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Analytical evaluation of cross sections for double ionization of heliumlike ions
by high-energy-photon scattering
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Double K-shell ionization of two-electron ions in Compton scattering of high-energy photons is investigated.
The problem is treated analytically within the framework of nonrelativistic perturbation theory with respect
to the interelectron interaction, using the Coulomb Green’s and wave functions. The energy distribution of
ejected electrons and the double-to-single cross section ratio are cast in the form of the universal scalings. The
approximations made in previous theoretical works are discussed. Atomic targets are assumed to be characterized
by moderate values of the nuclear charge number Z.
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I. INTRODUCTION

The double ionization of inner-shell electrons by a sin-
gle photon has been intensively investigated during recent
decades. Since the incident photon interacts with each electron
separately, the simultaneous ejection of two bound electrons is
caused exclusively by the interelectron interaction. The helium
atom and heliumlike ions are the simplest atomic systems,
where the double ionization can occur. Consideration of such
targets allows one to test the quality of theoretical description
of the electron-electron correlations within the framework of
different approaches.

In this work, we employ nonrelativistic perturbation theory
with respect to the electron-electron interaction. Two small
parameters are assumed to be available, namely, 1/Z � 1
and αZ � 1, where Z is the nuclear charge number and α

is the fine-structure constant. As the zeroth approximation,
the complete set of the Coulomb wave functions is used. The
characteristic momentum of K-shell electron and its binding
energy in the Coulomb field of nucleus are given by η = mαZ

and I = η2/(2m), respectively, where m is the electron mass
(� = 1,c = 1).

The atomic ionization can proceed due to both the
absorption and the scattering of photons. As long as the
photon energy ω is not too high (ω � η), the photoabsorption
dominates over the Compton scattering. However, if ω � η,
the Compton effect becomes the dominant process. It is well
known that, at high nonrelativistic energies, the ratio of cross
sections for double-to-single photoabsorption Rp = σ++

p /σ+
p

does not depend on the photon energy ω [1,2]. At present, the
most accurate calculations give Rp = 1.67% for the helium
atom at ω � I . The theoretical result is in agreement with
experimental measurements [3]. However, at ω � 7 keV, the
ejection of electrons from the helium atom proceeds mainly
due to the scattering, but not due to the absorption of photons.
If any ions are registered experimentally, without regard to
the particular way they are prepared, all possible ionization
channels should be taken into account in the theoretical
calculations.

In the high-energy limit, the double-to-single cross sec-
tion ratio RC = σ++

C /σ+
C for the Compton scattering was
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calculated with the use of multiparametrical variational wave
functions for the initial atomic state [4,5]. In the case of He,
it was found that RC � 0.8%. At the asymptotic energy range
characterized by I � ω � m, analytical evaluation of the
Compton contribution to the double ionization was performed
to the first order of nonrelativistic perturbation theory with
respect to the interelectron interaction [6]. For two-electron
targets being in the ground state, the ionization cross section
ratio was shown to have the simple scaling form

RC � 0.048Z−2. (1)

Since 1/Z is the formal expansion parameter of the pertur-
bation theory used in derivation, the higher is Z, the more
accurate is formula (1).

Substituting Z = 2 into Eq. (1) yields RC � 1.2%, which is
about 1.5 times larger than the value calculated in Refs. [4,5]
by using the highly correlated ground state wave functions.
It should be noted that, for He, the authors of work [6] used
in Eq. (1) the effective nuclear charge number Zeff = 27/16
instead of its true value Z. This assumption significantly
increased the ratio RC , but was not justified (see discussion in
Ref. [7]). For heliumlike ions with Z > 2, the numerical cal-
culations were made in work [7] with the use of the variational
wave function of Hart and Herzberg [8]. The results obtained
for RC tend also to the asymptotic limit RC � 0.05Z−2 with
increasing Z. The experimental measurements of RC are
available for helium only [9–13]. These studies indicate that,
with increasing photon energy, the Compton double-to-single
ionization ratio, after attaining a maximum value of about 1.6%
near ω � 13 keV, declines slowly approaching the constant
limit. At ω � 100 keV, the experimental data still exceed
the asymptotic value of 0.8% predicted in Refs. [4,5]. Such
slow convergence towards the asymptotic limit seems to be
partly explained by the necessity to account for the interaction
between ejected electrons [14]. One needs also to analyze the
additional approximations made in derivation of Eq. (1).

In work [6], the wave function of the initial state is
constructed with the use of the Coulomb Green’s function,
which is presented by three first terms of the expansion over
the Sturm functions of the nonrelativistic Kepler problem.
Account for the following terms in the Sturm’s expansion
faces the problem. Namely, the corresponding contributions
to the energy distribution of slow ejected electrons exhibit
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nonphysical rise at the electron energies much larger than the
ionization potential I . Therefore, exact estimate of the contri-
butions neglected in work [6] is absent. In this work, we employ
the closed expression for the Coulomb Green’s function [15],
which allows one to perform accurate calculations.

II. AMPLITUDE FOR DOUBLE COMPTON EFFECT IN
THE ASYMPTOTIC HIGH-ENERGY RANGE

We shall assume that the incident photon energy ω1 is
restricted by the condition η � ω1 � m, which is called by
the asymptotic nonrelativistic range. In this case, the dominant
contribution to the cross section arises from the A2 term of the
operator of photon-electron interaction, where A is the vector
potential of the electromagnetic field. Taking into account the
symmetry of two-electron wave function and the possibility of
photon scattering on each atomic electron, one can show that
the amplitude M for the double Compton effect is represented
by the Feynman diagram depicted in Fig. 1 (see details in
Refs. [6,16]). The corresponding analytical expression is given
by the following matrix element:

M =
√

2〈ψ p1ψ p2 |UG(E)V |ψ1sψ1s〉. (2)

Here p1 and p2 are the asymptotic momenta of ejected
electrons, U is the operator of the A2 interaction, and G(E) is
the single-particle Coulomb Green’s function with the energy
E. The operator V = α/|r1 − r2| describes the Coulomb
interaction between atomic electrons with the coordinates r1

and r2. Due to the energy-conservation law, the intermediate
energy is given by

E = 2E1s − Ep2 = −I (2 + ε2), (3)

where E1s = −I, Ep2 = p2
2/(2m), and ε2 = p2

2/η
2 is the

dimensionless energy of the emitted electron.
The main contribution to the cross section arises from

the edge range characterized by the inequality Ep1 � Ep2 .
In this case, it turns out that p1 ∼ ω1, while the relative
contribution of the Feynman diagram with the interchanged
final single-electron wave functions (ψ p1 � ψ p2 ) is estimated
as η/ω1 � 1 [16]. The diagram depicted in Fig. 1 accounts
for the interelectron interaction in the initial state only. The
diagrams describing the interelectron interaction in the final
state contain the additional smallness of the order η/ω1 and,
therefore, can be neglected [16].

k k

p

p
f

f

f

f

f f+

f f-

f k+
1s

1s

FIG. 1. Feynman diagram describing the double Compton ioniza-
tion of the K shell. Solid lines denote electrons in the Coulomb field
of the nucleus, the dashed line denotes the interelectron interaction,
and wavy lines denote incident and scattered photons. The electron
propagator with dot corresponds to the Coulomb Green’s function.

In the following, we shall employ the momentum represen-
tation. Then the operator V corresponds to the photon propa-
gator D( f ) = 4πα/ f 2, where f is the exchange momentum
of electrons. Let the incident photon be characterized by the
momentum k1, the energy ω1 = |k1|, and the polarization
vector e1, while the scattered photon has the momentum k2,
the energy ω2 = |k2|, and the polarization e2. The kernel of
the operator U takes the form

〈 f ′|U | f 〉 = Nγ 〈 f ′| f + k〉, Nγ = 2π
α

m

(e∗
2 · e1)√
ω1ω2

, (4)

where k = k1 − k2 is the momentum transferred to the atom.
The plane-wave states are normalized to δ function in the
momenta,

〈 f ′| f 〉 = (2π )3δ( f ′ − f ). (5)

Now we redefine the amplitude as follows: M =√
2Nγ F ( p1, p2). Then one has

F ( p1, p2) =
∫

d f
(2π )3

d f ′

(2π )3

d f1

(2π )3

d f2

(2π )3
〈ψ p1 | f ′ + k〉

× 〈 f ′|G(E)| f1〉〈 f1 + f |ψ1s〉D( f )

×〈ψ p2 | f2〉〈 f2 − f |ψ1s〉. (6)

Since p1 ∼ ω1 � η, the wave function ψ p1 can be approxi-
mated by the plane wave. The Coulomb wave function of the
K-shell electron is represented as follows [17]:

〈 f |ψ1s〉 = N1s

(
− ∂

∂η

)
〈 f |Viη|0〉, (7)

〈 f ′|Viη| f 〉 = 4π

( f ′ − f )2 + η2
, (8)

where N2
1s = η3/π and η = mαZ. Substituting Eq. (7) into

amplitude (6), one can perform integrations over the interme-
diate momenta. It yields

F ( p1, p2) = N2
1s

∂2

∂ν∂μ

∫
d f

(2π )3
〈ψ p2 |Viν | f 〉D( f )

×〈− f |ViμG(E)|q〉, (9)

where q = p1 − k. In Eq. (9), after taking derivatives over ν

and μ one should set ν = μ = η. Using the expression for the
Coulomb Green’s function from work [15] and the operator
identity

− ∂

∂ε
Viε |ε→0 = 1, (10)

one has

〈− f |ViμG(E)|q〉 = − ∂

∂ε
〈− f |ViμG(E)Viε |q〉|ε→0

= − 2m

q2 + p2

{
〈 f |Viμ| − q〉

+ η

∫ 1

0

dx

λ
e(x)〈 f |Vi(λ+μ)|−qx〉

}
. (11)

Here we used the following notation:

e(x) =
(

(qx)2 + (p + λ)2

x(q2 + p2)

)ζ

, (12)
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where λ =
√

(p2 + q2x)(1 − x), p = √
2m|E| = η

√
2 + ε2,

and ζ = η/p = 1/
√

2 + ε2. Substituting Eq. (11) into Eq. (9)
and using the results of work [18], the integration over the
momentum f can be reduced to the single integral:∫

d f
(2π )3

〈ψ p2 |Viν | f 〉 1

f 2
〈 f |Vi(λ+μ)| − qx〉

= 2πNp2

∫ 1

0

dy

λ1

aiξ2−1

biξ2
, (13)

a = ( p2 + qxy)2 + (λ1 + ν)2,
(14)

b = (qxy)2 + (λ1 + ν − ip2)2,

λ1 =
√

(qx)2y(1 − y) + (λ + μ)2y,
(15)

N2
p2

= 2πξ2

1 − e−2πξ2
� 2πξ2,

where ξ2 = η/p2 = 1/
√

ε2. Using Eqs. (13)–(15) and taking
derivatives with respect to μ and ν, amplitude (9) can be cast
in the following compact form:

F ( p1, p2) = −N

{
Q(1) +

∫ 1

0
dx

(
1 + η

λ

)
e(x)Q(x)

}
,

(16)

Q(x) =
∫ 1

0
dy

y

λ2
1

(
− 1

λ1
+ ∂

∂λ1

)
∂

∂λ1

aiξ2−1

biξ2
, (17)

where N = Np2N
2
1s(4π )2mαη/(q2 + p2).

III. ENERGY DISTRIBUTION AND TOTAL
CROSS SECTION

The differential cross section for the double Compton
ionization of the K-shell electrons is related to amplitude (16)
as follows:

dσ++
C = (4πα)2

2m2

|e∗
2 · e1|2
ω1ω2

|F ( p1, p2)|2d�, (18)

d� = 2π
d p1

(2π )3

d p2

(2π )3

dk2

(2π )3
δ(Ep1 + Ep2 + ω2 −ω1 − 2E1s).

(19)

Averaging over polarizations of the incident photons and
taking summation over polarizations of the scattered photons
are equivalent to the substitution

|e∗
2 · e1|2 → |e∗

2 · e1|2 = 1

2

∑
pol.

|e∗
2 · e1|2 = 1

2
(1 + t2), (20)

where t = (k1 · k2)/(ω1ω2) is the cosine of the photon scatter-
ing angle.

Since function (16) depends on the scattering angles via the
momentum q = p1 − k1 + k2 only, it is convenient to express
the phase volume d� via dq instead of d p1. In addition,
the amplitude F ( p1, p2) ≡ F (q, p2) decreases very rapidly
with increasing q. Accordingly, the main contribution to the
cross section is exhausted at q � η. The energy δ function is

eliminated by integrating over ω2 due to the relation

δ[χ (ω2)] = ∣∣χ ′(ω0
2

)∣∣−1
δ
(
ω2 − ω0

2

)
. (21)

Here ω0
2 is the root of the equation: χ (ω2) = 0, where

χ (ω2) = ω2 + Ep1 + Ep2 + 2I − ω1. (22)

Keeping only the leading terms in the expansion over q/m

yields

Ep1 = p2
1

2m
� k2

2m
= ω2

1

2m
+ ω2

2

2m
− ω1

m
ω2t, (23)

ω0
2 � ω1 − ω2

1

m
(1 − t), χ ′(ω0

2) � 1 + ω1

m
(1 − t). (24)

Then integration over ω2 is reduced to the substitution

d�

ω1ω2
→

(
1 − 2ω1

m
(1 − t)

)
dq

(2π )3

d p2

(2π )3

dt

2π
. (25)

Here it is also taken into account that the phase volume of the
scattered photons is given by dk2 = 2πω2

2dω2dt .
Let us denote the integral over q as follows:

S =
∫

dq
(2π )3

|F (q, p2)|2 (26a)

=
∫ qmax

0

dqq2

(2π )2

∫ +1

−1
dt2|F (q,t2,p2)|2, (26b)

where t2 = (q · p2)/(qp2). Since the integral over q is satu-
rated at q � η, the upper integration limit qmax ∼ ω1 can be
replaced by infinity. Then, after integrations over q and t ,
Eq. (18) reads

dσ++
C = σ+

C S
d p2

(2π )3
, (27)

σ+
C = 2σT

(
1 − 2

ω1

m

)
, σT = 8

3
πr2

e . (28)

Here re = α/m is the classical electron radius, σT is the Thom-
son cross section of photon scattering by a free electron, and
σ+

C is the single ionization cross section of photon scattering by
two-electron target. As seen from Eq. (27), in the high-energy
range, the double-to-single cross section ratio for the Compton
scattering does not depend on the incident photon energy ω1.
The angular distribution of slow electrons is isotropic, since S

does not depend on the direction of their ejection. Accordingly,
one can write that d p2 = 4πmp2dEp2 = 2πη3ξ−1

2 dε2. It is
also convenient to express all momenta and energies involved
into the problem in units of η and I , respectively. Then one
has

dσ++
C

σ+
C

= Z−2J (ε2)dε2, (29)

J (ε2) = 25

π

∫ ∞

0

d��2

(�2 + ζ−2)2

∫ +1

−1
dt2|F(�,t2,ε2)|2. (30)
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FIG. 2. Universal function J (ε2) vs the dimensionless energy ε2.

Here

F(�,t2,ε2) = Q(1) +
∫ 1

0
dx

(
1 + 1

λ

)

×
(

(�x)2 + (λ + ζ−1)2

x(�2 + ζ−2)

)ζ

Q(x), (31)

a = ε2 + 2�xyt2
√

ε2 + (�xy)2 + (λ1 + 1)2, (32)

b = (�xy)2 + (λ1 + 1 − i
√

ε2)2, (33)

λ1 =
√

(�x)2y(1 − y) + (λ + 1)2y, (34)

λ =
√

(�2x + ζ−2)(1 − x), (35)

where � = q/η, ε2 = p2
2/η

2, ζ = 1/
√

2 + ε2, and ξ2 =
1/

√
ε2. Functions (31) and (16) are related to each other as

follows: F (q, p2) = −Nη−6F(�,t2,ε2). The function Q(x) is
given by Eq. (17). Energy distribution of slow electrons (30)
does not depend on Z explicitly. As seen from Fig. 2, it
decreases rapidly with increasing ε2.

Finally, the double-to-single ionization cross section ratio
for the Compton effect reads

RC = σ++
C

σ+
C

= Z−2
∫ ε2max

0
J (ε2)dε2. (36)

In Eq. (36), integrating with the upper limit ε2max � 1 yields

RC = 0.050Z−2. (37)

This is our main result. Formula (37) is in very good agreement
with previous calculations made in works [6,7]. A comparison
of Eqs. (1) and (37) shows that approximation of the Coulomb
Green’s function by three terms of the Sturm’s expansion is
justified with an accuracy of about 4%.

Concluding, we have evaluated analytically the double-
to-single ionization cross section ratio for the Compton
scattering in the asymptotic high-energy range. The derivation
is performed to leading order of the nonrelativistic perturbation
theory with the use of the Coulomb Green’s function in the
closed form. The heliumlike ions characterized by the small
parameters αZ � 1 and 1/Z � 1 are considered as a target.
The universal scalings (30) and (37) can be also used for
more complicated atomic systems, in particular, for stable
multicharged ions with more than two electrons [19].
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