiently large that Bose stimulation takes over.
This gives rise to an onset time τon after which the condensate
grows rapidly. This effect was studied for condensation by
evaporative cooling in harmonic traps [24,27–29], and has
been observed in recent experiments on dimples [10,11]. Our
estimates of thermalization time scales are similar to those
found in a wide range of experiments [24–27,43,51,52].

We consider both the cases of an infinite trap depth and a
finite trap depth. In the former situation, we allow particles
in the reservoir to have arbitrarily high energies, whereas in
the latter, we eject particles which recoil from a collision
with an energy greater than the trap depth. In Sec. III B,
we discuss the infinite trap depth case. In practice, this is
equivalent to a trap whose depth is large compared to the
dimple depth and the initial thermal energy. The reservoir
temperature rises as particles are scattered into the dimple. In
the absence of inelastic losses, the dimple population grows
monotonically, saturating after a time τsat at a value limited by
the amount of heating. Guided by the result that the dimple
thermalizes fast compared to the population growth rates, we
introduce a simplified model where we assume that f (E,t)
is given by a thermal Bose-Einstein distribution. This method
reproduces all features of the full model for t � 10τcoll, and
requires fewer computational resources to simulate. We only
use this approximation in Sec. III B, returning to the full kinetic
equations in later sections. We provide detailed results of
how the final populations, the final temperature, the entropy
gain, τon, and τsat vary with the dimple depth εd , the initial
phase-space density ρi , and the ratio of the reservoir volume
to the dimple volume �, and the initial temperature Tr0. In
particular, the atoms do not condense if εd is smaller than
|μr (t = 0)|. As εd is increased, the final condensate fraction
F0 grows and attains a maximum for an optimal depth ε∗

d

which is set by ρi , �, and Tr0. With further increase in εd ,
F0 falls off due to increased heating. Such a nonmonotonic
variation was observed in a recent experiment [10]. In addition
to maximizing F0, εd = ε∗

d also minimizes τon. Both F0 and ε∗
d

increase with ρi and �. We find that �τcoll sets the typical time
scale for saturation. The dynamics becomes more nonadiabatic
and takes longer to saturate at larger dimple depths.

We add inelastic losses to our model in Sec. III C. Here, we
consider the case for 87Rb where three-body recombination
dominates the loss [53]. In this process, three atoms collide
to produce a molecule in an excited state, thereby releasing a
large amount of energy which causes all three atoms to escape.
As a result, the condensate fraction decays toward zero after
reaching a peak value F

peak
0 at t = τpeak. Thus, three-body

loss gives a finite condensate lifetime �tlf [11]. We find that
F

peak
0 exhibits a nonmonotonic dependence on εd similar to

F0. However, the maximum condensate fraction is smaller by
almost an order of magnitude due to the large three-body loss
rate in the dimple where the density becomes large. We find
that three-body loss also lowers the optimal dimple depth, in
agreement with recent findings [10]. Smaller dimples result
in higher local densities, which increase the loss rate. We

therefore find an optimal volume ratio �∗. Similarly, there
is an optimal initial phase-space density ρ∗

i . The three-body
rate grows faster with Tr0 than the two-body collision rate.
Thus, F

peak
0 falls off with Tr0. We find that �tlf increases

with �, and decreases with εd , ρi , and Tr0. Since the three-
body loss rate varies with the s-wave scattering length a as
|a|4 [54], one can influence it by using a different species
of atoms or exploiting Feshbach resonances [8]. However,
such manipulations may introduce other inelastic channels or
hydrodynamic losses [55], and one should be careful to take
those into account.

In Sec. III D, we discuss how our results change when the
reservoir trap has a finite depth εt . Here, we eject any atom
which gains sufficient energy from a collision to have a total
energy ε > εt . Such a model correctly describes a trapped gas
in the Knudsen regime: the collisional mean-free path is larger
than the size of the reservoir, which is true in most experiments
on trapped gases [26]. We assume that the atom energies in the
reservoir follow a Boltzmann distribution truncated at ε = εt .
Previous numerical studies have shown that this assumption
accurately describes evaporative cooling [23,26,27]. The effect
of finite trap depth on the dynamics becomes appreciable when
εt is no longer larger than εd and kBTr0. We find that lower
trap depths yield lower final temperatures, and increase the
condensate growth rate. This leads to a higher condensate
fraction F

peak
0 and a longer lifetime �tlf. However, when εt

becomes very small, the increased evaporation rate of the
reservoir limits the rise of �tlf. We summarize our findings
and suggest future work in Sec. IV.

To keep the problem computationally tractable, we have
made some simplifying approximations. First, we have not
included the mean-field interactions between the condensate
and the thermal cloud [10,28–32,44,56–58]. This mean-field
changes the effective potential experienced by the atoms by
an amount proportional to the condensate density, in effect
changing the dimple depth. This causes a repulsion between
the condensate and thermal cloud [29,56], and also lowers the
critical temperature [57]. It can be compensated by making
the dimple parameters time dependent, and is unimportant
for the short-time dynamics. We do not model quantum
fluctuations of the condensate [27,31,44,57], although our
model does include thermal fluctuations. The modifications
due to quantum fluctuations should be much smaller than
those of the mean field [27,57]. We use the infinite square
well energy eigenstates for the dimple. The kinetics do not
depend on the exact model of the dimple potential as long as
it contains many energy levels, which is true for present-day
experiments [10,11]. In modeling the condensation kinetics,
we neglect two kinds of elastic collisions: First, we neglect
collisions internal to the dimple where there is no exchange of
atoms with the reservoir. These processes serve to equilibrate
the dimple. Within our approximations, we find that the dimple
thermalizes within τth ≈ 8τcoll, and these processes can at
most speed up thermalization. For t > τth, these neglected
collisions play no role. Second, we neglect collisions in
which an atom from a low-energy state in the dimple and
an atom from the reservoir collide, leaving two atoms in
the dimple. Such collisions can become important for deep
dimples when the condensate fraction becomes appreciable,
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and can subsequently enhance the dimple population rate.
They can be included in a future refinement of our model, and
might alter some quantitative details such as the time to reach
saturation. However, we do not expect that these processes will
change any of the qualitative features our model captures [28].

B. Review of past theoretical studies

In order to put our work in context, here we briefly
summarize previous theoretical studies of related problems.
Much of the theoretical groundwork was developed in
Refs. [27–30], largely in the context of modeling evaporative
cooling. Our approach closely follows that quantum kinetic
formalism. Alternative formalisms have also been developed.
For example, Stoof and Bijlsma developed a field theoretical
approach [33,44], while Holland and collaborators developed
another form of the quantum Boltzmann equation [31,34]. The
general problem is complex: the system is spatially inhomoge-
neous, out-of-equilibrium, and experiencing time-dependent
forces. Moreover, the possible parameter space is huge. Any
two studies may be distinguished by the system geometry, the
formalism used, and the range of parameters studied. Below
we give further details about the most relevant studies.

As already introduced, we consider the case of a small
impurity at the center of a three-dimensional cloud. This can
be contrasted, for example, to the work of Garrett et al. in
which the “dimple potential” spans the waist of an elongated
cloud [10]. They found that in such large and inhomogeneous
impurities, three-body collisions are relatively unimportant.
This is in striking contrast to our geometry.

In Ref. [16], Comparat et al. consider a geometry closer to
ours, but a very different experimental protocol. They envisage
an experiment where the dimple is first loaded with thermal
atoms from a large reservoir. Then, one removes the reservoir
trap, and ramps down the dimple depth to induce condensation.
Such a forced evaporation in a cigar-shaped dimple led to the
first realization of a 133Cs condensate [8]. They analyze the
evolution using classical kinetic theory, and optimize elements
of their protocol. They also pay close attention to the details
of the trapping potential, such as the influence of gravity. The
same experiment was studied by Ma et al. using a different
classical kinetic approach [45]. They used a Monte Carlo
simulation to integrate the Boltzmann equation. They carefully
study the dependence on the dimple size, and the differences
between using 133Cs and 85Rb.

While not a kinetic theory, Uncu et al. carried out
some modeling of adiabatic dimple loading by considering
conservation of entropy. They used a simple model for the
dimple, parametrized solely by the depth and location [47–49].

Finally, Stoof and collaborators conducted a number of
kinetic simulations using their stochastic field theory ap-
proach [44,46]. One feature of this approach is that it allowed
them to model the case where the reservoir is partially con-
densed, and describe the collective excitations of the reservoir.
They restricted their studies to one-dimensional (1D) clouds.

II. FORMALISM

A. Physical parameters of the dimple potential

In this section, we describe our model for the reservoir and
the dimple, and develop some useful notation.

We model the reservoir as an isotropic harmonic well of
frequency ω, truncated at the trap depth εt , and assume a
truncated Boltzmann distribution. We can relate the number
of atoms Nr and the energy Er in the reservoir to εt , the
inverse temperature βr = 1/kBTr , and the fugacity zr = eβrμr

by integrating over phase space:

Nr =
∫ ′ d3p d3r

h3
exp

[
−βr

(
p2

2m
+ 1

2
mω2r2 − μr

)]
.

(1)

Here, m denotes the mass of an atom. The prime stands for the
condition that any atom in the reservoir has a total energy less
than εt , i.e., p2

2m
+ 1

2mω2r2 < εt . Equation (1) can be simplified
to obtain

Nr = zr

(βr�ω)3

1

2
γ (3,βrεt ) , (2)

where γ denotes the lower incomplete gamma function.
Similarly, we find for the energy

Er =
∫ ′ d3p d3r

h3

(
p2

2m
+ 1

2
mω2r2

)
e−βr ( p2

2m
+ 1

2 mω2r2−μr )

= 1

βr

zr

(βr�ω)3

1

2
γ (4,βrεt ) . (3)

After turning on the dimple, Nr , Er , βr , and zr change as
functions of time. We define fr (t) and er (t) as the ratio of
Nr (t) and Er (t) to their initial values N and E , respectively.
Thus,

fr ≡ Nr

N = z̃r

β̃3
r

γ (3,β̃r ε̃t )

γ (3,ε̃t )
, (4)

er ≡ Er

E = z̃r

β̃4
r

γ (4,β̃r ε̃t )

γ (4,ε̃t )
, (5)

where z̃r ≡ zr/zr0, β̃r ≡ βr/βr0, and ε̃t ≡ βr0εt . The zeros in
the subscripts refer to the respective values at t = 0. In our
simulation of the kinetics, we use Eqs. (4) and (5) to extract
the instantaneous values of z̃r and β̃r from a knowledge of fr

and er .
The spatial density of atoms in the reservoir can be found as

nr (�r) =
∫ ′ d3p

h3
exp

[
−βr

(
p2

2m
+ 1

2
mω2r2 − μr

)]

= zr

λ3
r

2√
π

γ

(
3

2
,βrεt − 1

2
βrmω2r2

)
e− 1

2 βrmω2r2
. (6)

Here, λr = (2π�
2βr/m)1/2 denotes the thermal de Broglie

wavelength. We see that nr and hence the phase-space density
falls off with distance from the center of the well. We define
the “initial phase-space density” ρi to be

ρi ≡ nr0(�0)λ3
r0 = zr0

2√
π

γ (3/2,ε̃t ) . (7)

This corresponds to the phase-space density near the dimple
at r = 0.

The “collisional mean-free time” τcoll is the average time
between successive collisions among the atoms in the reservoir
near r = 0. We can estimate τcoll at t = 0 as τcoll = (nσv)−1,
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where n = nr0(�0), σ = 8πa2 is the scattering cross section
for weakly interacting bosons [59], and v denotes the average
initial speed of the reservoir atoms near r = 0. One can find v

as

v = 1

nr0(�0)

∫ ′ d3p

h3

p

m
exp

[
−βr0

(
p2

2m
− μr0

)]

=
(

8

πmβr0

)1/2 √
π/2

γ (3/2,ε̃t )
γ (2,ε̃t ). (8)

Therefore,

τcoll = (mβr0)1/2

16
√

2πa2nr0(�0)

2√
π

γ (3/2,ε̃t )

γ (2,ε̃t )
. (9)

We define an effective volume Vr of the reservoir as Vr ≡
Nr/nr (�0). At t = 0, this has the value

Vr0 = N /nr0(�0) =
(

2π

β0mω2

)3/2 √
π

4

γ (3,ε̃t )

γ (3/2,ε̃t )
, (10)

where we have substituted from Eqs. (2) and (6). The
incomplete gamma functions become quite insensitive to ε̃t

for ε̃t � 5 where γ (ν,ε̃t ) ≈ �(ν). Then, ρi and Vr0 are just
functions of the trap frequency, the initial temperature, and
the total number of trapped atoms. When ε̃t � 1, the truncated
Boltzmann distribution may no longer be a good model for the
distribution.

We model the dimple as a square well of depth εd and
length ld . We find that the condensation dynamics depends on
the ratio of Vr0 to the dimple volume l3

d . Thus, we define the
“volume ratio” � ≡ Vr0/l3

d . Using Eqs. (7) and (10), one can
write

� ≡ Vr0

l3
d

= Nλ3
r0

l3
d ρi

= N
l̃3
d

1

zr0

√
π/2

γ (3/2,ε̃t )
, (11)

where l̃d ≡ ld/λr0.
We assume that the eigenstates of the dimple coincide with

those for the “particle-in-a-box” model, i.e., they are plane-
wave states of definite momenta:

ψ�n(�r) = l
−3/2
d e

i 2π
ld

�n·�r
, (12)

where �n is a triplet of integers. Such a state has energy

εn ≡ −εd + En = −εd + 2π2
�

2

ml2
d

n2, (13)

with n = (n2
1 + n2

2 + n2
3)1/2. We can estimate the total number

of such states M by applying the condition that εn must be
negative. This gives M ≈ (1/6π2)(2ml2

dεd/�
2)3/2. For typical

magnitudes of ε and ld in present-day experiments, M is very
large [10,43]. Multiplying Eq. (13) by βr0, we can express it
in the tilde notation as

ε̃n ≡ −ε̃d + Ẽn = −ε̃d + (
π/l̃2

d

)
n2 . (14)

Other models for the dimple (such as a harmonic oscillator)
yield similar results for the dynamics.

B. Kinetic model for condensation in the dimple

To model the nonequilibrium dynamics after the dimple is
turned on, we consider the two different kinds of two-body

p
q

k

n

p

n1

k

n2

p

q

k

n

p

n1

k

n2

(a () b)

FIG. 1. (Color online) Two-body collisions responsible for the
growth and redistribution of the dimple population: (a) Two atoms
from the reservoir collide and one of them enters a dimple state,
transferring energy to the other. (b) A reservoir atom exchanges
energy with an atom in the dimple, transferring it to a different energy
state.

elastic collisions which dominate the energy and particle
transport between the reservoir and the dimple. These are
illustrated in Fig. 1. In the first kind, a collision between
two atoms in the reservoir transfers one of the atoms to the
dimple, while the other atom gains energy. The second atom
can leave the reservoir if its total energy exceeds the trap
depth εt . However, when εt is large compared to εd , it is more
likely that the second atom will stay in the reservoir and cause
heating. Collisions of this kind lead to the growth of the dimple
population, and increase the local phase-space density. In the
second kind of collision, an atom in the reservoir collides with
an atom in the dimple, and transfers it to another energy state
in the dimple. The first atom can then either remain in the
reservoir or leave, depending on the amount of energy it gains
or loses in the process. Collisions of this second kind serve
to thermalize the dimple by redistributing its atom population
among the various energy levels. In the following, we analyze
these two kinds of collisions (and their reverse processes) in
detail to derive the equations of motion for the dynamics.

1. Growth of dimple population

Here, we consider the process shown in Fig. 1(a). Two
reservoir atoms with momenta �p and �q collide with each other.
One of the atoms enters the �nth state in the dimple, and the
other atom recoils with momentum �k. The rate of this process
depends on the following factors: (i) It is proportional to the
occupation of the momentum states �p and �q at the origin, which
is given by the Boltzmann factor exp{−βr [(p2 + q2)/2m −
2μr ]}. (ii) Due to the quantum-mechanical symmetry of
identical bosons, the likelihood of scattering into the �nth
state is enhanced by a factor of N�n, the number of bosons
already present in the �nth state. This gives rise to a Bose
stimulation factor 1 + N�n. (iii) The rate is proportional to U 2

0 ,
where U0 = 4π�

2a/m is the scattering amplitude for weakly
interacting bosons, a being the s-wave scattering length [59].
This factor originates from the overlap of initial and final states
in Fermi’s golden rule. Since all four single-particle states
involved in the collision have definite momenta, the overlap
also produces a delta function which imposes conservation
of momentum. Finally, we must conserve energy. Combining
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these factors we can write the total rate at which atoms enter
the �nth dimple state via such processes:

(
dN�n
dt

)g

in

= 2π

�
U 2

0 (1 + N�n)
∫ ′ d3p d3q

(2π�)6
e−βr ( p2+q2

2m
−2μr )

× δ

{
p2 + q2 − [ �p + �q − (2π�/ld )�n]2

2m
− εn

}
.

(15)

Here, the prime restricts the initial momenta �p and �q to regions
where p2,q2 < 2mεt .

In the reverse process, a reservoir atom collides with an
atom in the �nth dimple state, and both enter the reservoir. The
rate at which such processes decrease N�n can be written using
similar reasoning as above:

(
dN�n
dt

)g

out

= − 2π

�
U 2

0 N�n
∫ ′ d3p d3q

(2π�)6
e−βr ( p2+q2

2m
−εn−μr )

× δ

{
p2 + q2 − [ �p + �q − (2π�/ld )�n]2

2m
− εn

}
.

(16)

The net growth rate of N�n can now be found by summing
Eqs. (15) and (16).

In the forward process described by Eq. (15), when the
atom recoiling with momentum �k has energy exceeding εt , i.e.,
k2/2m = (p2 + q2)/2m + εd − En > εt , it is lost from the
trap. We call such collisions “one-way collisions” since they
do not have any reverse process, whereas collisions in which
k2/2m < εt can happen both ways. We call such collisions
“two-way collisions.” A one-way collision reduces the number
of atoms in the reservoir (Nr ) by 2, whereas a two-way collision
reduces Nr by 1. Thus, we write(

dN�n
dt

)g

=
(

dN�n
dt

)g

1

+
(

dN�n
dt

)g

2

, (17)

(
dNr

dt

)g

= −
∑

�n

[
2

(
dN�n
dt

)g

1

+
(

dN�n
dt

)g

2

]
, (18)

with explicit expressions for these terms in Appendix A.
In a two-way collision the reservoir energy Er increases by

εd − En. This leads to heating. The net rate of increase of Er

due to two-way collisions can be written as

(
dEr

dt

)g

2

=
∑

�n
(εd − En)

(
dN�n
dt

)g

2

. (19)

On the other hand, in a one-way collision between two atoms
of momenta �p and �q, their total energy (p2 + q2)/2m is lost
from the reservoir. Depending on whether this energy is greater
or less than twice the average particle energy in the reservoir,
such a collision cools down or heats up the reservoir. We can
obtain the rate at which Er decreases due to one-way collisions
which populate the �nth dimple state by using arguments similar

to those preceding Eq. (15):

(
dEr

dt

)g

1,�n

= −2π

�
U 2

0 (1 + N�n)
∫ ′′d3p d3q

(2π�)6
e−βr ( p2+q2

2m
−2μr )

× p2 + q2

2m
δ

{
p2 + q2 − [ �p + �q − (2π�/ld )�n]2

2m
− εn

}
.

(20)

Here, the double prime indicates that the initial momenta
satisfy p2,q2 < 2mεt and p2 + q2 > 2m(εt − εd + En). Ap-
pendix A reduces Eq. (20) to a lower-dimensional integral.
The net rate of change of Er is given by

(
dEr

dt

)g

=
(

dEr

dt

)g

2

+
∑

�n

(
dEr

dt

)g

1,�n
. (21)

Due to symmetry, the population of the dimple states
depends only on their energy, as can be verified from Eqs. (A8)
and (A9). This allows us to describe them by a continuous
distribution function in energy f (Ẽ,t): the number of atoms
in the energy interval dẼ at time t equals Nf (Ẽ,t)dẼ. Using
this definition, we can relate f (Ẽ,t) to N�n(t) via the density
of states D(Ẽ): f (Ẽ,t) = D(Ẽ)N�n(t)/N , where Ẽn = Ẽ.
D(Ẽ) can be obtained by noting that Ẽn = (π/l̃2

d )n2 [see
Eq. (14)], which yields D(Ẽ) = 2l̃3

d (Ẽ/π )1/2. We can then
express Eq. (17) as equations of motion for f (Ẽ,t). The
characteristic time in these equations is τcoll�, the product
of the collision time and the volume ratio of the reservoir to
the dimple.

To account for condensation, we treat N�0(t) separately
from f (Ẽ,t), and define f0(t) ≡ N�0(t)/N as the condensate
fraction. Equations (15) and (16) then give equations of motion
for f0(t), which can be written in terms of one- and two-way
collisions.

The reservoir fraction fr (t) defined in Eq. (4) then evolves
according to

(
dfr

dt

)g

= − 2

(
df0

dt

)g

1

−
(

df0

dt

)g

2

−
∫ ε̃d

0
dẼ

{
2

[
∂f (Ẽ,t)

∂t

]g

1

+
[
∂f (Ẽ,t)

∂t

]g

2

}
,

(22)

and similar expressions hold for the relative energy in the
reservoir er (t) defined in Eq. (5).

2. Redistribution of dimple population

Here, we examine two-body collisions of the kind illus-
trated in Fig. 1(b), where a reservoir atom of momentum �p
exchanges energy with a dimple atom in state �n1, sending it to a
different state �n2. The rate of such processes can be calculated
using reasoning similar to that outlined at the beginning of
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Sec. II B 1:

dN�n1→�n2

dt

= 2π

�
U 2

0 N�n1

(
1 + N�n2

) 1

l3
d

∫ ′ d3p

(2π�)3
e−βr ( p2

2m
−μr )

× δ

{
p2

2m
+ En1 − [ �p + (2π�/ld )(�n1 − �n2)]2

2m
− En2

}
,

(23)

where the prime denotes the condition p2 < 2mεt . The net
rate of change of N�n due to such collisions is then(

dN�n
dt

)r

=
∑
�n′ 	=�n

dN�n′→�n
dt

− dN�n→�n′

dt
. (24)

Once again, there are one- and two-way collisions. In Eq. (23),
if the final energy of the reservoir atom is sufficiently
large p2/2m + En1 − En2 > εt , it is lost from the trap. Such
one-way collisions happen only when the dimple atom is
transferred to a much lower energy level. As in our prior
sections, collisions in which the above condition is not satisfied
happen both ways. These do not change the number of atoms
in the reservoir (Nr ), but can change their average energy, thus
changing the reservoir temperature Tr . Denoting the rates of
one- and two-way collisions by R

(1)
�n,�n′ and R

(2)
�n,�n′ , we write(

dN�n
dt

)r

=
∑
�n′ 	=�n

R
(1)
�n,�n′ + R

(2)
�n,�n′ , (25)

(
dNr

dt

)r

= −
∑
�n′,�n

En′ > En

R
(1)
�n,�n′ . (26)

In a one-way collision, the energy in the reservoir (Er )
decreases by an amount p2/2m. Therefore, we obtain the net
rate of change of Er due to one-way collisions as(

dEr

dt

)r

1

=
∑
�n′,�n

En′ > En

(
dEr

dt

)r

1,�n′→�n
, (27)

where(
dEr

dt

)r

1,�n′→�n

= −2πzr

�l3
d

U 2
0 N�n′ (1 + N�n)

∫ ′′ d3p

(2π�)3
e−βr

p2

2m

× p2

2m
δ

{
p2

2m
+ En′ − [ �p + (2π�/ld )(�n1−�n2)]2

2m
−En

}
.

(28)

Here, the double prime imposes the condition 2m(εt +
En − En′) < p2 < 2mεt . Whereas, when a two-way collision
transfers a dimple atom from state �n′ to state �n, the reservoir
energy changes by En′ − En. Thus,(

dEr

dt

)r

2

=
∑
�n′,�n

En′ > En

(En′ − En)R(2)
�n,�n′ . (29)

The total change in Er is then found by adding the two
contributions [Eqs. (27) and (29)].

Describing the dimple states in terms of a continuous
distribution function f (Ẽ,t), as defined in Sec. II B 1, we can
express Eq. (25) as

[
∂f (Ẽ,t)

∂t

]r

=
∫ ε̃d

0
dẼ′[R1(Ẽ,Ẽ′) + R2(Ẽ,Ẽ′)] , (30)

where R1(Ẽ,Ẽ′) and R2(Ẽ,Ẽ′) are given in Appendix B. As
would be expected, we find that the characteristic time for
these processes is the collision time τcoll. The rate equations
for the condensate fraction f0, the reservoir fraction fr , and
the relative energy in the reservoir er can be obtained likewise
from Eqs. (25)–(29).

To simulate the overall dynamics incorporating both the
growth and the redistribution process, we add the correspond-
ing equations of motion describing the two processes. In the
next section, we present our numerical results. Three-body
processes will be discussed in Sec. III C.

III. RESULTS

A. Initial dynamics and thermalization

Figure 2 shows how the particle distribution in the dimple
f (Ẽ,t) evolves for 0 < t � 10τcoll after the dimple is turned
on at t = 0. Although the plots correspond to specific initial
conditions stated in the caption, we observe the same general
features for other choices of parameters. We find that the
reservoir particles predominantly scatter into states whose
energies are near half the dimple depth, creating a hump in
f (Ẽ,t). Such a highly nonequilibrium distribution does not
last for long. Within a few τcoll, the processes in Fig. 1(b)
transfer these atoms to lower-energy states near the bottom
of the dimple. This generates a hump in f (Ẽ,t) near Ẽ = 0,
which grows and soon overtakes the hump near Ẽ = ε̃d/2. As
a result, around t ∼ 1.6τcoll, f (Ẽ,t) has a bimodal shape. The
peaks are more distinct for larger dimple depths and are hard
to resolve when ε̃d � 8. This nonequilibrium stage lasts for a
few collision times. For 87Rb with ρi = 0.05 and Tr0 = 1 μK,
the collision time is τcoll ≈ 11 ms, sufficiently long that one
can experimentally resolve these dynamics. In time-of-flight
imaging, the bimodal shape of f (Ẽ,t) should produce two
expanding shells of atoms.

For t � 8τcoll, we find that f (Ẽ,t) is well approximated
by a thermal distribution. This is seen in Fig. 2(b) where we
fit f (Ẽ,t = 8τcoll) to a Bose-Einstein distribution truncated at
Ẽ = ε̃d :

f (Ẽ) = D(Ẽ)/N
eβd (−εd+E−μd ) − 1

= 1

ρi�

2(Ẽ/π )1/2

eβ̃d (−ε̃d+Ẽ−μ̃d ) − 1
.

(31)

Here, βd ≡ β̃dβr0 = 1/kBTd and μd ≡ μ̃d/βr0 denote the
inverse temperature and chemical potential of the dimple. The
high-energy tail of f (Ẽ,t) takes a little longer to thermalize.
Once the density in the dimple exceeds that of the reservoir, the
time scales for redistribution become much shorter than those
for growth. Thus, we find quasithermal equilibrium inside the
dimple for t � 8τcoll, although βd and μd change with time.
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FIG. 2. (Color online) Time evolution of the atom distribution
in the dimple f (Ẽ,t) for 0 < t � 10τcoll, where Ẽ ≡ E/kBTr0 is
the energy measured from the bottom of the dimple scaled by the
initial reservoir temperature. (a) Initial population growth occurs near
Ẽ = ε̃d/2. These atoms are quickly transferred to lower-energy states,
giving rise to a hump near Ẽ = 0 which grows rapidly. Around t ≈
1.6τcoll, f (Ẽ,t) has a bimodal shape for ε̃d � 8, which should show
up in time-of-flight experiments. (b) f (Ẽ,t = 8τcoll) is well fit by
a thermal Bose-Einstein distribution given by Eq. (31). Parameter
values used for plotting are ρi = 0.05, � = 2000, ε̃d = 20, ε̃t = 10,
and l̃d = 100. At Tr0 = 1 μK, these give τcoll ≈ 11 ms for 87Rb.

We find that the condensate fraction f0 grows very slowly
at first until it becomes large enough that Bose stimulation
can take over. This gives rise to a noticeable time delay in
the onset of condensation, marked as τon in Fig. 3 where we
plot f0(t) for two different sets of parameter values. Figure 3
also shows the evolution of the total noncondensate fraction in
the dimple fnc(t) = ∫ ε̃d

0 dẼf (Ẽ,t). After t = τon, f0(t) grows
rapidly due to Bose enhancement. Part of this enhanced growth
comes from atoms in low-lying excited states scattering to the
ground state via two-body collisions with reservoir atoms. This
redistribution causes a sudden dip in fnc(t) just after t = τon.
In the absence of three-body loss, f0(t) and fnc(t) reach their
respective saturation values F0 and Fnc at a much later time
t = τsat. When ε̃d is small, f0(t) monotonically approaches F0

from below [Fig. 3(a)], whereas for large dimple depths, f0(t)
overshoots F0 shortly after t = τon [Fig. 3(b)]. In both cases,
however, the reservoir fraction fr (t) monotonically decreases
from 1 toward its saturation value Fr .

B. Results for infinite trap depth

When the trap is sufficiently deep, no particles can be lost.
Therefore, only two-way collisions are present and we have
the relation fr (t) + f0(t) + fnc(t) = 1. We can simplify the
calculation further by noting our previous observation that the
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FIG. 3. (Color online) Evolution of the condensate fraction f0

(solid blue line) and the noncondensate fraction fnc (dashed red line)
in the dimple for ρi = 0.05, � = 2000, and l̃d = 20, assuming no
three-body loss. f0(t) grows slowly at first until Bose stimulation
takes over at the onset time τon. The populations reach equilibrium
at a much later time τsat. F0 and Fnc denote the saturation values of
f0 and fnc, respectively. (a) ε̃d = 7: when the dimple depth is small,
f0(t) monotonically increases toward F0. (b) ε̃d = 28: at large dimple
depths, f0(t) overshoots F0 after t = τon before coming down again.

dimple thermalizes very quickly compared to the growth rate
of its atom population. Thus, we assume that f (Ẽ,t) is always
described by a thermal distribution as given in Eq. (31), where
the temperature (Td ) and the chemical potential (μd ) of the
dimple vary with time. This approximation allows us to rapidly
simulate the dynamics for a wide range of parameter values
and reproduces all features of the full model for t � 10τcoll.

1. Long-time behavior

Figure 4 shows the variation of F0 with ε̃d for different
values of the initial phase-space density ρi and the volume
ratio �. The different features in the plots can be explained
by the following model: as particles are scattered into the
negative-energy states of the dimple, those remaining in the
reservoir have a higher total energy. Therefore, the temperature
Tr increases and the chemical potential μr drops [see Eqs. (2)
and (3)]. In equilibrium, Tr = Td ≡ Tf and μr = μd ≡ μf �
−εd , since we are considering bosonic atoms. At a given
temperature Tf , there is an upper limit to the number of
noncondensate particles the dimple can hold, which occurs
when μf = −εd :

f max
nc ≈ 1

ρi�

∫ ∞

0
dẼ

2(Ẽ/π )1/2

eβ̃f Ẽ − 1
= ζ (3/2)

ρi�β̃
3/2
f

, (32)
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FIG. 4. (Color online) Variation of the final condensate fraction
F0 with the dimple depth ε̃d ≡ εd/kBTr0 for different choices of
the initial phase-space density ρi and the volume ratio � when
the trap depth is infinite and there is no three-body loss. In (a),
� = 2000 and in (b), ρi = 0.05. When ε̃d < |μ̃r0| = | ln(ρi)|, the
atoms do not condense. As ε̃d is increased beyond this threshold, the
atom density in the dimple grows, producing a larger F0. However,
atoms scattering into a deeper dimple also cause more heating,
which prevents condensation at large ε̃d . Consequently, there exists
an optimal dimple depth ε̃∗

d which yields the maximum condensate
fraction. Larger ρi and � increase the atom density in the dimple
without causing much change in the final temperature, hence give
a larger F0. The optimal dimple depth ε̃∗

d also grows with both ρi

and �.

where βf ≡ 1/kBTf . Consequently, only if 1 − Fr � f max
nc ,

will we get condensation. The condensate fraction will be F0 =
1 − Fr − f max

nc and the chemical potential will be μf = −εd .
The chemical potential of the reservoir must monotonically
decrease as particles scatter into the dimple. Thus, we only
find condensation if ln(ρi) = μ̃r0 > −ε̃d . This behavior is
illustrated in Fig. 4. As ε̃d increases from this threshold,
the condensate fraction grows. This growth occurs because
the lower final chemical potential implies a lower density
of the reservoir atoms (and hence a larger number of atoms
in the dimple). However, deeper dimples also lead to more
heating of the reservoir. If ε̃d is too large, this heating prevents
condensation. Thus, F0 is nonmonotonic, and there exists an
optimal dimple depth ε̃∗

d for which F0 is maximum. The F0

versus ε̃d curves for different ρi and � can be well reproduced
by assuming μf = −εd and imposing conservation of energy
and particle number. When kBTf is small relative to εd , this
yields

FrT̃f − ε̃d

3
(1 − Fr ) + f max

nc T̃f

ζ (5/2)

2 ζ (3/2)
= 1 , (33)
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FIG. 5. (Color online) (a), (b) Variation of the final temperature

T̃f ≡ Tf /Tr0 with the dimple depth ε̃d ≡ εd/kBTr0 for different
choices of ρi and �. In (a), � = 2000, and in (b), ρi = 0.05. When
ε̃d < |μ̃r0|, very few atoms scatter into the dimple and Tf ≈ Tr0.
As ε̃d is increased, atoms scattering into the dimple cause more
heating of the reservoir. Thus, T̃f increases monotonically with ε̃d .
(c) Variation of the final condensate fraction F0 (solid blue line), the
final noncondensate fraction Fnc (dotted-dashed green line), and their
sum Fd (dashed red line) with the dimple depth ε̃d for ρi = 0.05 and
� = 2000. When μr0 < −εd , no condensation occurs, and F0 = 0.
At larger dimple depths, the phase-space density in the dimple
becomes large enough to reach condensation. In this regime, the final
chemical potential lies at the bottom of the dimple, μf ≈ −εd , and the
noncondensate fraction in the dimple follows the standard expression
for a Bose gas, Fnc = ζ (3/2)/ρi�β̃

3/2
f ∝ ε̃d . Deeper dimples give

a larger T̃f , causing Fnc to grow monotonically. When ε̃d becomes
very large, excessive heating prevents condensation. Thereafter, μf

decreases below −εd , causing Fnc to saturate.

with Fr = e−β̃f ε̃d /ρi β̃
3
f and f max

nc given by Eq. (32). Solving
Eq. (33) for T̃f one finds a very weak dependence on ρi

and virtually no dependence on � for sufficiently large �.
Therefore, choosing a higher volume ratio does not change the
reservoir fraction Fr but decreases the maximum fraction of
noncondensate particles in the dimple f max

nc . In other words,
increasing the ratio of the reservoir size to the dimple size
increases the local atom density without altering the final
temperature, thus producing a larger condensate fraction.
Similarly, a large ρi decreases both Fr and f max

nc , hence
increasing F0, as one would expect intuitively. This explains
why the F0 versus ε̃d curves in Fig. 4 are higher for greater
values of � and ρi . We also find that the optimal dimple depth
ε̃∗
d increases with both � and ρi .

Figures 5(a) and 5(b) show that the final temperature rises
linearly with the dimple depth when ε̃d is large. We can
understand this behavior by considering the limit of very large
ε̃d , where F0 is vanishingly small, and the dimple population
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FIG. 6. (Color online) (a) Variation of the saturation time τsat
with the dimple depth ε̃d for different values of ρi when � = 2000.
The rate of particle scattering into the dimple falls with increasing ε̃d

due to smaller overlap between the initial and final states. This results
in a larger τsat. Changing the initial phase-space density ρi alters the
collision time τcoll, however, τsat/τcoll remains essentially unchanged.
This is expected since the dimple is populated via two-body collisions.
(b) Variation of τsat with the volume ratio � at different dimple depths
when ρi = 0.05. τsat grows almost linearly with � because a larger
� increases the total particle number without changing the scattering
rate into the dimple. Thus, �τcoll sets the typical time scale for
saturation.

can be treated classically. Using Eqs. (4) and (31), one
can write Fr = ze−β̃f ε̃d /ρi β̃

3
f and Fnc ≈ z/ρi�β̃3

f , with z =
exp [βf (εd + μf )]. Conservation of both energy and particle
number then yields

Fr = β̃f ε̃d + 3β̃f − 3/2

β̃f ε̃d + 3/2
= 1

1 + β̃
3/2
f eβ̃f ε̃d /�

. (34)

To approximate the solution to this transcendental equation, we
replace the right-hand side with a step function. The value of β̃f

at the center of the step [and hence our approximate solution to
Eq. (34)] is found by setting 1/(1 + β̃

3/2
f eβ̃f ε̃d /�) = 1/2. This

gives β̃f = 1.5 ε̃−1
d W [(21/3/3) ε̃d �2/3], where W denotes the

Lambert W function. Since W increases only logarithmically
for large arguments, T̃f rises linearly with ε̃d when ε̃d is large.
Substituting this result into the left-hand side of Eq. (34), we
see that for large ε̃d , Fr ∼ A + B/ε̃d , where A and B depend
logarithmically on ε̃d . This structure is apparent in Fig. 5(c) as
a saturation of Fnc. At smaller dimple depths, Fnc equals f max

nc

which grows with ε̃d as β̃f decreases.

2. Time scales

As seen from Fig. 3, the condensation dynamics is well
characterized by two time scales: the time needed for the
populations to saturate τsat and the time which marks the onset
of condensation τon.

Chemical equilibrium is reached when the reservoir chem-
ical potential μr crosses below the dimple bottom and merges
with the dimple chemical potential μd . This is accompanied
by the reservoir fraction fr (t) approaching Fr from above. For
concreteness, we define the saturation time τsat as the time
required for fr (t) to equal 1.002Fr . In Fig. 6(a), we plot τsat

versus ε̃d for different choices of ρi . The collapse of the curves
for different ρi indicates that τsat is proportional to τcoll. This is
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FIG. 7. (Color online) (a), (b) Variation of the onset time τon with
the dimple depth ε̃d for different choices of ρi and � when the dimple
size l̃d ≡ ld/λr0 = 20, where λr0 is the initial thermal wavelength. In
(a), � = 2000, and in (b), ρi = 0.05. Within the range of ε̃d where
the saturation condensate fraction F0 is significant, τon is minimum
near the optimal dimple depth ε̃∗

d which maximizes F0 (see Fig. 4).
As ε̃d is lowered below ε̃∗

d , τon grows and τsat falls until they become
equal at ε̃d = ε̃>

d ≈ −μ̃r0. For smaller dimple depths, condensation
does not occur and F0 = 0. F0 also becomes vanishingly small when
ε̃d exceeds a large value ε̃<

d . However, for a range of ε̃d > ε̃<
d , the

condensate fraction rises to significant values before falling to 0.
Thus, τon is well defined in this range. (c) Variation of τon with l̃d for
ρi = 0.05, � = 2000, and ε̃d = 10. Since the initial growth rate of
the condensate fraction is proportional to 1/l̃3

d , τon increases with l̃d ,
saturating when l̃d becomes sufficiently large.

expected since the dimple is populated via two-body collisions.
Additionally, the rate of these two-body collisions decreases
as the dimple is made deeper due to reduced overlap between
the initial and final states, causing τsat to rise monotonically.
Figure 6(b) shows the variation of τsat with the volume ratio
� for different values of the dimple depth. As evident from
the plots, �τcoll sets the typical time scale for saturation. This
is because a larger � increases the total number of atoms N
without changing the particle scattering rate into the dimple.
Thus, it takes longer for the dimple population to reach a given
fraction of N .

For suitable initial conditions, μd quickly reaches the
bottom of the dimple, signaling the onset of condensation.
Thereafter, f0(t) grows rapidly due to Bose stimulation. We
define the onset time τon as the time when the growth rate of
f0 increases at the maximum rate, i.e., d3f0/dt3|t=τon = 0 (see
Fig. 3). Figure 7 shows how τon varies with ε̃d , ρi , �, and l̃d .
For very small or very large dimple depths, we do not find
any condensation, so f0(t) is never macroscopic, and it is not
sensible to quote an onset time. Interestingly, there are ranges
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FIG. 8. (Color online) Relative increase of the total entropy of
the reservoir and the dimple �S/Si as a function of the dimple
depth ε̃d for different values of ρi and �. In (a), � = 2000, and
in (b), ρi = 0.05. The entropy grows because the dimple is turned on
suddenly, leading to nonadiabatic dynamics. The dimple loading is
more nonadiabatic when ε̃d is large, causing a higher entropy gain.
�S/Si also grows as ρi is increased or � is decreased, although this
dependence is weak.

of large ε̃d where F0 ≈ 0, but f0(t) rises to significant values
before falling to 0. Thus, τon is well defined even for some
parameters where F0 is vanishingly small. In the window of ε̃d

where F0 is significant, we find that τon is minimum near the
optimal dimple depth ε̃∗

d . Therefore, choosing ε̃d = ε̃∗
d both

minimizes the onset time and yields the maximum condensate
fraction. As ε̃d is decreased below ε̃∗

d , f0(t) takes longer and
longer to take off, but saturates more quickly. Thus, τon rises
while τsat diminishes, until at a particular dimple depth ε̃>

d ,
the two time scales become equal. For lower ε̃d , the atoms do
not condense. This phenomenon shows up in the τon versus ε̃d

curve as an apparent singularity at ε̃d = ε̃>
d . Increasing either

ρi or � favors condensation and lowers τon.
The initial growth rate of f0 is proportional to the inverse

volume of the dimple measured in units of the thermal
wavelength 1/l̃3

d [see Eqs. (A19) and (A20)]. Therefore, a
higher l̃d leads to a smaller onset time. This trend is seen
in Fig. 7(c) which shows how τon varies with l̃d when ρi ,
�, and ε̃d are held fixed. l̃d does not affect other features of
the dynamics. For large l̃d , where most experiments operate,
τon also becomes independent of l̃d . When l̃d ε̃

1/2
d � 1, the

continuum approximation for the dimple states is not expected
to hold [see Eq. (14)], and the kinetics should be modeled via
a discrete spectrum.

We have considered a sudden turn-on of the dimple.
Hence, the dimple loading is nonadiabatic. A measure of the
nonadiabaticity is given by the percentage increase in the total
entropy, which we plot in Fig. 8. As expected, we find that the
dynamics is more nonadiabatic for deeper dimples, with the
entropy increasing by 50% when ε̃d ≈ 60. The entropy gain
also shows a weak dependence on ρi and �, increasing slowly
as ρi is increased or � is decreased.

C. Effect of three-body loss

Here, we incorporate three-body loss into our kinetics
model. The loss introduces an additional time scale to the

dynamics which depends on the particular atomic species. We
will consider the case of 87Rb.

At low temperatures, the rate of three-body recombinations
is, to a good approximation, proportional to the probability of
finding three particles at the same point [59]. Thus, the loss
rate of the total atom density n(�r) is

[
dn(�r)

dt

]l

= −L〈[�̂†(�r)]3[�̂(�r)]3〉 , (35)

where L denotes the loss coefficient which was measured
experimentally for 87Rb as L = 1.8 × 10−29 cm6 s−1 [53]. We
write �̂(�r) as the sum of a condensate mean field ψ0(�r) and
a field ψ̂th(�r) representing thermal fluctuations. Substituting
this decomposition into Eq. (35) and using Wick’s theorem to
expand, we find [10,59,60]

[
dn(�r)

dt

]l

= − L
[
n3

0(�r) + 9n2
0(�r)nex(�r)

+ 18n0(�r)n2
ex(�r) + 6n3

ex(�r)
]
, (36)

where n0(�r) = |ψ0(�r)|2 and nex(�r) = 〈ψ̂†
th(�r)ψ̂th(�r)〉 denote

the densities of the condensate and excited-state atoms,
respectively. nex(�r) is further decomposed into nnc(�r), the
density of the noncondensate atoms in the dimple, and nr (�r),
the density of reservoir atoms from Eq. (6). We then derive the
decay rates of the individual densities and how these decays
contribute to the kinetics (see Appendix C). In particular, we
find that the condensate fraction f0(t) evolves as

[
df0(t)

dt

]l

= −L
ρ2

i �
2

λ6
r0

f0
[
f 2

0 + 6f0f
′ + 6f ′2], (37)

where f ′ ≡ fnc + (z̃r/�β̃
3/2
r )[γ (3/2,β̃r ε̃t )/γ (3/2,ε̃t )] and γ

denotes the lower incomplete gamma function.

Results for the case εt � kB Tr0,εd

As with the discussion in Sec. III B, we consider the limit
of infinite trap depth εt � kBTr0,εd . Here, we have loss, and
the total number of atoms in the system decays monotonically
toward zero. The decay rate depends explicitly on the particle
density. The more general case of finite trap depth will be
discussed in Sec. III D.

As before, we find that the condensate fraction f0(t) grows
slowly at first until Bose stimulation causes it to take off at
the onset time t = τon. Since f0(t) is very small for t < τon,
the three-body loss of condensate atoms is negligible at
these early times. Thus, the onset time is largely unaffected
by the presence of three-body recombination. For t > τon,
f0(t) grows rapidly, greatly increasing the particle density
and enhancing the three-body loss rate. The condensate
fraction attains its maximum value F

peak
0 at t = τpeak when the

condensate decay rate balances the rate of particle scattering
into the condensate. Thereafter, f0(t) decreases due to three-
body loss. Since the condensate holds a macroscopic number
of particles, the atom density in the condensate far exceeds
that of any of the excited states. Therefore, f0(t) decays much
faster than either the noncondensate fraction in the dimple
fnc(t) or the reservoir fraction fr (t). The preferential ejection
of low-energy atoms via three-body recombination leads to
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FIG. 9. (Color online) Time evolution of the condensate fraction
f0 in the presence of three-body loss for ε̃d = 8, � = 2000, ρi = 0.2,
and Tr0 = 0.1 μK. f0 takes off at t = τon due to Bose stimulation. As
the dimple population grows, the atom density in the dimple increases,
which leads to a higher three-body recombination rate. At t = τpeak,
the three-body decay rate of f0 balances the two-body scattering
rate into the condensate, and f0 reaches its peak value F

peak
0 . As

more particles scatter into the dimple, the temperature continues to
increase. Three-body losses further heat the system by ejecting more
low-energy particles. This heating, combined with the particle loss,
causes the chemical potential to drop, which decreases f0. Thus, we
get a finite condensate lifetime �tlf.

evaporative heating. This heating, along with the particle loss,
ultimately results in the death of the condensate. Thus, we
get a finite condensate lifetime �tlf defined as the duration
for which f0(t) is larger than half its maximum value. These
general features are illustrated in Fig. 9 where we plot f0(t)
for a specific set of parameter values. In the following, we
discuss how F

peak
0 , �tlf, τpeak, and τon vary with the different

parameters.
Figure 10 shows the variation of the peak condensate

fraction and the three time scales with the dimple depth ε̃d

when other parameters are held fixed. Similar to Fig. 4, we find
that the variation of F

peak
0 with ε̃d is nonmonotonic. However,

the maximum value as well as the optimal dimple depth ε̃∗
d

are significantly reduced by three-body loss. When εd < |μr0|,
the initial chemical potential lies below the dimple bottom, and
the atoms do not condense, so F

peak
0 vanishes. At larger dimple

depths, the population of the condensate is governed by the
competition between two-body collisions scattering particles
into the condensate and three-body recombinations causing
particles to leave the condensate. The condensate fraction
reaches its peak when the two-body and three-body rates
balance each other. As εd is increased beyond the threshold
|μr0|, the two-body rate climbs as the phase-space density
increases, then falls due to increased heating and a reduced
overlap between the initial and final states. The three-body
rate only depends on the density, so the F

peak
0 versus ε̃d curve

follows the variation of the two-body scattering rate. The rapid
increase of the two-body rate with εd just above the threshold
leads to a sharp decrease in the onset time τon and the time
required to reach peak condensate fraction τpeak. At large
dimple depths, τpeak decreases very slowly because both F

peak
0

and the two-body rate fall off. We also find that the condensate
lifetime �tlf decreases monotonically with ε̃d . For large ε̃d ,
the condensate loss is dominated by collisions between the
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FIG. 10. (Color online) Variation of (a) the peak condensate
fraction F

peak
0 , (b) the onset time τon (dotted-dashed green line), the

peak time τpeak (dashed red line), and the condensate lifetime �tlf
(solid blue line) with the dimple depth ε̃d ≡ βr0εd for � = 2000,
ρi = 0.2, and Tr0 = 0.1 μK. For ε̃d < |μ̃r0|, the atoms do not
condense. As ε̃d is increased, the two-body scattering rate into the
condensate grows rapidly at first, then falls off at large ε̃d . The peak
condensate fraction is reached when the three-body loss rate balances
the two-body scattering rate. Since the three-body rate depends only
on the atom density, the nonmonotonic variation of the two-body
rate shows up in the variation of F

peak
0 with ε̃d . The growth of the

two-body rate above the condensation threshold decreases τon and
τpeak. These vary little at large ε̃d since both F

peak
0 and the two-body

rate fall off. At large ε̃d , three-body loss is dominated by collisions
between the noncondensed dimple atoms and the condensate atoms.
The number of such noncondensed atoms grows with ε̃d , yielding
shorter lifetimes.

noncondensed dimple atoms and the condensate. The number
of such noncondensed dimple atoms grows with ε̃d , yielding
the shorter lifetimes.

In Fig. 11(a), we plot the variation of F
peak
0 with the volume

ratio �. Decreasing � reduces the total number of atoms (N ),
without changing the maximum number of noncondensed
atoms in the dimple. Therefore, when � becomes very
small, the atoms in the dimple no longer condense, as seen
experimentally in Ref. [43]. As � is increased, the condensate
fraction increases rapidly until � reaches an optimal value
�∗, beyond which F

peak
0 falls off due to increased three-body

loss. We see a similar variation of F
peak
0 with ρi in Fig. 12(a).

When ρi is very small, few atoms populate the dimple and
no condensation takes place. As one increases ρi , F

peak
0 rises

rapidly at first, then falls for ρi > ρ∗
i . The increase of the

condensate fraction with � and ρi was also seen in Fig. 4
where no inelastic loss was assumed. The falloff at large
� or large ρi can be explained as follows: As � or ρi is
increased, the total particle number N and the condensate
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FIG. 11. (Color online) Variation of (a) F
peak
0 , (b) τon (dotted-

dashed green line), τpeak (dashed red line), and �tlf (solid blue
line) with the volume ratio � for ε̃d = 10, ρi = 0.2, and Tr0 = 0.1
μK. When � is very small, the total atom number N is small
and the dimple can hold its entire population in the excited states,
so condensation does not occur. As � is increased, F

peak
0 grows

rapidly at first, then falls off when � becomes larger than an optimal
value �∗. At large �, the condensate population N0 far exceeds
the noncondensate population in the dimple, and three-body loss is
dominated by collisions among the condensate atoms. Balancing the
two-body growth rate and the three-body decay rate gives a peak
condensate size N

peak
0 which is independent of �. Since N ∝ �,

F
peak
0 falls off as 1/�. The condensate lifetime is set by the depletion

rate of the reservoir. When � is large, the condensate size and hence
the loss rate become independent of �. Thus, it takes longer to empty
a larger reservoir, causing �tlf to grow linearly. We also find that τon
and τpeak are mostly independent of �.

population N0 grows, however, the number of noncondensed
atoms in the dimple (Nnc) does not change. Therefore, at large
� or ρi , N0 � Nnc. The noncondensate population merely
acts as a medium to transfer particles from the reservoir to
the condensate. In addition, three-body loss principally occurs
in the dimple, resulting from collisions among the densely
packed condensate atoms. Thus, the dynamics is governed by
the simplified rate equations

Ṅ0 = c1nN0 − c2N
3
0 and ṅ = −(c1/Vr )nN0 , (38)

where Vr is the reservoir volume and n is the density of
reservoir particles. The rate coefficients c1 and c2 represent
two-particle collisions which fill the dimple and three-body
losses, respectively. They depend on the reservoir temperature
but do not depend explicitly on � or ρi . From our full
model we find that the temperature does not vary much
(∼ 25%) during the condensate lifetime, and depends very
weakly on � and ρi (also seen in Fig. 5). Thus, we treat
c1 and c2 as constants in solving Eq. (38). N0 attains its
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FIG. 12. (Color online) Variation of (a) F
peak
0 , (b) τon (dotted-

dashed green line), τpeak (dashed red line), and �tlf (solid blue line)
with the initial phase-space density ρi for ε̃d = 10, � = 3000, and
Tr0 = 0.1 μK. When ρi is very small, the atoms do not condense. As
ρi is increased, F peak

0 rises rapidly at first, then falls at large ρi because
the three-body decay rate of the condensate fraction grows faster
than the two-body growth rate. Thus, we get an optimal phase-space
density ρ∗

i which yields the largest condensate, although this peak is
much less pronounced compared to the peaks seen when one varies
ε̃d (Fig. 10) or � (Fig. 11). The increased three-body decay rate at
larger ρi also leads to a smaller condensate lifetime: �tlf falls off as
ρ

−1/2
i for large ρi . However, since τcoll diminishes more rapidly as

1/ρi , �tlf/τcoll grows as
√

ρi . We find that τon/τcoll and τpeak/τcoll
decrease slowly with ρi .

peak value when Ṅ0 = 0. Thus, N
peak
0 = [c1n(τpeak)/c2]1/2.

From Figs. 11(b) and 12(b) we see that when � or ρi is
large, the condensate reaches its peak size very quickly,
then decays gradually. For 0 < t < τpeak, the change in n is
negligible. Hence, Npeak

0 ≈ [c1n(0)/c2]1/2 ∝ ρ
1/2
i and F

peak
0 ≡

N
peak
0 /N = N

peak
0 /(ρi� l̃3

d ) ∝ �−1ρ
−1/2
i . This accounts for

the reduction of F
peak
0 at large � or ρi . To calculate the lifetime,

we note that the transfer of one atom from the reservoir to
the condensate decreases n by 1/Vr � n(0). Therefore, as
the growth rate of N0 declines after t = τpeak, the decay rate
also falls to maintain Ṅ0 ≈ 0 or N0(t) ≈ [c1n(t)/c2]1/2. Thus,
the lifetime is set by the time required for the reservoir to be
depleted [43]. Using the above expression for N0(t) in the other
equation, we find 1/N0(t) = 1/N

peak
0 + c1t/2Vr , which gives

a lifetime �tlf ≈ 2Vr/(c1N
peak
0 ) ∝ �ρ

−1/2
i . Since τcoll falls off

with ρi as 1/ρi [Eq. (9)], �tlf/τcoll ∝ �ρ
1/2
i . Such variation of

the lifetime is illustrated in Figs. 11(b) and 12(b). We find that
τon and τpeak vary little with �. As was true without three-body
collisions, τon/τcoll decreases slowly with ρi . τpeak/τcoll also
falls with ρi , following the variation of τon/τcoll.
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FIG. 13. (Color online) Variation of (a) F
peak
0 , (b) τon (dotted-

dashed green line), τpeak (dashed red line), and �tlf (solid blue line)
with the initial reservoir temperature Tr0 for ε̃d = 10, � = 2000, and
ρi = 0.2. The rate of two-body collisions which populate the dimple
is set by 1/τcoll ∝ T 2

r0, whereas the three-body loss rate grows as
T 3

r0. Thus, a higher Tr0 increases the three-body loss rate relative

to the two-body scattering rate, causing both F
peak
0 and �tlf/τcoll

to decrease. �tlf/τcoll diverges as 1/Tr0 for small Tr0. Since F
peak
0

is smaller at larger Tr0, it takes fewer two-body collisions to reach
this value, so τpeak/τcoll decreases slowly with Tr0. The onset of
condensation is not affected much by three-body loss, thus τon/τcoll
is nearly independent of Tr0.

Figure 13 shows how F
peak
0 , �tlf, τpeak, and τon vary with the

initial reservoir temperature Tr0. To understand the features,
we note that the growth and redistribution of the dimple
population occur via two-body collisions. Thus, the rates of
these processes are set by 1/τcoll which is proportional to T 2

r0
[see Eqs. (7) and (9)]. However, from Eq. (37) we find that
the three-body loss rate is proportional to T 3

r0. Therefore, a
higher initial temperature increases the strength of three-body
decay processes relative to two-body elastic processes. This
reduces the peak condensate fraction as well as the condensate
lifetime. We find that �tlf/τcoll diverges as 1/Tr0 for small Tr0.
Since F

peak
0 is smaller for larger Tr0, it takes fewer two-body

collisions to reach the peak condensate fraction. Consequently,
τpeak/τcoll decreases slowly with Tr0. We also notice that
τon/τcoll stays essentially constant as Tr0 is varied because
the onset of condensation is governed by two-body processes
alone.

D. Effect of finite trap depth

Here, we discuss how the above results are altered when
the reservoir trap has a finite depth εt . First, we remind the
reader that we have modeled the growth and redistribution of
the dimple population by two kinds of elastic collisions, as

FIG. 14. (Color online) Time evolution of the reservoir tempera-
ture Tr for different values of the trap depth ε̃t ≡ βr0εt with ε̃d = 10,
� = 2000, ρi = 0.2, and Tr0 = 0.1 μK. When ε̃t → ∞ (solid blue
line), particle transfer from the reservoir to the dimple and their
redistribution from the higher-energy to the lower-energy dimple
states heat the reservoir. Along with evaporative heating by three-body
loss, this causes Tr to rise monotonically. When ε̃t is finite (dashed
and dotted lines), a reservoir atom can recoil from a collision with
a total energy greater than εt and leave the trap. The average initial
energy of this atom is less than the average particle energy in the
reservoir since the dimple is located at the trap center. Therefore,
such one-way collisions contribute to heating at short times. When the
atom density in the dimple becomes sufficiently large, both one- and
two-way collisions initiate thermalization by transferring atoms from
the higher- to the lower-energy dimple states. However, the one-way
transfer soon results in an excess of particles in the low-energy states.
Two-way collisions now transfer these extra particles to higher-energy
states and thus cool the reservoir. The cooling rate increases as ε̃t is
lowered. Thus, lower trap depths yield lower final temperatures.

illustrated in Fig. 1. Both processes can be either one-way or
two-way: if the recoiling reservoir atom has a total energy
greater than εt , it escapes from the trap. Such a collision has
no reverse process and happens only one way. Other collisions
happen both ways.

When ε̃t ≡ βr0εt → ∞, only two-way collisions are
present. After the dimple is turned on, two-way growth
processes start populating the dimple. Such processes reduce
the number of reservoir atoms Nr , but increase their total
energy Er , thus heating up the reservoir. When the atom
density in the dimple becomes comparable to that in the
reservoir, two-way redistribution processes transfer atoms to
the lower-energy dimple states, leading to thermalization (see
Fig. 2). These redistribution processes do not change Nr , but
increase Er , causing heating. Three-body recombinations also
cause evaporative heating. Thus, the reservoir temperature Tr

increases monotonically, as shown by the solid blue curve in
Fig. 14. When ε̃t is finite, both one- and two-way collisions
are present. In a one-way growth process, the colliding atoms
are removed from the reservoir. Since the dimple is located
at the trap center, the average energy of a colliding atom
is less than the average energy per particle in the reservoir.
Therefore, one-way growth processes (and for the same reason,
one-way redistribution processes) contribute to heating. Thus,
we find that Tr always increases just after turning on the
dimple. When the atom density in the dimple becomes large
enough, redistribution processes start operating. At first, both
one- and two-way collisions cause a net transfer of atoms
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FIG. 15. (Color online) Variation of (a) F
peak
0 , (b) τon (dotted-

dashed green line), τpeak (dashed red line), and �tlf (solid blue line)
with the trap depth ε̃t ≡ βr0εt for ε̃d = 10, � = 2000, ρi = 0.2, and
Tr0 = 0.1 μK. As ε̃t is decreased, the rate of one-way redistribution
processes which transfer atoms from the higher-energy to the lower-
energy dimple states increases. This gives rise to a faster growth of
the condensate, which increases F

peak
0 and decreases τon and τpeak.

A smaller trap depth also causes more cooling, which reduces the
noncondensate fraction fnc and thus the three-body decay rate of the
condensate. Hence, we get a larger condensate lifetime. However,
when ε̃t becomes very small, the increased evaporation rate of the
reservoir limits the growth of �tlf/τcoll.

from the higher-energy to the lower-energy dimple states.
However, the one-way particle transfer soon overcompensates
thermalization, resulting in an excess of atoms in the low-
energy states. This imbalance flips the direction of the two-way
traffic, which now transfers atoms to the higher-energy states.
Such two-way collisions decrease Er without changing Nr ,
thus cooling the reservoir. A smaller ε̃t results in a larger
imbalance of the atom distribution, which increases the cooling
rate. Thus, we see in Fig. 14 that Tr decreases after the initial
growth when ε̃t is sufficiently small compared to ε̃d .

In Fig. 15, we plot the variation of the peak condensate
fraction F

peak
0 and the time scales with the trap depth ε̃t . As ε̃t is

decreased, one-way redistribution processes become stronger,
leading to a faster growth of the condensate. Consequently, a
higher condensate density has to be reached before the three-
body decay rate can balance the growth rate. Thus, F peak

0 grows
as the trap is made shallower. The larger growth rate also
reduces the onset time τon and the time required to reach the
peak τpeak. A smaller trap depth causes less heating and reduces
the noncondensate fraction fnc, which in turn decreases the
three-body decay rate of the condensate. Combined with the
faster growth rate, this yields a larger condensate lifetime �tlf.
However, as the trap depth is lowered, the evaporation rate
of the reservoir atoms also increases, and eventually becomes

comparable to the decay rate of the condensate. As the number
of reservoir atoms falls, so does the rate of particle transfer
from the reservoir to the dimple, and hence the growth rate of
the condensate. This limits the rise of �tlf/τcoll. Additionally,
τcoll grows at small ε̃t [Eq. (9)], causing �tlf/τcoll to decrease.

IV. SUMMARY AND OUTLOOK

In this work, we have studied the condensation kinetics of
weakly interacting bosons in a dimple potential using quantum
kinetic rate equations. We have modeled the growth and
redistribution of the dimple population by two-body elastic
collisions. We have incorporated three-body inelastic losses
for 87Rb, and varied the reservoir trap depth εt to study the
effects of evaporation. The dynamics is controlled by the
dimple depth εd , the ratio of the reservoir volume to the dimple
volume �, the initial phase-space density ρi , and the initial
temperature Tr0. The absolute size of the dimple does not
matter as long as it is much larger than the thermal wavelength.
We have presented detailed results for condensate fraction,
the temperature, and the different time scales. Our results are
consistent with features observed in recent experiments, and
should provide a useful guide for more efficient production of
condensates in the future.

We find that the initial growth of the dimple population
is dominated by states whose energy is near half the dimple
depth. However, scattering between levels quickly transfers
these particles to the low-energy states, giving rise to a
bimodal particle distribution at t ≈ 2τcoll when εd � 8kBTr0.
The dimple attains quasithermal equilibrium in about 8τcoll

after it is turned on. Comparable thermalization time scales
were reported in previous studies [24–27,43,51,52]. The
condensate grows slowly at first until Bose stimulation can
take over. This results in a time delay τon before the onset
of condensation, as was seen in Refs. [10,11]. When εt � εd

and kBTr0, particle scattering into the dimple causes heating
in the reservoir. In the absence of three-body loss, the dimple
population saturates at a value limited by this heating. The
saturation time is proportional to both τcoll and �, and increases
monotonically with εd . When εd is small such that the initial
chemical potential is below the dimple bottom, we do not get
condensation. As εd is increased beyond this threshold, the
saturation condensate fraction F0 grows rapidly at first, then
falls off due to increased heating. This gives rise to an optimal
dimple depth ε∗

d which yields the largest condensate fraction.
The onset time τon is also minimized at εd = ε∗

d . We find
that ε∗

d scales with kBTr0. The nonmonotonic behavior of the
condensate fraction was observed in a recent experiment [10].
A larger ρi or � both favor condensation, increasing F0 and
ε∗
d , while decreasing τon. The reduction of τon was seen in

Ref. [43]. The dynamics becomes more nonadiabatic at larger
εd , with the entropy growing by 20% when εd ≈ 20kBTr0.
Typical experiments have εd ranging from a few kBTr0 to
∼ 10kBTr0 [10,11].

We find that three-body loss plays an important role
for 87Rb, reducing the maximum condensate fraction to a
few percent for Tr0 = 100 nK. It also limits the condensate
lifetime �tlf. The condensate fraction now decays toward
zero after reaching a peak value F

peak
0 at t = τpeak. F

peak
0

varies nonmonotonically with εd similar to F0. However,
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both its maximum value and the optimal dimple depth ε∗
d

are significantly reduced by three-body loss, in agreement
with similar modeling in Ref. [10]. When ρi or � is very
small, condensation does not occur, as seen experimentally
in Ref. [11]. As ρi or � is increased, F

peak
0 grows rapidly

at first, then falls due to increased loss rate resulting from
higher local densities. Thus, there exist an optimal volume
ratio �∗ and an optimal initial phase-space density ρ∗

i which
yield maximum condensate fraction. We find that the peak
at ρi = ρ∗

i is much flatter than either of those at � = �∗ or
εd = ε∗

d . The three-body decay rate grows much faster with Tr0

than the rate of two-body collisions, causing F
peak
0 to drop. We

find that �tlf/τcoll increases with ρi and �, and decreases with
εd and Tr0. We also find that τpeak follows the variation of τon,
falling off with εd , ρi , and Tr0, while being almost independent
of �. When the trap depth is finite, particles recoiling with
sufficiently high energies from elastic collisions escape from
the trap. This leads to cooling. Lower trap depths yield lower
final temperatures and enhance the condensate growth rate,
producing larger and longer-lived condensates. However, at
very small trap depths, the increased evaporation rate of the
reservoir limits the condensate lifetime.

Several of our predictions are amenable to testing in future
experiments. The bimodal shape of f (Ẽ,t) at t ≈ 2τcoll should
show up in time-of-flight images as two expanding shells of
atoms, though their actual shape would depend on the trap
geometry. Our predictions for condensate fractions can readily
be checked using the techniques in Refs. [7–11].

Our model can be readily generalized to study experiments
where the dimple is turned on gradually, making the loading
process more adiabatic [6–8,10]. A gradual turn-on is likely to
increase the condensate fraction, although recent experiments
suggest that it does not affect the dynamics at large times [43].

One can also make the reservoir trap anisotropic [10,11] or
vary the location of the dimple [48]. Dimples located off
center in a harmonic trap should have smaller filling rates
due to lower particle density, but can assist in evaporative
cooling since the particles would have higher energies. In
Ref. [11], Stellmer et al. employed a novel technique where
the reservoir is continuously laser cooled while the dimple
particles are rendered transparent to the cooling photons by a
blue-detuned laser beam. This prevents heating of the reservoir
and significantly increases the condensate lifetime. It would
be valuable to study how this technique alters the kinetics
in future theory work. One could also explore the loading of
arrays of dimples. Our framework can be naturally extended to
model such experiments. Dimple methods can also be applied
to fermions [12] or boson-fermion mixtures.

In modeling the kinetics, we have made a few simplifying
assumptions to reduce the computational complexity. In par-
ticular, we have not included mean-field interactions between
the condensate and the thermal cloud [10,28–32,43,44,56–
58], and we have neglected two kinds of elastic collisions,
as described in the last paragraph in Sec. I A. These can
be incorporated in future refinements of our model. They
might alter some quantitative predictions by factors of 2,
but we do not expect them to change any of the qualitative
features [6,28,29,34].
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APPENDIX A: RATE EQUATIONS FOR THE GROWTH OF THE DIMPLE POPULATION

The rate of inflow of particles to the �nth dimple state is given by [Eq. (15)]
(

dN�n
dt

)g

in

=2π

�
U 2

0 z2
r (1 + N�n)

∫ ′ d3p d3q

(2π�)6
e−βr ( p2+q2

2m
)δ

{
p2 + q2 − [ �p + �q − (2π�/ld )�n]2

2m
− εn

}
, (A1)

where the prime on the integral symbol denotes the condition that the initial momenta of the colliding particles must satisfy
p2,q2 < 2mεt . To simplify Eq. (A1) we write it in terms of �̃p, �̃q ≡ (βr/4m)1/2( �p ± �q) and use the dispersion of the dimple modes
Eq. (14). This gives

(
dN�n
dt

)g

in

= 2ma2z2
r

π3�3β2
r

(1 + N�n)
∫ ′

d3p̃ d3q̃ e−(p̃2+q̃2)δ[q̃2 + βrεd − p̃2 − 2βrEn + 2(2βrEn)1/2 �̃p · n̂], (A2)

where n̂ ≡ �n/n and in the new variables, the prime stands for the constraint p̃2 + q̃2 ± 2 �̃p · �̃q < 2βrεt . Dividing the integration
region into separate parts we can express Eq. (A2) as

(
dN�n
dt

)g

in

= G̃
z̃2
r

β̃2
r

(1 + N�n)
∑
i=1,2

Gi(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽn) , (A3)

where G̃ ≡ 16
√

2 (a/λr0)2(z2
r0/βr0�) and

G1(ε̃t ,ε̃d ,Ẽ) ≡ 1√
Ẽ

⎡
⎣ ∫∫

IA,C

dp̃ dq̃ p̃ q̃2 e−(p̃2+q̃2) +
∫∫

IB,C

dp̃ dq̃ q̃

(
ε̃t − p̃2 + q̃2

2

)
e−(p̃2+q̃2)

⎤
⎦, (A4)
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G2(ε̃t ,ε̃d ,Ẽ) ≡ 1√
Ẽ

∫∫
II,C

dp̃ dq̃ p̃ q̃2 e−(p̃2+q̃2) . (A5)

Here, the labels under the integrals denote the following conditions on p̃ and q̃:

IA : p̃2 + q̃2 � ε̃t − ε̃d + Ẽ and p̃ + q̃ < (2ε̃t )
1/2,

IB : p̃ + q̃ � (2ε̃t )
1/2 and p̃2 + q̃2 < 2ε̃t ,

I I : p̃2 + q̃2 < ε̃t − ε̃d + Ẽ,

C : [p̃ − (2Ẽ)1/2]2 � q̃2 + ε̃d � [p̃ + (2Ẽ)1/2]2.

Conditions IA and IB correspond to the range of initial momenta for which the atom recoiling back to the reservoir gains
sufficient energy from the collision to escape from the trap. Such collisions happen only one way: they do not have any reverse
process. Whereas if condition II is satisfied, no atom is lost from the trap, giving rise to two-way collisions. Condition C ensures
that both momentum and energy are conserved in the process.

Similarly, we simplify Eq. (16) describing the rate of particle flow out of the �nth dimple state to obtain(
dN�n
dt

)g

out

=−G̃
z̃r

zr0β̃2
r

N�n e−β̃r (ε̃d−Ẽn)G2(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽn). (A6)

The net growth rate of N�n(t) is then found by adding Eqs. (A3) and (A6). We write this as a sum of contributions from one- and
two-way collisions: (

dN�n
dt

)g

=
(

dN�n
dt

)g

1

+
(

dN�n
dt

)g

2

, (A7)

where (
dN�n
dt

)g

1

= G̃
z̃2
r

β̃2
r

(1 + N�n)G1(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽn) , (A8)

(
dN�n
dt

)g

2

= G̃
z̃2
r

β̃2
r

[
1 − N�n

{
1

zr

eβ̃r (ε̃d−Ẽn) − 1

}]
G2(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽn). (A9)

Each one-way collision reduces the number of atoms in the reservoir (Nr ) by 2, whereas every two-way collision changes Nr by
1. Hence, we write (

dNr

dt

)g

= −
∑

�n

[
2

(
dN�n
dt

)g

1

+
(

dN�n
dt

)g

2

]
. (A10)

In a one-way collision, the total energy of the colliding particles is lost from the reservoir. Therefore, the rate at which one-way
collisions decrease the total energy in the reservoir (Er ) can be written as [Eq. (20)](

dEr

dt

)g

1

= −2π

�
U 2

0 z2
r

∑
�n

(1 + N�n)
∫ ′′ d3p d3q

(2π�)6
e−βr ( p2+q2

2m
) p

2 + q2

2m
δ

{
p2 + q2−[ �p+�q−(2π�/ld )�n]2

2m
−εn

}
, (A11)

where the double prime restricts the initial momenta to regions where p2,q2 < 2mεt and p2 + q2 > 2m(εt − εd + En). To
simplify Eq. (A11), we apply the same operations as we did on Eq. (A1). This yields(

dEr

dt

)g

1

= −G̃
z̃2
r

βr β̃2
r

∑
�n

(1 + N�n)Cg(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽn) , (A12)

where

Cg(ε̃t ,ε̃d ,Ẽ) ≡ 1√
Ẽ

⎡
⎣ ∫∫

IA,C

dp̃ dq̃ p̃ q̃2(p̃2 + q̃2) e−(p̃2+q̃2) +
∫∫

IB,C

dp̃ dq̃ q̃ (p̃2 + q̃2)

(
ε̃t− p̃2+q̃2

2

)
e−(p̃2+q̃2)

⎤
⎦. (A13)

A two-way collision which scatters a particle to the �nth state increases Er by εd − En. Therefore,(
dEr

dt

)g

2

=
∑

�n
(εd − En)

(
dN�n
dt

)g

2

. (A14)

Since the occupation of a dimple state depends only on its energy [Eqs. (A8) and (A9)], the dimple population can be described
by a continuous distribution function f (Ẽ,t) = D(Ẽ)N�n(t)/N with Ẽn = Ẽ, where D(Ẽ) = 2l̃3

d (Ẽ/π )1/2 denotes the density of
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states. Using this definition in Eqs. (A7)–(A9) we find the growth rate of f (Ẽ,t):[
∂f (Ẽ,t)

∂t

]g

=
[
∂f (Ẽ,t)

∂t

]g

1

+
[
∂f (Ẽ,t)

∂t

]g

2

, (A15)

where
[
∂f (Ẽ,t)

∂t

]g

1

= G
z̃2
r

β̃2
r

[
2

(
Ẽ

π

) 1
2

+ ρi�f (Ẽ,t)

]
G1(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽ) , (A16)

[
∂f (Ẽ,t)

∂t

]g

2

= G
z̃2
r

β̃2
r

G2(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽ)

[
2

(
Ẽ

π

) 1
2

− ρi�f (Ẽ,t)

{
1

zr

e−β̃r (ε̃d−Ẽ) − 1

}]
, (A17)

with the “rate constant” G given by

G ≡ G̃

ρi�
= 16

√
2

βr0�

(
a

λr0

)2
ρi

�

π/4

[γ (3/2,ε̃t )]2
= 1

τcoll�

√
π/2

γ (2,ε̃t )γ (3/2,ε̃t )
. (A18)

Here, we have substituted from Eqs. (7), (9), and (11). We note that the characteristic time scale for the growth of the dimple
population is τcoll�.

Condensation occurs when a macroscopic number of particles reside in the ground state. The condensate fraction is defined
as f0(t) ≡ N�0(t)/N . Using Eqs. (A7)–(A9), we obtain(

df0

dt

)g

1

= G
z̃2
r

β̃2
r

(
1

l̃3
d

+ ρi�f0

)
G1(β̃r ε̃t ,β̃r ε̃d ,0), (A19)

(
df0

dt

)g

2

= G
z̃2
r

β̃2
r

[
1

l̃3
d

− ρi�f0

{
1

zr

e−β̃r ε̃d − 1

}]
G2(β̃r ε̃t ,β̃r ε̃d ,0). (A20)

Similarly, Eqs. (A10), (A12), and (A14) yield the growth rates of the reservoir fraction fr ≡ Nr/N and of ẽr ≡
er [γ (4,ε̃t )/γ (3,ε̃t )] = (Er/E)[γ (4,ε̃t )/γ (3,ε̃t )]:(

dfr

dt

)g

= − 2

(
df0

dt

)g

1

−
(

df0

dt

)g

2

−
∫ ε̃d

0
dẼ

{
2

[
∂f (Ẽ,t)

∂t

]g

1

+
[
∂f (Ẽ,t)

∂t

]g

2

}
, (A21)

(
dẽr

dt

)g

1

= −G
z̃2
r

β̃3
r

{(
1

l̃3
d

+ ρi�f0

)
Cg(β̃r ε̃t ,β̃r ε̃d ,0) +

∫ ε̃d

0
dẼ

[
2

(
Ẽ

π

) 1
2

+ρi�f (Ẽ,t)

]
Cg(β̃r ε̃t ,β̃r ε̃d ,β̃r Ẽ)

}
, (A22)

(
dẽr

dt

)g

2

= ε̃d

(
df0

dt

)g

2

+
∫ ε̃d

0
dẼ (ε̃d − Ẽ)

[
∂f (Ẽ,t)

∂t

]g

2

. (A23)

APPENDIX B: RATE EQUATIONS FOR THE REDISTRIBUTION OF THE DIMPLE POPULATION

The rate at which particles are scattered from state �n1 to state �n2 of the dimple is given by [Eq. (23)]

dN�n1→�n2

dt
= 2π

�
U 2

0
zr

l3
d

N�n1

(
1 + N�n2

) ∫ ′ d3p

(2π�)3
e−βr

p2

2m δ

{
p2

2m
+ En1 − [ �p + (2π�/ld )(�n1 − �n2)]2

2m
− En2

}
, (B1)

where the prime restricts the initial energy of the reservoir particle below the trap depth: p2 < 2mεt . We can write Eq. (B1) more
simply in terms of �̃p ≡ (βr/2m)1/2 �p :

dN�n1→�n2

dt
= R̃

z̃r

β̃r

N�n1 (1 + N�n2 )
∫ �

dp̃ 2p̃ e−p̃2

[
Ẽn1 + Ẽn2 − 2

(
Ẽn1Ẽn2

)1/2
n̂1 · n̂2

]1/2 , (B2)

where n̂i ≡ �ni/ni , R̃ ≡ (4πa2zr0/l3
d )

√
2/mβr0, and the asterisk imposes the condition βrEn2 cos2 θ (�n2,�n1 − �n2) < p̃2 < βεt ,

θ (�n2,�n1 − �n2) being the angle between �n2 and �n1 − �n2. The lower limit on p̃ arises from conservation of energy and momentum.
When En2 < En1 , the reservoir particle recoils with a higher energy. If p̃2 > βr (εt − En1 + En2 ), its energy exceeds εt and it
is lost from the trap. Such collisions have no reverse process. Whereas for p̃2 < βr (εt − En1 + En2 ), no particle is lost and
collisions happen both ways. When En2 > En1 , every scattering event which transfers a particle from state �n1 to state �n2 can
happen backward as well. Thus, we can identify the contributions of one- and two-way collisions in Eq. (B2):

(
dN�n1→�n2

dt

)
1

= R̃
z̃r

β̃r

N�n1

(
1 + N�n2

)α
(
e−max{β̃r Ẽn2 cos2θ(�n2,�n1−�n2), β̃r (ε̃t−Ẽn1 +Ẽn2 )} − e−β̃r ε̃t

)
[
Ẽn1 + Ẽn2 − 2(Ẽn1Ẽn2 )1/2 n̂1 · n̂2

]1/2 , (B3)
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(
dN�n1→�n2

dt

)
2

= R̃
z̃r

β̃r

N�n1 (1 + N�n2 )
α
(
e−β̃r Ẽn2 cos2θ(�n2,�n1−�n2) − e−min{β̃r ε̃t , β̃r (ε̃t−Ẽn1 +Ẽn2 )})

[
Ẽn1 + Ẽn2 − 2(Ẽn1Ẽn2 )1/2 n̂1 · n̂2

]1/2 , (B4)

where α denotes the ramp function: α(x) = x for x > 0, and α(x) = 0 for x < 0. The overall rate of change of N�n due to particle
transfer from other states can then be written as (

dN�n
dt

)r

=
∑
�n′ 	=�n

R
(1)
�n,�n′ + R

(2)
�n,�n′ , (B5)

where

R
(i)
�n,�n′ ≡

(
dN�n′→�n

dt

)
i

−
(

dN�n→�n′

dt

)
i

, i = 1,2. (B6)

Two-way collisions do not alter the number of particles in the reservoir (Nr ), whereas each one-way collision removes one
particle from the reservoir. Therefore, (

dNr

dt

)r

= −
∑
�n′,�n

En′ > En

R
(1)
�n,�n′ . (B7)

In a one-way collision, the reservoir particle is lost from the trap. This reduces the energy in the reservoir (Er ) by p2/2m. The
expression for the net rate of decrease of Er looks similar to Eq. (B1) and is given in Eq. (28). To simplify, we perform the same
substitutions as in Eq. (B1), thus obtaining

(
dEr

dt

)r

1

= −R̃
z̃r

βr β̃r

∑
�n′,�n

E
n′ >En

N�n′ (1 + N�n)
ξ [max{β̃r Ẽn cos2θ (�n,�n′−�n),β̃r (ε̃t−Ẽn′+Ẽn)},β̃r ε̃t ]

[Ẽn+Ẽn′ − 2(ẼnẼn′ )1/2 n̂ · n̂′]1/2
, (B8)

where ξ (a,b) ≡ [(1 + a) e−a − (1 + b) e−b]�(b − a), � being the Heaviside step function: �(x) = 1 for x > 0, and �(x) = 0
for x < 0.

A two-way collision which transfers a particle from state �n′ to state �n increases Er by En′ − En. Hence,(
dEr

dt

)r

2

=
∑
�n′,�n

E
n′ >En

(En′ − En)R(2)
�n,�n′ . (B9)

Due to symmetry, N�n depends only on En [Eqs. (B3)–(B6)]. Thus, we describe the discrete states in the dimple by a continuous
density of states D(Ẽ) = 2l̃3

d (Ẽ/π )1/2 and their occupations by a distribution function f (Ẽ,t) ≡ D(Ẽ)N�n(t)/N where Ẽn = Ẽ.
Then, Eqs. (B3)–(B6) give

[
∂f (Ẽ,t)

∂t

]r

=
∫ ε̃d

0
dẼ′[R1(Ẽ,Ẽ′) + R2(Ẽ,Ẽ′)], (B10)

where Ri(Ẽ′,Ẽ) = −Ri(Ẽ,Ẽ′) and, for Ẽ′ > Ẽ,

R1(Ẽ,Ẽ′) ≡ R
z̃r

β̃
1/2
r

f (Ẽ′,t)
{

2

(
Ẽ

π

) 1
2

+ ρi�f (Ẽ,t)

}
I (1)

A (β̃r ε̃t ,β̃r Ẽ,β̃r Ẽ
′), (B11)

R2(Ẽ,Ẽ′) ≡ R
z̃r

β̃
1/2
r

[
f (Ẽ′,t)

{
2

(
Ẽ

π

) 1
2

+ ρi�f (Ẽ,t)

}
− f (Ẽ,t)

{
2

(
Ẽ′

π

) 1
2

+ ρi�f (Ẽ′,t)
}

e−β̃r (Ẽ′−Ẽ)

]
I (2)

A (β̃r ε̃t ,β̃r Ẽ,β̃r Ẽ
′),

(B12)

where the “rate constant” R has the expression

R = 2
√

π

βr0�

(
a

λr0

)2

ρi

√
π/2

γ (3/2,ε̃t )
=

√
π γ (2,ε̃t )

8 τcoll
, (B13)

and the functions I (1)
A and I (2)

A are given by

I (1)
A (ε̃t ,Ẽ,Ẽ′) ≡

∫ 1

−1
du

α
(
e
−max{Ẽ (

√
Ẽ′u−

√
Ẽ)2

Ẽ+Ẽ′−2
√

ẼẼ′u , ε̃t−Ẽ′+Ẽ} − e−ε̃t
)

(Ẽ + Ẽ′ − 2
√

ẼẼ′u)1/2
, (B14)
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I (2)
A (ε̃t ,Ẽ,Ẽ′) ≡

∫ 1

−1
du

α
(
e
−Ẽ

(
√

Ẽ′u−
√

Ẽ)2

Ẽ+Ẽ′−2
√

ẼẼ′u − e−(ε̃t−Ẽ′+Ẽ)
)

(
Ẽ + Ẽ′ − 2

√
ẼẼ′u

)1/2 . (B15)

We note that the characteristic time scale in Eqs. (B11) and (B12) is τcoll. Thus, we expect τcoll to set the thermalization time
scale.

The equation of motion for the condensate fraction f0(t) ≡ N�0(t)/N can be obtained likewise:(
df0

dt

)r

1

= R
z̃r

β̃
1/2
r

(
1

l̃3
d

+ ρi�f0

)∫ ε̃d

0
dẼf (Ẽ,t)I (1)

A (β̃r ε̃t ,0,β̃r Ẽ), (B16)

(
df0

dt

)r

2

=
∫ ε̃d

0
dẼR0(Ẽ) , (B17)

where

R0(Ẽ) ≡R
z̃r

β̃
1/2
r

[
f (Ẽ,t)

(
1

l̃3
d

+ ρi�f0

)
− f0

{
2

(
Ẽ

π

) 1
2

+ ρi�f (Ẽ,t)

}
e−β̃r Ẽ

]
I (2)

A (β̃r ε̃t ,0,β̃r Ẽ). (B18)

Similarly, the continuum limit of Eqs. (B7)–(B9) yields(
dfr

dt

)r

= −
(

df0

dt

)r

1

−
∫ ε̃d

0
dẼ

∫ ε̃d

Ẽ

dẼ′ R1(Ẽ,Ẽ′) , (B19)

(
dẽr

dt

)r

1

= − R
z̃r

β̃
3/2
r

[(
1

l̃3
d

+ ρi�f0

)
Cr (β̃r ,ε̃t ,0,t) +

∫ ε̃d

0
dẼ

{
2

(
Ẽ

π

) 1
2

+ρi�f (Ẽ)

}
Cr (β̃r ,ε̃t ,Ẽ,t)

]
, (B20)

(
dẽr

dt

)r

2

=
∫ ε̃d

0
dẼ′

[
Ẽ′R0(Ẽ′) +

∫ Ẽ′

0
(Ẽ′ − Ẽ)R2(Ẽ,Ẽ′)

]
, (B21)

where ẽr ≡ er [γ (4,ε̃t )/γ (3,ε̃t )
]

[Eq. (5)] and

Cr (β̃r ,ε̃t ,Ẽ,t) ≡
∫ ε̃d

Ẽ

dẼ′f (Ẽ′,t)
∫ 1

−1
du

ξ
(
β̃rmax

{
Ẽ (

√
Ẽ′u−

√
Ẽ)2

Ẽ+Ẽ′−2
√

ẼẼ′u
, ε̃t − Ẽ′ + Ẽ

}
,β̃r ε̃t

)
β̃

1/2
r (Ẽ+Ẽ′−2

√
ẼẼ′u)1/2

. (B22)

APPENDIX C: RATE EQUATIONS FOR THREE-BODY LOSS

Because of three-body loss, the overall particle density decays as [Eq. (36)] [10,59,60]

[
dn(�r)

dt

]l

= −L
[
n3

0(�r) + 9 n2
0(�r) nex(�r) + 18n0(�r) n2

ex(�r) + 6n3
ex(�r)

]
, (C1)

where n0(�r) and nex(�r) are the densities of the condensate and the excited-state atoms, respectively, and L denotes the loss
coefficient which for 87Rb equals L = 1.8 × 10−29 cm6 s−1 [53]. The exponents in Eq. (C1) arise from the number of atoms
participating in the recombination process: the first term results from recombination of three condensate atoms, whereas the second
term originates from events where two condensate atoms recombine with a higher-energy atom, etc. Further, an excited-state atom
can either be a member of the noncondensate population in the dimple or reside in the reservoir. Thus, nex(�r) = nnc(�r) + nr (�r)
with nr (�r) given in Eq. (6). Keeping these in mind, we write the decay rates of the individual densities(

dn0

dt

)l

= −Ln0
(
n2

0 + 6n0nex + 6n2
ex

)
, (C2)

(
dnnc

dt

)l

= −3Lnnc

(
n2

0 + 4n0nex + 2n2
ex

)
, (C3)

(
dnr

dt

)l

= −3Lnr

(
n2

0 + 4n0nex + 2n2
ex

)
. (C4)

We model the densities in the dimple as n0(�r) = Nf0/l3
d = (ρi�/λ3

r0)f0 and nnc(�r) = Nfnc/ l3
d = (ρi�/λ3

r0)fnc. Outside the
dimple we take n0(�r) = nnc(�r) = 0. In addition, since the dimple is many times smaller than the reservoir, the reservoir density
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can be taken as uniform inside the dimple: nr (�r) ≈ nr (�0) = (ρi z̃r/λ
3
r0β̃

3/2
r )[γ (3/2,β̃r ε̃t )/γ (3/2,ε̃t )] for points inside the dimple

[Eqs. (6) and (7)]. Using these expressions in Eqs. (C2) and (C3), we find(
df0

dt

)l

= −L
ρ2

i �
2

λ6
r0

f0
(
f 2

0 + 6f0f
′ + 6f ′2), (C5)

(
dfnc

dt

)l

= −3L
ρ2

i �
2

λ6
r0

fnc

(
f 2

0 + 4f0f
′ + 2f ′2), (C6)

where f ′ ≡ fnc + (z̃r/�β̃
3/2
r )[γ (3/2,β̃r ε̃t )/γ (3/2,ε̃t )]. In terms of the particle distribution f (Ẽ,t) in the excited states of the

dimple, fnc = ∫ ε̃d

0 dẼf (Ẽ,t). Under the assumption that double or higher occupancy of the excited states in negligible, it follows
from Eq. (C6) that [

∂f (Ẽ,t)

∂t

]l

= −3L
ρ2

i �
2

λ6
r0

f (Ẽ,t)
(
f 2

0 + 4f0f
′ + 2f ′2). (C7)

The three-body decay rate of the reservoir fraction fr = (1/N )
∫

d3r nr (�r) can be obtained by substituting nr (�r) from Eq. (6)
and the above expressions for n0 and nnc into Eq. (C4). This yields(

dfr

dt

)l

= − 3L
ρ2

i z̃r�

λ6
r0β̃

3/2
r

γ (3/2,β̃r ε̃t )

γ (3/2,ε̃t )

[
f 2

0 + 4f0f
′ + 2f 2

nc + 4
fncz̃r

�β̃
3/2
r

γ (3/2,β̃r ε̃t )

γ (3/2,ε̃t )

]

− 48L

πγ (3,ε̃t )[γ (3/2,ε̃t )]2

ρ2
i z̃

3
r

λ6
r0β̃

6
r

∫ β̃r ε̃t

0
dx

√
x e−3x[γ (3/2,β̃r ε̃t − x)]3. (C8)

The total energy in the reservoir (Er ) also decays because of three-body loss. We can find the decay rate as (dEr/dt)l =
− ∫

d3r ur (�r)(dnr/dt)l , where ur (�r) denotes the average energy of a reservoir particle at position �r . To calculate ur (�r) we integrate
over the phase space, finding

ur (�r) = 1

βr

γ (5/2,βrεt − βrmω2r2/2)

γ (3/2,βrεt − βrmω2r2/2)
+ 1

2
mω2r2. (C9)

When εt → ∞, this reduces to the familiar expression (3/2)kBTr + (1/2)mω2r2. Using Eqs. (C4) and (C9), we obtain the decay
rate of ẽr ≡ (Er/E)[γ (4,ε̃t )/γ (3,ε̃t )] as(

dẽr

dt

)l

= − 3L
ρ2

i z̃r�

λ6
r0β̃

5/2
r

γ (5/2,β̃r ε̃t )

γ (3/2,ε̃t )

[
f 2

0 + 4f0f
′ + 2f 2

nc + 4
fncz̃r

�β̃
3/2
r

γ (3/2,β̃r ε̃t )

γ (3/2,ε̃t )

]

− 48L

πγ (3,ε̃t )[γ (3/2,ε̃t )]2

ρ2
i z̃

3
r

λ6
r0β̃

7
r

∫ β̃r ε̃t

0
dx

√
xe−3x[γ (3/2,β̃r ε̃t − x)]3

[
γ (5/2,β̃r ε̃t−x)

γ (3/2,β̃r ε̃t−x)
+x

]
. (C10)

[1] D. C. McKay and B. DeMarco, Rep. Prog. Phys. 74, 054401
(2011).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[3] S. K. Baur, K. R. A. Hazzard, and E. J. Mueller, Phys. Rev. A
78, 061608 (2008).

[4] T.-L. Ho and Q. Zhou, Proc. Natl. Acad. Sci. USA 106, 6916
(2009).

[5] T.-L. Ho and Q. Zhou, Phys. Rev. Lett. 99, 120404 (2007).
[6] P. W. H. Pinkse, A. Mosk, M. Weidemüller, M. W. Reynolds,

T. W. Hijmans, and J. T. M. Walraven, Phys. Rev. Lett. 78, 990
(1997).

[7] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye,
J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 2194 (1998).

[8] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm,
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