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Double-well atom trap for fluorescence detection at the Heisenberg limit
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We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic
ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum metrology at a precision
approaching the Heisenberg limit. Our system is based on fluorescence detection of atoms in a hybrid trap in
which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model
describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for
single-atom resolution in the atom number difference.
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I. INTRODUCTION

Single-particle resolution in atom number detection, i. e.,
atom counting, represents the ultimate limit in detector
efficiency. This level of resolution is needed for observing a
variety of quantum effects and, perhaps more so, for using
those quantum effects in areas such as quantum-enhanced
metrology [1] and quantum simulation. A paradigm example is
metrology at the Heisenberg limit, where the phase precision
in a measurement with N atoms is given by �φ ∼ 1/N . A
general model of such a measurement, describing the most
common schemes such as Ramsey spectroscopy and spatial
atom interferometry, is a coupled two-mode system. Here, N

atoms enter a beam splitter, populating the two modes, evolve
through the two arms of the interferometer, then recombine at
the second beam splitter, producing two output modes where
the atom number is detected independently. The ideal detector,
enabling phase resolution at the Heisenberg limit, determines
the exact atom number in each mode simultaneously. The atom
number difference of the two modes is relevant for standard
interferometry and the sum for SU(1,1) interferometers [2]. For
mesoscopic ensembles of hundreds of atoms, such a capability
has not been realized experimentally.

In recent years, spin squeezing and entanglement in
ensembles of neutral atoms has been demonstrated [3–6],
as well as the resulting improvement of phase sensitivity in
atom interferometry [7–9]. The techniques to produce and
analyze these states continue to be developed toward greater
entanglement, higher atom numbers, and ultimately toward
real applications. In the majority of these demonstration
experiments, detection noise is already a limiting factor, and
the true quantum resource provided must be inferred based
on calibrating this technical noise out of the measurement.
When using the atoms as quantum sensors in a metrological
setting, noise subtraction is not possible because technical
noise is indistinguishable from quantum projection noise. As
the techniques for producing entangled states of atoms improve
and applications are developed for quantum enhanced sensors,
more demand will be placed on detector precision. Here, we
demonstrate a method of simultaneous fluorescence detection
of two spatially separated atomic ensembles with single-atom
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resolution, suitable for reaching Heisenberg-limited interfer-
ometry with many hundreds of atoms.

Single-atom resolution has been demonstrated previously
via fluorescence detection of small atom numbers in experi-
ments with magneto-optical traps [10–13] and optical dipole
traps [14–16] as well as freely propagating atoms [17,18].
Single-atom sensitivity has also been achieved by monitoring
light either reflected or transmitted through an optical cavity
[19–21]. Detecting larger numbers of atoms at the single-atom
level is more difficult for several reasons. First, the higher
signal levels are accompanied by higher noise. For example, in
fluorescence detection of N atoms, photon shot noise, which
must remain less than the signal from a single atom, scales
with

√
N . Second, the probability of losing a single atom just

before or during detection scales with N . In fact, interactions
between atoms often lead to worse scaling of the loss with atom
number. Nevertheless, impressive atom number resolution has
been achieved in experiments with mesoscopic atom numbers.
A common detection technique for Bose-condensed atoms is
absorption imaging [22], which has been optimized [23] to
a resolution of about four atoms. Extremely high sensitivity
in fluorescence detection of many atoms has been shown by
spatially resolving each atom in an optical lattice [24–26].
While these systems, with high photon-collection efficiency
and long lifetimes, can image and count individual atoms in
large ensembles, they do not determine the exact atom number.
Due to light-assisted collisions in the strongly confining lattice
sites, all atom pairs are lost immediately at the outset of
the fluorescence detection. Another promising approach is
cavity-based detection of mesoscopic samples [27], which has
shown resolution at the single-atom sensitivity level. Here,
however, inhomogeneous coupling of the standing-wave light
to the atoms has prevented detection of the exact atom number.

Our approach relies on fluorescence detection in a hybrid
magneto-optical trap (MOT) split by a dipole barrier. We have
previously shown single-atom resolution in a conventional
MOT for as many as 1200 atoms [28]. In such a system,
the deep trapping potential, enabling high fluorescence rates
and long lifetimes, can allow for measurements with very high
signal-to-noise ratio. Here, we extend this idea to the problem
of simultaneous detection of two ensembles. These ensembles
could be derived, for example, by Stern-Gerlach separation of
a two-component quantum gas, or directly as the output of an
atom interferometer in spatial degrees of freedom. We show
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that the lifetime and scattering rates in each of the two zones is
sufficient for single-atom resolution in ensembles of hundreds
of atoms. In what follows, we first describe our implementation
of the hybrid atom trap. We then review the sources of noise
that limit the precision of fluorescence measurements and
present a detailed analysis of the noise observed in our system.

II. THE SPLIT MAGNETO-OPTICAL TRAP

We simultaneously detect the individual atom numbers of
two atomic ensembles in a hybrid trap, as shown in Fig. 1(a).
A blue-detuned focused light sheet is superimposed on a 87Rb
MOT to create a potential barrier between the two sites of
the resulting double-well system. Once the atoms are loaded
into the split MOT, we perform fluorescence imaging on the
D2 line to extract the atom number. In Fig. 1(b), discrete
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FIG. 1. (Color online) Fluorescence imaging in a split magneto-
optical trap. (a) A blue-detuned light sheet divides the MOT into two
separate regions. The level scheme shows the laser cooling detuning δ

and the light-sheet detuning �. The two light sources are alternately
pulsed. (b) The histograms of the individual fluorescence signals
from each site of the split MOT reveal a very clear separation of the
calibrated atom numbers N1 and N2. (c) At about half the maximum
barrier height, the individual time traces show anticorrelated hopping
events, while the total atom number changes considerably less.

peaks in the two fluorescence histograms demonstrate single-
atom resolution for the two wells. By properly adjusting the
height of the barrier between the two wells, we can clearly
observe hopping events [Fig. 1(c)], where a single atom has
gained enough energy to surmount the barrier, resulting in an
anticorrelated step in the fluorescence between the two sites.

In our trap, the MOT laser beams are red detuned by a
frequency δ, nearly equal to the transition linewidth. The
precise determination of the atom numbers in each site requires
a large potential barrier that suppresses particle exchange. For
a given laser power, a higher potential barrier height can be
achieved by tuning the frequency of the light sheet closer
to resonance. We chose the D1 transition between 52S1/2

and 52P1/2 at 794 nm for the light sheet and employed a
narrowband optical filter at 780 nm in order to avoid stray
light on the detected images. The natural linewidth of this
transition is � = 2π × 5.7 MHz and the saturation intensity,
assuming π polarization, is Isat = 44.86 W/m2. The waists
of the light sheet’s elliptical cross section are w1 = 6 μm
and w2 = 400 μm and the laser power is near 200 mW. The
corresponding Rabi frequency is � = �

√
I/2Isat, where I is

the light-sheet intensity at the peak of the potential. If we
assume |�| � �, where � is the detuning of the light sheet,
the barrier height can be expressed as Ud = ��2/4�. With
a detuning of � = 2π × 13 GHz, by taking into account the
transverse profile of the MOT, we expect an effective barrier
height near 13 mK, much larger than the MOT temperature
of ∼80 μK. Scattering from the light sheet can happen at
a maximum rate of �sc = �Ud/�� ≈ 2π × 0.2 MHz for an
atom at the center of the dipole barrier, although the mean
scattering rate is much lower, since the atoms are repelled from
the position of highest intensity. In any case, the scattering rate
�sc is considerably smaller than the scattering rate Rsc from
the MOT light, which is close to saturation.

The light sheet, an elliptical Gaussian beam with a large
aspect ratio, is generated using an optical setup that allows
for the easy optimization of the aspect ratio over a large
range. A circular Gaussian beam with a waist of w0 = 6 mm
is focused using an achromatic doublet with a focal length
of f1 = 100 mm. Without any beam shaping, we measure
a resulting radially symmetric waist of w1 = 6.1(4) μm. In
order to produce an elliptically shaped beam in the focal plane,
we use two cylindrical lenses of focal lengths f2 = 200 mm
and −f2, separated by a distance d and placed before the
final focusing lens. This results in an axial offset between the
positions of horizontal and vertical foci, giving a dipole barrier
with adjustable aspect ratio at the position of the atoms. The
larger waist, given by w2 � dw0f1/f

2
2 , can be adjusted by

varying d. Limited laser power favors a small waist in order
to increase the intensity, while a larger waist is necessary to
realize a high homogeneous barrier over the whole MOT size
to prevent unwanted hopping. With this in mind, we chose a
horizontal waist of w2 = 400 μm as the final configuration.

The Stark shift induced by the light sheet increases the
energy of the ground state, thereby disturbing Doppler cooling,
and we observe a reduced lifetime when both beams are on at
the same time. To avoid this, the light-sheet beam and the MOT
beams are pulsed alternately using acousto-optic modulators at
a frequency of 125 kHz, which is faster than the characteristic
motional frequencies but slow compared to the lifetime of
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the excited state. Pulsing the lasers in this way produces an
effective trapping potential equivalent to the time average over
one pulse cycle. While this reduces the maximum barrier
height and the observed fluorescence rate by the respective
duty cycles of the dipole barrier and the MOT, it is essential
for reaching trap lifetimes near those of the MOT alone.

The imaging system used in the experiment is designed to
resolve the two ensembles over a depth of field equal to the size
of the MOT. Our objective has a numerical aperture of 0.23,
and we use a magnification of 5.17(7). We estimate the depth
of field to be 60 μm. The resolution of the imaging system was
measured by fitting an Airy function to the intensity profile of
a test image and equals 4.3 μm in object space.

III. NOISE LIMITS IN FLUORESCENCE IMAGING

In measurements of the atom number N , the two limiting
contributions to the measurement uncertainty are fluorescence
noise and atom loss. While a long integration time t reduces
the fluorescence noise, it increases the probability of atom loss
during the detection. The optimal time minimizes the signal
variance σ 2 = N/ηRsct + Nt/2τ , where η is the detection
efficiency, Rsc is the photon scattering rate, and τ is the trap
lifetime. Other possible noise sources include fluorescence
fluctuations due to noise in the excitation laser and loss due
to light-assisted collisions. Assuming Gaussian white noise,
the first contributes to the variance as (αN )2/t , where α is a
measure for the stability of the atom fluorescence. The second
contribution takes the form βN2t , where β is the rate of light-
assisted collisions. Assuming uncorrelated noise sources, the
total signal variance is then given by [28]

σ 2 = N

ηRsc
t−1 + (αN )2t−1 + N

2τ
t + βN2t, (1)

where we have assumed that t � τ and t � βN , conditions
that are both valid in all our measurements. To achieve
the best measurement fidelity, defined as the probability of
determining the exact atom number N present at the beginning
of the detection, one has to account for the mean atom
loss in the experiment during the detection time t . Given
a detected number N ′, the atom number N is inferred by
N = N ′(1 + t/2τ + βN ′t/2).

IV. NOISE ANALYSIS FOR THE SPLIT MOT

For the simultaneous detection of two ensembles, the split
MOT is imaged onto a low-noise CCD camera and the signal
is integrated for typically 100 ms. Two regions of interest
are used to determine the individual fluorescence signals. An
example of observed histograms for small numbers of atoms,
N1 and N2, is shown in Fig. 1(b). For this data, the number
of counts per atom, which depends on the overall detection
efficiency and may vary with the alignment, is measured to be
62 900(200) s−1 for site 1 and 63 900(100) s−1 for site 2. We
have confirmed the linearity of the camera signal at the level
of 0.02% up to hundreds of atoms. Example time traces for an
integration time of 400 ms are shown in Fig. 1(c).

FIG. 2. (Color online) The atoms reside at the two minima of the
dissipative double-well potential. In addition to thermal loss (τ1, τ2)
and collisional loss (β1, β2), particle exchange across the potential
barrier of height Ud can be initiated by thermal activation (τ12, τ21)
and collisional activation (β12, β21).

In order to quantify the detection noise for mesoscopic
particle numbers, we analyze the two-sample variance
Var(Sn+1 − Sn)/2, where Sn and Sn+1 are consecutively in-
tegrated signals. The noise model for the total atom number,
given in Eq. (1), needs to be extended to the simultaneous
measurement of two individual atom numbers, taking into ac-
count particle exchange between the sites. We now consider the
number of particles N1 and N2 in sites 1 and 2, respectively, and
quantify the rates of loss due to collisions with the background
gas by the lifetimes τ1 and τ2. Loss due to light-assisted colli-
sions is described by the rates β1 and β2. Additionally, atoms
can hop from one site to the other, either by thermal activation,
with mean duration between hopping events denoted as τ12 and
τ21, or in the process of a light-assisted collision (β12 and β21).
All of the processes are illustrated in Fig. 2.

The change in the atom numbers N1 and N2 can be described
by (

Ṅ1

Ṅ2

)
=

(
−(

τ−1
1 + τ−1

12

)
τ−1

21

τ−1
12 −(

τ−1
2 + τ−1

21

)
)(

N1

N2

)

+
(−(β1 + β12) β21

β12 −(β2 + β21)

)(
N2

1

N2
2

)
, (2)

where the first and second terms account for one- and two-body
dynamics, respectively. In analogy to Eq. (1), the variances in
sites 1 and 2 can be expressed as

σ 2
1 = N1

ηRsc
t−1 + (αN1)2t−1 + N1

2τ1
t + N1

2τ12
t + N2

2τ21
t

+ β1N
2
1 t + β12N

2
1 t + β21N

2
2 t (3)

and

σ 2
2 = N2

ηRsc
t−1 + (αN2)2t−1 + N2

2τ2
t + N2

2τ21
t + N1

2τ12
t

+ β2N
2
2 t + β21N

2
2 t + β12N

2
1 t, (4)
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FIG. 3. (Color online) Variance analysis of individual sites.
(a) The variance, shown here for about 450 atoms in each site, reveals
a minimum for an optimal integration time between 80 and 120 ms.
The solid lines are representations of simultaneous fits to a range of
integration times and atom numbers. (b) For an integration time of
120 ms, the variance in each site reaches the single-particle resolution
limit σ 2

i = 1 at 470 atoms.

where we have assumed that the photon shot-noise parameter
ηRsc and the fluorescence noise parameter α are independent
of the site. We see that the variance in one site depends on the
atom number in the adjacent one. In order to simplify the model
and extract the relevant experimental parameters, we consider
the case in which N1 ≈ N2. Furthermore, we introduce a noise
term γ t−1 into our model. This term, independent of the atom
number, quantifies noise due to stray light, which averages
down with increasing integration time. For i = 1,2, we obtain

σ 2
i = Ni

ηRsc
t−1 + γ t−1 + (αNi)

2t−1 + Ni

2τ̃i

t + β̃iN
2
i t, (5)

with τ̃−1
i = τ−1

i + τ−1
12 + τ−1

21 and β̃i = βi + β12 + β21. Based
on an independent calibration, for this data, we fix
ηRsc = 58 496 s−1 and fit the noise model to the experimentally
obtained two-sample variance Var(Sn+1 − Sn)/2. The fit is
performed simultaneously for a range of four different integra-
tion times and ten different mean atom numbers. Figure 3(a)
shows a representation of this fit for a fixed atom number
of 450. We find an optimal integration time between 80 and
120 ms. In Fig. 3(b), we plot the variance as a function of
the atom number for a fixed integration time of 120 ms in
order to find the single-particle resolution limit σ 2

i = 1. Since
the atom numbers N1 and N2 were kept nearly equal in the
experiment, the noise is similar in both sites and we find a
limit for single-particle resolved detection of up to 470 atoms
in each site.
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FIG. 4. (Color online) Analysis of sum and difference variances.
(a) We find different optimal integration times for measuring the
total atom number N = N1 + N2 and the atom number difference
N1 − N2, shown here for a mean total atom number of 500. (b) For
an integration time of 120 ms, optimized for measuring the total atom
number, we find the single-particle resolution limit at 500 atoms
for measuring N1 − N2 (green upper line) and close to 800 atoms
for measuring N (black lower line). In between lies the sum of the
individual variances (blue dashed line).

For many measurement scenarios, we will be interested in
the total atom number, N = N1 + N2, and the atom number
difference, N1 − N2. For the total atom number, the noise
model reads

σ 2
+ = N

ηRsc
t−1 + γ+t−1 + (α+N )2t−1 + N

2τ
t + βN2t. (6)

If we assume decay parameters τ ≡ τ1 ≈ τ2 and β ≡ β1 ≈ β2,
as well as exchange parameters τex ≡ τ12 ≈ τ21 and βex ≡
β12 ≈ β21, we can express the total atom number variance as
σ 2

+ = σ 2
1 + σ 2

2 + 2Cov(N ) with the atom covariance

Cov(N ) ≡ −1

2

(
N

τex
+ βexN

2

)
t. (7)

The atom covariance is always negative, since particle ex-
change events have an anticorrelated effect on N1 and N2.
This behavior can be observed in Fig. 1(c). The variance of
an atom number difference measurement can be expressed as
σ 2

− = σ 2
1 + σ 2

2 − 2Cov(N ). Both sum and difference variances,
as well as the sum of the individual variances, are shown
in Fig. 4. Since σ 2

− is always larger than σ 2
+ due to noise

from particle exchange, the measurement of the atom number
difference favors a shorter integration time of 80 ms compared
to the optimal integration time of 120 ms for the sum
measurement. We find a single-particle resolution limit of

013412-4



DOUBLE-WELL ATOM TRAP FOR FLUORESCENCE . . . PHYSICAL REVIEW A 91, 013412 (2015)

TABLE I. Fit parameters for the different noise models.

Noise model γ (s) α (s1/2) τ̃ (s) β̃ (s−1)

σ 2
1 4.6(7) × 10−3 3.6(3) × 10−4 120(52) 1.4(7) × 10−5

σ 2
2 7.6(12) × 10−3 4.1(4) × 10−4 110(67) 1.1(10) × 10−5

σ 2
+ 1.2(2) × 10−2 2.6(2) × 10−4 120(59) 5(30) × 10−7

σ 2
− 1.2(2) × 10−2 2.9(3) × 10−4 100(51) 1.2(5) × 10−5

σ 2
+ = 1 for a total atom number of 800 and σ 2

− = 1 for 500
particles. The detection performance can be expressed as a
measurement fidelity, defined as the probability of detecting
exactly the initial atom number. For N = 100, the fidelity
of the sum measurement is 87.4%, while for the difference
measurement it is 87.3%. The reduced performance compared
to previous measurements in a single MOT [28] is mainly due
to increased fluorescence noise.

Table I shows the parameters obtained from the different
noise models. Comparing the results for σ 2

1 and σ 2
2 , we find that

within the error of the measurement, α is indeed independent
of the site, as expected. The same holds for the one-body
parameter τ̃ and the two-body parameter β̃. For the derivation
of Eq. (7), we have used γ+ = 2γ and

√
2α+ = α. This is

confirmed by the obtained fit parameters. For σ 2
+, the one-

body parameter τ̃ coincides with the appropriate parameter
in σ 2

i , corresponding to the lifetime of the trap. From this,
we deduce that our maximum potential barrier height is large
enough, such that thermal hopping between the two sites of the
double well is negligible, and the one-body limitation is solely
given by the loss from the trap. The situation is different for
dynamics due to light-assisted collisions. From σ 2

+, we obtain
a two-body parameter which is orders of magnitude smaller
than the β̃ parameter in σ 2

i and σ 2
−, where hopping activated

by collisions dominates the loss. With the given barrier height,
we are in a regime in which thermal hopping between the
sites is strongly suppressed; however, light-assisted collisions,
due to their longer-ranged exponential energy distribution, still
contribute significantly.

V. CONCLUSION

In summary, we have shown simultaneous determination
of the total atom number with single-atom resolution in two
spatially separated mesoscopic samples—a prerequisite for
achieving Heisenberg-limited interferometry. The hybrid trap,
consisting of a dipole barrier superimposed on a MOT, is
designed for a high fluorescence rate and long trap lifetime,
enabling fluorescence measurements with high signal-to-noise
ratios. We use a model that includes all known sources of
noise. Fits of this model to experimental noise measurements
yield a set of parameters describing the particle loss and
exchange rates, both due to collisions with background gas
and light-assisted collisions, as well as fluorescence noise

parameters. By comparing fits for the two individual zones,
the atom number sum, and the atom number difference,
we find that these parameters are internally consistent and
match separate calibrations where available. Independent of
the accuracy of the noise model, we have directly measured a
single-particle resolution limit for detecting the atom number
difference at a total of 500 atoms in the ensemble.

Since we have chosen a detection time that minimizes
the measured variance, the remaining noise is equally due
to fluorescence noise and atom loss. Both of these can, in
principle, be further reduced. In the case of fluorescence noise,
we have not reached the photon shot-noise limit, so more
careful stabilization of the laser frequency and intensity may
yield an improvement. We find that the loss and exchange
rates include important contributions from both a linear loss
process, presumably due to collisions with background gas,
and light-assisted collisions. To significantly reduce the linear
loss, it would likely be necessary to reduce the vacuum pressure
in our chamber. The light-assisted collisions might be further
reduced by lowering the trap density.

Our general strategy of dividing a MOT into separate zones
using a dipole barrier can be applied in a straightforward way to
different atomic species and more complicated multizone trap
geometries. For state-selective detection of a two-component
Bose gas, we plan to first separate the two magnetic sublevels
with a Stern-Gerlach pulse, and load them into the two trap
zones for fluorescence detection. If this can be performed with
high fidelity, our system could be used to significantly reduce
detection noise in existing spin-squeezing experiments [29].
An exact atom counter for the two spin states will allow for
the realization of an atomic analog to the N -particle Hong-
Ou-Mandel experiment [30] from quantum optics.
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I. D. Leroux, and V. Vuletić, Phys. Rev. Lett. 109, 133603 (2012).
[28] D. B. Hume, I. Stroescu, M. Joos, W. Muessel, H. Strobel, and

M. K. Oberthaler, Phys. Rev. Lett. 111, 253001 (2013).
[29] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,

L. Pezze, A. Smerzi, and M. K. Oberthaler, Science 345, 424
(2014).

[30] R. J. Lewis-Swan and K. V. Kheruntsyan, Nat. Commun. 5, 3752
(2014).

013412-6

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1038/nphoton.2014.151
http://dx.doi.org/10.1364/OL.19.001888
http://dx.doi.org/10.1364/OL.19.001888
http://dx.doi.org/10.1364/OL.19.001888
http://dx.doi.org/10.1364/OL.19.001888
http://dx.doi.org/10.1103/PhysRevLett.78.1660
http://dx.doi.org/10.1103/PhysRevLett.78.1660
http://dx.doi.org/10.1103/PhysRevLett.78.1660
http://dx.doi.org/10.1103/PhysRevLett.78.1660
http://dx.doi.org/10.1002/1521-3889(200102)10:1/2<9::AID-ANDP9>3.0.CO;2
http://dx.doi.org/10.1002/1521-3889(200102)10:1/2<9::AID-ANDP9>3.0.CO;2
http://dx.doi.org/10.1002/1521-3889(200102)10:1/2<9::AID-ANDP9>3.0.CO;2
http://dx.doi.org/10.1002/1521-3889(200102)10:1/2<9::AID-ANDP9>3.0.CO;2
http://dx.doi.org/10.1209/epl/i1996-00512-5
http://dx.doi.org/10.1209/epl/i1996-00512-5
http://dx.doi.org/10.1209/epl/i1996-00512-5
http://dx.doi.org/10.1209/epl/i1996-00512-5
http://dx.doi.org/10.1103/PhysRevLett.102.053001
http://dx.doi.org/10.1103/PhysRevLett.102.053001
http://dx.doi.org/10.1103/PhysRevLett.102.053001
http://dx.doi.org/10.1103/PhysRevLett.102.053001
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133002
http://dx.doi.org/10.1103/PhysRevLett.106.133003
http://dx.doi.org/10.1103/PhysRevLett.106.133003
http://dx.doi.org/10.1103/PhysRevLett.106.133003
http://dx.doi.org/10.1103/PhysRevLett.106.133003
http://dx.doi.org/10.1088/1367-2630/11/10/103039
http://dx.doi.org/10.1088/1367-2630/11/10/103039
http://dx.doi.org/10.1088/1367-2630/11/10/103039
http://dx.doi.org/10.1088/1367-2630/11/10/103039
http://dx.doi.org/10.1088/1367-2630/12/5/053028
http://dx.doi.org/10.1088/1367-2630/12/5/053028
http://dx.doi.org/10.1088/1367-2630/12/5/053028
http://dx.doi.org/10.1088/1367-2630/12/5/053028
http://dx.doi.org/10.1103/PhysRevLett.99.013002
http://dx.doi.org/10.1103/PhysRevLett.99.013002
http://dx.doi.org/10.1103/PhysRevLett.99.013002
http://dx.doi.org/10.1103/PhysRevLett.99.013002
http://dx.doi.org/10.1103/PhysRevA.78.013640
http://dx.doi.org/10.1103/PhysRevA.78.013640
http://dx.doi.org/10.1103/PhysRevA.78.013640
http://dx.doi.org/10.1103/PhysRevA.78.013640
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1007/s00340-013-5553-8
http://dx.doi.org/10.1007/s00340-013-5553-8
http://dx.doi.org/10.1007/s00340-013-5553-8
http://dx.doi.org/10.1007/s00340-013-5553-8
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/10.1103/PhysRevA.82.061606
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1103/PhysRevLett.109.133603
http://dx.doi.org/10.1103/PhysRevLett.109.133603
http://dx.doi.org/10.1103/PhysRevLett.109.133603
http://dx.doi.org/10.1103/PhysRevLett.109.133603
http://dx.doi.org/10.1103/PhysRevLett.111.253001
http://dx.doi.org/10.1103/PhysRevLett.111.253001
http://dx.doi.org/10.1103/PhysRevLett.111.253001
http://dx.doi.org/10.1103/PhysRevLett.111.253001
http://dx.doi.org/10.1126/science.1250147
http://dx.doi.org/10.1126/science.1250147
http://dx.doi.org/10.1126/science.1250147
http://dx.doi.org/10.1126/science.1250147
http://dx.doi.org/10.1038/ncomms4752
http://dx.doi.org/10.1038/ncomms4752
http://dx.doi.org/10.1038/ncomms4752
http://dx.doi.org/10.1038/ncomms4752



