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The excitation of many-electron atoms and ions by twisted light has been studied within the framework of
the density-matrix theory and Dirac’s relativistic equation. Special attention is paid to the magnetic sublevel
population of excited atomic states as described by means of the alignment parameters. General expressions
for the alignment of the excited states are obtained under the assumption that the photon beam, prepared as a
coherent superposition of two twisted Bessel states, irradiates a macroscopic target. We demonstrate that for this
case the population of excited atoms can be sensitive to both the transverse momentum and the (projection of
the) total angular momentum of the incident radiation. While the expressions are general and can be employed
to describe the photoexcitation of any atom, independent on its shell structure and number of electrons, we
performed calculations for the 3s → 3p transition in sodium. These calculations indicate that the “twistedness”
of incoming radiation can lead to a measurable change in the alignment of the excited 2P3/2 state as well as the
angular distribution of the subsequent fluorescence emission.
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I. INTRODUCTION

The production and use of twisted (or vortex) light beams
has been intensively discussed during the last two decades in
many areas of modern physics [1–3]. In contrast to “usual”
plane-wave radiation, these beams are designed to carry a
nonzero projection of the orbital angular momentum (OAM)
upon their propagation direction. The twisted photons can
therefore serve as a valuable tool to better understand how the
OAM influences the coupling between radiation and matter.
A number of studies with vortex beams have been performed,
in particular, to explore the transfer of the angular momentum
to microparticles, Bose-Einstein condensates or even the bulk
of semiconductors [4–6]. More recent interest, moreover, has
been focused on the OAM effects in elementary light-matter
interaction processes such as the photoionization [7,8] and
scattering of twisted radiation by atoms [9,10] and free
electrons [11]. In addition, a detailed theoretical analysis
was carried out also for the excitation of atoms by vortex
photon beams [12–15]. For the latter process, special emphasis
was placed on the selection rules for the induced bound-
state transitions. Both these selection rules and the sublevel
population of the residual (excited) atoms were found to be
strongly affected by the OAM of the incident light. It was
shown, moreover, that the angular distribution and polarization
of the subsequent fluorescence emission are also sensitive
to the properties of the twisted radiation, thus rendering the
experimental study of the OAM-induced phenomena in the
atomic photoexcitation feasible.

Up to the present, however, most investigations on the
excitation by vortex beams have dealt with nonrelativistic,
hydrogenlike systems. Much less attention was paid to many-
electron atoms (and ions) for which the interelectronic-
interaction and relativistic effects should be taken into account.
In practice, complex and especially alkali-metal atoms are
the most probable candidates for future experiments on the
absorption of twisted light. In order to guide these forthcoming

measurements and to help to interpret their data, we present
here the theoretical analysis of the photoexcitation of many-
electron systems. Our study is performed within the framework
of the density matrix theory, whose basic formulas are briefly
reviewed in Sec. II A. In particular, we have derived the density
matrix of an excited atomic state and show how it is related
to the bound-bound transition amplitudes. In Sec. II B, these
amplitudes are then evaluated for both incident plane-wave
and twisted Bessel light. By making use of the transition
amplitudes, we derive in Secs. II C and II D the alignment
parameters which describe the magnetic sublevel population
of excited atomic states. An experimental “scenario” was
considered here in which the photon beam, prepared as a
coherent superposition of two Bessel states with different
projections of the total angular momentum (TAM), collides
with a macroscopic atomic target. We show for this case that
the alignment of excited atoms and the angular distribution of
the subsequent fluorescent radiation are sensitive to both the
TAM and (the ratio of) the transverse and longitudinal linear
momenta of twisted incident beams. To illustrate the effect
of “twistedness” on the photoabsorption, detailed calculations
have been performed in Sec. III for the 1s22s22p63s 2S1/2 +
γ → 1s22s22p63p 2P3/2 transition in sodium atom. Finally,
a summary of our results and a short outlook are given in
Sec. IV.

Hartree atomic units (� = e = me = 1,c = 1/α) are used
throughout the paper unless stated otherwise.

II. THEORY

A. Density-matrix formalism

The formation of excited atomic states in collisions with
ions, electrons, or photons is described most conveniently
within the framework of the density-matrix theory [16,17].
In this approach, the overall system “target atom + projectile”
before and after the collision process is described by an initial
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ρ̂i and final ρ̂f statistical (or density) operators, respectively.
These operators are connected by the transition operator T̂
which describes the interaction.

If a photon is absorbed by an atom, an initial state of
the overall system comprises (i) the incoming photon beam
and (ii) an atom in the state |αiJi〉 with well-defined total
angular momentum Ji , and where αi is used to denote all
additional quantum numbers. Therefore, the (initial-state)
statistical operator ρ̂i can be written as a direct product of
the atomic, ρ̂ A

i , and photonic, ρ̂ ph, operators:

ρ̂i = ρ̂ A
i ⊗ ρ̂ ph . (1)

For initially unpolarized target atoms, moreover, the (atomic)
statistical operator ρ̂ A

i reads

ρ̂ A
i = 1

2Ji + 1

∑
Mi

|αiJiMi〉〈αiJiMi |, (2)

where the summation runs over the magnetic quantum number,
−Ji � Mi � Ji .

By using the initial-state statistical operator (1), we can find
the final operator:

ρ̂f = T̂ ρ̂i T̂ † , (3)

that describes the atom in the excited state |αf Jf 〉, and where T̂
characterizes the interaction of the electrons with the radiation
field. The detailed representation of the transition operator T̂
depends on the state in which the incident light is prepared. In
the next section we shall consider, for example, the interaction
of atoms with the plane-wave and twisted light.

For a further analysis of the absorption process, it is
convenient to rewrite Eq. (3) in matrix form:

〈αf Jf Mf |ρ̂f |αf Jf M ′
f 〉

= 1

2Ji + 1

∑
Mi

〈γi |ρ̂ph|γi〉〈αf Jf Mf |T̂ |αiJiMi,1γi
〉

×〈αiJiMi, 1γi
|T̂ †|αf Jf M ′

f 〉, (4)

where we have used Eqs. (1) and (2) and where γi denotes
the set of quantum numbers to specify the state of the photon.
As seen from this expression, the final-state density matrix
depends on the polarization (spin) state of the incoming
photons as well as on the amplitude 〈αf Jf Mf |T̂ |αiJiMi,1γi

〉
as associated with the atomic absorption process, |αiJiMi〉 +
γi → |αf Jf Mf 〉. The evaluation of this transition matrix
element will be discussed in the next sections.

B. Evaluation of the transition amplitude

As shown above, the calculation of the final-state density
matrix (4) can be traced back to the matrix element of the
transition operator T̂ . Within the relativistic framework and
for many-electron atom or ion, this matrix element can be
written as [18,19]

〈αf Jf Mf |T̂ |αiJiMi,1γi
〉

= C 〈αf Jf Mf |
∑

q

αq Aγi
(rq)|αiJiMi〉. (5)

Here, the q runs over all electrons in a target atom, αq

denotes the vector of Dirac matrices for the qth particle, and
the proportionality coefficient C can be determined from the
standard normalization condition Tr(ρ̂f ) = 1 of the density
matrix. In Eq. (5), moreover, the Aγi

(r) is the vector potential
of the electromagnetic field. In order to further simplify the
transition amplitude we need to agree first about explicit form
of the Aγi

(r).

1. Photon vector potential

In atomic physics, one usually assumes that an atom
interacts with a plane-wave radiation with a wave vector k,
energy ω = k/α, and helicity λ = ±1. For this—standard—
case, the vector potential Aγi

(r) = A(pl)
kλ (r) is given by

A(pl)
kλ (r) = ekλ eikr , (6)

where ekλ is the polarization vector (as defined, e.g., in
Ref. [8]). For the further analysis of the transition amplitude (5)
it is practical to decompose the vector potential A(pl)

kλ (r) in
terms of its electric and magnetic multipole fields. If the
propagation direction of the light k̂ = k/k = (θk,ϕk,0) does
not coincide with the quantization (z) axis, this decomposition
reads as [20]

ekλ eikr =
√

2π
∑
LM

∑
p=0,1

iL [L]1/2 (iλ)p

×DL
Mλ(ϕk,θk,0) ap

LM (r), (7)

where [L] = 2L + 1, DL
Mλ is the Wigner rotation matrix,

and ap

LM (r) refers to magnetic (p = 0) and electric (p = 1)
multipole components, respectively. For the sake of brevity,
we will not present here the explicit form of these components
and refer the reader instead to Refs. [19–21].

If, instead of plane waves (6), we shall study the interaction
of atomic target with twisted light; we have to use the
vector potential Aγi

(r) = A(1,tw)

mkzλ

(r) in Eq. (5). This potential
describes light with a well-defined helicity λ, longitudinal
component kz of the linear momentum, and the projection m

of the total angular momentum (TAM) upon the quantization
(z) axis. We will assume, moreover, that the (absolute value
of) transverse momentum |k⊥| = 
 and, hence, the photon
energy ω = k/α = √

k2
z + 
2/α are fixed. Light in such a

quantum state is usually referred to as a Bessel beam, and
is characterized by the vector potential [8,11,15]

A(1,tw)

mkzλ

(r) =
∫

ekλ eikra
m(k⊥)
d2k⊥
(2π )2

, (8)

where the amplitude a
m(k⊥) is given by

a
m(k⊥) = (−i)m eimφk

√
2π

k⊥
δ(k⊥ − 
). (9)

As follows from this expression, the twisted (Bessel) beam
can be seen in momentum space as a coherent superposition
of plane waves whose wave vectors k are uniformly distributed
upon the surface of a cone with a polar opening angle
θk = arctan(
/kz) and the (cone) axis in the z direction. Such
Bessel photons can be easily generated experimentally. Owing
to recent developments in the manipulation of optical beams,
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in addition, different Bessel beams with the same kinematic
parameters (
,kz) but different projections of the total angular
momentum can be superimposed and used in experiments. In
order to describe the interaction of such a “tailored” radiation
with an atom, we therefore construct the vector potential

A(2,tw)(r) = c1 A(1,tw)

m1kzλ

(r) + c2 A(1,tw)

m2kzλ

(r), (10)

where

cn = |cn|eiαn , |c1|2 + |c2|2 = 1. (11)

To be more specific, we consider here a coherent superposition
of two Bessel beams with different projections m1,2 of the total
angular momentum but with the same helicity λ and the same
beam axis.

2. Radiative matrix element

Having briefly discussed the properties of the vector
potential for the plane-wave and twisted radiation, we are
ready now to further evaluate the many-particle transition
amplitude (5). If we assume that the incident light is prepared in
the pure quantum-mechanical state |γi〉, described by Eq. (10),
we obtain

〈αf Jf Mf |T̂ |αiJiMi,1γi
〉

= C〈αf Jf Mf |
∑

q

αq A(2,tw)(rq)|αiJiMi〉

= C
∑
n=1,2

cn〈αf Jf Mf |
∑

q

αqA(1,tw)

mnkzλ

(rq)|αiJiMi〉. (12)

By inserting the decomposition (8) of the twisted vector
potential A(1,tw)


mnkzλ
(r) into this expression one finds

〈αf Jf Mf , 0|T̂ |αiJiMi,1γi
〉 = C

∑
n=1,2

cn

×
∫

a
mn
(k⊥) e−ik⊥b 〈αf Jf Mf |R̂λ(k)|αiJiMi〉 d2k⊥

(2π )2
,

(13)

where the many-particle operator

R̂λ(k) =
∑

q

αq ekλ eikrq (14)

describes the interaction of electrons with the plane-wave
radiation field. In Eq. (13), moreover, an additional exponential
factor exp(−ik⊥b) is introduced to specify the lateral position
of a target atom with regard to the beam axis of the incident
light, and where the impact parameter b = (bx,by,0).

Equation (13) shows how the computation of the T
amplitude for the incident twisted light can be made by using

the well-known matrix elements 〈αf Jf Mf |R̂λ(k)|αiJiMi〉 for
the absorption of plane-wave photons that propagate along the
direction k̂ = (θk,ϕk) with respect to the quantization axis. By
employing the multipole expansion (7) of the photon vector
potential, we find

〈αf Jf Mf |R̂λ(k)|αiJiMi〉
≡ 〈αf Jf Mf |

∑
q

αq ekλ eikrq |αiJiMi〉

=
√

2π
∑
LM

∑
p=0,1

iL
[L]1/2

[Jf ]1/2
(iλ)p DL

Mλ(θk,ϕk,0)

×〈JiMi LM|Jf Mf 〉 〈αf Jf ||Hγ (pL)||αiJi〉, (15)

where, in the last line, we made use of the Wigner-Eckart
theorem and introduced the notation

〈αf Jf ||Hγ (pL)||αiJi〉 =
〈
αf Jf

∣∣∣∣∣
∣∣∣∣∣
∑

q

αq ap

L,q

∣∣∣∣∣
∣∣∣∣∣αiJi

〉
(16)

for the many-electron reduced matrix element. This (reduced)
matrix element forms the “building block” to describe all the
properties of the photoabsorption process. An efficient eval-
uation of the 〈αf Jf ||Hγ (pL)||αiJi〉 within the framework of
the multiconfiguration Dirac-Fock theory has been discussed
previously [22].

C. Statistical tensors of excited atomic states

Having derived the transition amplitude (13)–(15), we can
further evaluate the final-state density matrix (4). Instead of
this matrix, however, it is often more convenient to describe
the population of photoexcited atomic states in terms of the
so-called statistical tensors:

ρkf qf
(αf Jf ) =

∑
Mf M ′

f

(−1)Jf −M ′
f 〈Jf Mf Jf − M ′

f |kf qf 〉

× 〈αf Jf Mf |ρ̂f |αf Jf M ′
f 〉, (17)

which transform like the spherical harmonics of rank kf

under a rotation of the coordinates. Owing to the properties
of the Clebsch-Gordan coefficients 〈. . . | . . .〉, nonzero tensor
components arise only for integer values of the rank 0 �
kf � 2Ji and the projection −kf � qf � kf . Moreover, if the
density matrix is diagonal in the |αf Jf Mf 〉 basis, the relation
ρkf qf

(αf Jf ) = δqf 0 ρkf 0(αf Jf ) holds.
The final-state density matrix ρ̂f and, hence, the statistical

tensors (17) depend on the impact parameter b which describes
the position of a target atom in the twisted wavefront. If a
Bessel beam with radius R collides with a macroscopic target
of randomly distributed atoms, we have to average over the b:

ρ
(tw)
kf qf

(αf Jf ) = C
∑
Mi

∑
Mf M ′

f

(−1)Jf −M ′
f 〈Jf Mf Jf − M ′

f |kf qf 〉
∑

n,n′=1,2

|cn| |c′
n| ei(αn−α′

n)

×
∫

a
mn
(k⊥) a∗


mn′ (k
′
⊥) ei(k′

⊥−k⊥)b〈αf Jf Mf |R̂λ(k)|αiJiMi〉〈αf Jf M ′
f |R̂λ(k′)|αiJiMi〉∗ d2k⊥

(2π )2

d2k′
⊥

(2π )2

d2b
πR2

.

(18)
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In this expression, moreover, we used Eqs. (4) and (13). In order to further evaluate the statistical tensors (18) one needs to apply
the expression (9) for the amplitudes a
mn

(k⊥) and to perform the integration over the b as well as the transverse momenta k⊥
and k′

⊥:

ρ
(tw)
kf qf

(αf Jf ) = C
∑
Mi

∑
Mf M ′

f

(−1)Jf −M ′
f 〈Jf Mf Jf − M ′

f |kf qf 〉
∑

n,n′=1,2

|cn| |c′
n| ei(αn−α′

n) imn−m′
n

×
∫

ei(mn−m′
n)ϕk 〈αf Jf Mf |R̂λ(k)|αiJiMi〉 〈αf Jf M ′

f |R̂λ(k)|αiJiMi〉∗ dϕk

2π
. (19)

The remaining ϕk integration can be readily carried out by using the multipole expansion of the plane-wave matrix elements (15)
and by making some simple angular momentum algebra:

ρ
(tw)
kf qf

(αf Jf ) = ρ
(pl)
kf 0 (αf Jf )

⎛
⎝δqf ,0 Pkf

(cos θk) +
∑
n�=n′

|cn||c′
n| ei nn′ δqf ,mn−mn′ d

kf

qf 0(θk)

⎞
⎠ , (20)

where nn′ = αn − αn′ + π
2 (mn′ − mn), Pkf

(cos θk) is the Legendre polynomial, and where the tensor ρ
(pl)
kf 0 (αf Jf ) describes the

sublevel population following the absorption of a plane-wave photon with helicity λ:

ρ
(pl)
kf 0(αf Jf ) = C

∑
LL′pp′

iL+L′
[L,L′]1/2 (iλ)p (−iλ)p

′
(−1)L

′+Jf +Ji+kf 〈LλL′ − λ|kf 0〉

×
{

L L′ kf

Jf Jf Ji

}
〈αf Jf ||Hγ (pL)||αiJi〉 〈αf Jf ||Hγ (p′L′)||αiJi〉∗. (21)

Indeed, expression (20) represents the general form of the
statistical tensors of an excited atomic state following the
photoabsorption from a coherent superposition of two Bessel
beams (10). Below we will discuss in detail the dependence
of these tensors on the “twistedness” of incident light. First,
however, let us consider how ρkf qf

can be used in order to
calculate the angular distribution of the subsequent radiative
decay |αf Jf 〉 → |α0J0〉 + γ to one of the lower-lying levels.

D. Angular properties of the fluorescent radiation

Since the angular distribution of the characteristic radiation
has been discussed very frequently in the past, we may restrict
ourselves to a rather short account of basic formulas and refer
for all further details to Refs. [17,23]. In the density-matrix
approach, the emission pattern of the decay photons is closely
related to reduced statistical tensors of an excited state:

Akf qf
(αf Jf ) = ρkf qf

(αf Jf )

ρ00(αf Jf )
, (22)

and which are often referred to as alignment or orientation
parameters. These parameters are independent of the particular
normalization of the density matrix and describe the relative
population of atomic sublevels |αf Jf Mf 〉. The alignment
parameters (22) with zero projection qf = 0 are directly
expressed in terms of the partial cross sections σαF Jf Mf

≡ σMf

for the excitation to a particular magnetic state. For example,
the parameter

A20(Jf = 3/2) = σ3/2 + σ−3/2 − σ1/2 − σ−1/2

σ3/2 + σ−3/2 + σ1/2 + σ−1/2
(23)

simply describes the population of a level with Jf = 3/2.
Unfortunately, no simple expressions can be written for the
reduced statistical tensors Akf qf

(αf Jf ) with qf �= 0; these

tensors are generally complex and characterize the coherence
between sublevels with different Mf .

Using the reduced statistical tensors, the angular distribu-
tions of the |αf Jf 〉 → |α0J0〉 + γ fluorescence light can be
written as

Wdec(θ ) = 1

4π

⎛
⎝1 +

∑
kf =2,4,...

kf∑
qf =−kf

√
4π

2kf + 1
Ykf qf

(θ,0)

×Akf qf
(αf Jf ) fkf

(αf Jf , α0J0)

⎞
⎠ , (24)

where the angle θ is defined with respect to the propagation
direction of the incident twisted beam; cf. Fig. 1. We see from
this expression that, apart from the alignment of the excited
state, the Wdec(θ ) depends also on the so-called structure
functions fkf

(αf Jf , α0J0). These functions are independent
of the formation of the excited state |αf Jf 〉 and merely reflect
the electronic structure of an atom. The general expression
for the fkf

(αf Jf , α0J0) is rather complicated and contains the

FIG. 1. (Color online) Geometry for the excitation of atoms by
twisted light and for the subsequent fluorescence emission. The
quantization (z) axis is chosen along the propagation direction of
the incoming Bessel photons. This axis also defines, together with
the direction of the fluorescence emission, the reaction (xz) plane.
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summation over different multipole channels that are allowed
for a particular radiative transition (see, e.g., Refs. [21,23,24]).
Within the leading electric dipole (E1) approximation, how-
ever, the structure function can be simplified to

fkf
(αf Jf , α0J0) = δkf , 2 (−1)1+Jf +J0

√
3(2Jf + 1)

2

×
{

1 1 2
Jf Jf J0

}
, (25)

and, thus, restricts the summation in Eq. (24) to the terms
with kf = 2. In the E1 approximation, therefore, only the
second-rank alignment parameters A2qf

with −2 � qf � +2
can affect the angular distribution of the fluorescent photons.

III. RESULTS AND DISCUSSION

In the previous section we have derived the general expres-
sions (20)–(22) for the reduced statistical tensors of the excited
atomic state |αf Jf 〉 following the absorption of twisted light.
In particular, this light was “constructed” as a coherent super-
position of two Bessel beams with opening angle θk and the
TAM projections m1 and m2. Below we will investigate how
these particular properties of the incident (twisted) light affect
the alignment of excited atoms and the angular distribution of
the subsequent characteristic fluorescence. In order to perform
such an analysis we have to agree first about the geometry
under which the photoabsorption and fluorescence emission
is observed. As seen from Fig. 1, we choose the quantization
axis of the overall system along the direction of propagation
of the Bessel beam. The xz- (reaction) plane is spanned then
by the kz and the wave vector kdec of the decay photons.

A. Absorbing photons from a single Bessel beam

We start our discussion about the population of photoex-
cited atomic states from the simplest scenario in which a single
Bessel beam interacts with an initially unpolarized target.
By implying c1 = 1 and c2 = 0 in Eqs. (20) and (22) we
immediately obtain for the reduced statistical tensors

A(1,tw)
kf qf

(αf Jf ) = δqf , 0 Pkf
(cos θk)A(pl)

kf 0(αf Jf ), (26)

and where A(pl)
kf 0 describes the alignment of the atom following

the absorption of circularly polarized, plane-wave radiation.
As seen from this formula, the parameters A(1,tw)

kf qf
(αf Jf )

are independent on the projection of the TAM of light and
are sensitive only to the opening angle θk . Moreover, the
reduced statistical tensors with nonzero projections qf �= 0
vanish identically, thus, indicating that the excited atomic
states possess axial symmetry with respect to the propagation
direction of the beam, i.e., the quantization (z) axis. This
symmetry behavior can be well understood if we note that
the overall system in the initial state consists of an unpolarized
atom and an incident Bessel beam with an axially symmetric
transverse energy density profile ρ(x,y) [see Fig. 3(a)].

In order to illustrate the θk behavior of the alignment of ex-
cited atomic states we consider the 3s-3p excitation of atomic
sodium. This “yellow” 3s 2S1/2 (Ji = 1/2) → 3p 2P3/2 (Jf =
3/2) transition can be induced by twisted photons with energy
�ω = 2.104 eV and helicity λ = +1. For this transition,
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FIG. 2. (Color online) The alignment parameter A(1,tw)
20 of the

3p 2P3/2 state of sodium atom following absorption of a single Bessel
photon beam.

we shall focus on the parameter A(1,tw)
20 (Jf = 3/2), which

determines the angular properties of the subsequent fluorescent
emission and, hence, can be observed experimentally. By
making use of Eq. (26) one finds

A(1,tw)
20 (Jf = 3/2)

= (1 + 3 cos 2θk)
a2

E1 + 2
√

3aE1aM2 − a2
M2

8
(
a2

E1 + a2
M2

) , (27)

where aE1 ≡ 〈3p 2P3/2||Hγ (E1)||3s 2S1/2〉 and aM2 ≡
〈3p 2P3/2||Hγ (M2)||3s 2S1/2〉 are shorthand notations for the
(real) reduced matrix element of the electric dipole (E1)
and magnetic quadrupole (M2) channels. To evaluate these
multipole amplitudes we have applied the RATIP package [25],
which helps calculate the transition probabilities and
properties of many-electron atoms and ions. The alignment
parameter (27) of the sodium 3p 2P3/2 level, excited by
twisted light, is shown in Fig. 2. Result from the complete
calculation, including the M2 amplitude, is compared with the
prediction, obtained within the electric dipole approximation,
when aM2 = 0. As one can expect, for a light element like
sodium, both curves are virtually indistinguishable thus
confirming the validity of the E1 approximation.

As seen from Eq. (27) and Fig. 2, the alignment of the
3p 2P3/2 state following absorption of the Bessel photons
strongly varies with the light opening angle. For θk = 0◦, for
example, A(1,tw)

20 (Jf = 3/2) ≈ 0.5 which coincides with the
plane-wave prediction and shows the predominant population
of substates with |Mf | = 3/2 [see Eq. (23)]. If the opening
angle is enlarged, the alignment parameter decreases and even
becomes negative for θk > 54◦ which means that the photoab-
sorption mainly leads to the population of the |Mf | = 1/2 sub-
levels. Within the nonrelativistic framework a similar θk depen-
dence of the magnetic sublevel population was recently found
also for the 1s → 2p excitation of neutral hydrogen [15].

B. Superposition of two Bessel beams

Up to now we have just discussed the magnetic sublevel
population of atoms following the absorption of a single
Bessel beam. As mentioned already above, experiments with
a coherent superposition of two (or more) twisted beams with
different projections of the TAM are now feasible as well. By
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using Eqs. (20)–(22), we find that a simple factorization of the
alignment parameters into a “plane-wave” and “twisted” part,

A(2,tw)
kf qf

(αf Jf ) = A(pl)
kf 0(αf Jf )

⎛
⎝δqf ,0 Pkf

(cos θk)

+
∑
n�=n′

|cn||c′
n| ei nn′ δqf ,mn−mn′ d

kf

qf 0(θk)

⎞
⎠ ,

(28)

is possible also for such superpositions of beams with m1 �=
m2. In contrast to the case (26) of a single Bessel beam,
however, now also parameters A(2,tw)

kf qf
(αf Jf ) with nonzero

projection qf �= 0 may arise. Nonzero alignment parameters
occur especially for qf = ±m ≡ ±|m1 − m2|, i.e., if q is
equal to the difference of (the projections of) two TAMs. For
the given 3s-3p transition, therefore, the population of the
excited 3p 2P3/2 state can be characterized by three alignment
parameters of rank kf , A(2,tw)

kf 0 , A(2,tw)
kf qf =m1−m2

and A(2,tw)
kf qf =m2−m1

,
if the incident light is prepared as a superposition of two Bessel
beams (10) and |m1 − m2| � kf . We later show that not all of
these parameters are independent due to certain symmetry
properties of the excited atom.

Let us discuss in detail the alignment parameters (28) for
the 3s → 3p photoexcitation of the sodium atom. In Fig. 4
we display the θk dependence of the second-rank tensors
A(2,tw)

2qf
(αf Jf ) as obtained for the equally weighted Bessel

states, |c1| = |c2| = 1/
√

2, with phases α1 = 0 and α2 = π/2
[cf. Eqs. (10) and (11)]. Computations were performed,
especially for a coherent superposition of two Bessel beams
with the fixed value m1 = 1 and with m2 = 2 (upper panel),
m2 = 3 (middle panel), and m2 = 4 (bottom panel). As one
can expect from Eq. (28), the reduced tensorA(2,tw)

20 (Jf = 3/2)
is independent of the projections of the TAM of twisted beams
and is equivalent to the A(1,tw)

20 (Jf = 3/2) from Fig. 4 and
Eq. (27). In contrast, the alignment parameters with nonzero
projections, qf �= 0, are strongly affected by the variation of
m = |m1 − m2|. For m = 1, for example, the magnetic
population of the excited state 3p 2P3/2 level is described—
apart from the alignment parameterA(2,tw)

20 (Jf = 3/2)—by the
two tensor components A(2,tw)

2, ±1 (Jf = 3/2). These purely real
components become zero in the plane-wave limit when θk = 0
and reach their maximum (absolute) values at θk = 45◦. The
nonvanishing parameters A(2,tw)

2, 1 = −A(2,tw)
2, −1 indicate that for

the absorption of two Bessel beams with m = 1, the excited
atom does not obey the axial symmetry. Such a “symmetry
breaking” is caused by the transverse structure of the incident
light that depends on the azimuthal angle ϕk; see Fig. 3(b).

If the difference between the projections of the TAM
of two superimposed beams increases to m = 2, the ten-
sors A(2,tw)

2, ±1 (Jf = 3/2) vanish identically but, instead, two

other parameters A(2,tw)
2, ±2 (Jf = 3/2) become nonzero; see the

middle panel of Fig. 4. As before, these purely imaginary
parameters are zero for θk = 0◦ and are related to each
other as A(2,tw)

2, 2 (Jf = 3/2) = −A(2,tw)
2, −2 (Jf = 3/2). If m is

further enlarged, m > 2, only a single alignment parameter
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2 (d)

FIG. 3. (Color online) Transverse energy density profile ρ(x,y)
of various Bessel beams and with different projections m of the
TAM. (a) Single beam with m1 = 1; (b) coherent superposition of
two equally weighted beams with m1 = 1 and m2 = 2; (c) the same
as (b) but for m1 = 1 and m2 = 3; (d) the same as (b) but for m1 = 1
and m2 = 4. Results are presented in arbitrary units, and for the
opening angle θk = 45◦, photon energy �ω = 2.104 eV and phases
α1 = 0, α2 = π/2.

A(2,tw)
2 0 (Jf = 3/2) = A(1,tw)

2 0 (Jf = 3/2) is nonzero. For such
superposition of beams, the axial symmetry of the residual
atom is “restored” as for the case of a single Bessel beam.
This symmetry is observed despite the fact that the transverse
structure of the incident light is strongly ϕk–dependent [see
Fig. 3(d)]. The parameters A(2,tw)

2 qf
(Jf = 3/2) with qf �= 0

vanish because of the selection rules qf = ±|m1 − m2|, qf =
−kf , . . . kf in Eq. (28). In order to “see” the TAM’s difference
of m > 2 one would need to consider the reduced statistical
tensors A(2,tw)

kf qf
of some higher rank, kf > 2. Such tensors arise

if atomic levels with Jf > 3/2 are excited. Analysis of the
transitions to such higher-lying levels is out of the scope of the
present paper and will be presented elsewhere.

The variation of the alignment parameters A(2,tw)
2 qf

(Jf =
3/2) with the opening angle θk and the difference m of
the projections of the TAM can be reflected in the angular
distribution (24) of the subsequent fluorescent photons. For the
3p 2P3/2 → 3s 2S1/2 fluorescence line of sodium atom follow-
ing the photoabsorption, this angular distribution is given by

Wdec(θ ) = 1

4π

[
1 + 1

32
Apl

20(Jf = 3/2)

× ((1 + 3 cos 2θk)(1 + 3 cos 2θ )

+ δm, 1 |c1||c2| 12 sin 2θk sin 2θ sin(α1 − α2)

− δm, 2 |c1||c2| 12 sin2 θk sin2 θ cos(α1 − α2))
]
,

(29)
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FIG. 4. (Color online) The alignment parameters A(2,tw)
2qf

of the

3p 2P3/2 state of sodium atom following the absorption of a twisted
light. Calculations were performed for a coherent superposition of
two equally weighted beams with fixed value m1 = 1 for the first
beam and the different values of the TAM projection of the second
beam: m2 = 2 (upper panel), m2 = 3 (middle panel) and m2 = 4
(bottom panel).

where we made use of Eq. (28) and where we have restricted
ourselves to the electric-dipole approximation for the structure
function (25). In Fig. 5, we display the angular distribution
Wdec(θ ) for the opening angle θk = 60◦ of the incident twisted
light, and for m = 1 (dotted line), m = 2 (dashed line), and
m = 3 (solid line). Moreover, we have assumed two equally
weighted Bessel beams with phase factors α1 = 0 and α2 =
π/3 (upper panel), as well as α1 = 0 and α2 = 4π/3 (bottom
panel). As seen from the figure, the angular distribution (29) of
the fluorescent radiation, measured within the reaction plane,
appears to be very sensitive to (the difference of) both the
TAM projections, m, and the phases, α = α1 − α2, of
two Bessel states. In particular, for m = 1 the Wdec(θ ) is
strongly anisotropic and peaks at θ = 125.8◦ and θ = 61.1◦ for
α = −π/3 and α = −4π/3 respectively. If the difference
between the projections of the TAM of two Bessel beams
changes to m = 2, the decay photons are emitted predom-
inantly perpendicular to the quantization axis, and the effect
becomes most pronounced for α2 = 4π/3. A symmetric—
with respect to the polar angle θ = 90◦—angular distribution
can be observed also for the m = 3. In this case, however, the
Wdec(θ ) just reproduces the emission pattern of the fluorescent
light following absorption of a single Bessel beam and is
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FIG. 5. (Color online) The angular distribution of the 3p 2P3/2 →
3s 2S1/2 fluorescence light following the photoexcitation of sodium
atoms by a coherent superposition (10) of two Bessel beams. The
beams are prepared in the state with the opening angle θk = 60◦,
the phases α1 = 0 and α2 = π/3 (upper panel), as well as α1 = 0
and α2 = 4π/3 (bottom panel), and with the projections of the total
angular momentum m1 = 1 and m2 = 2 (dotted line), m2 = 3 (dashed
line), and m2 = 4 (solid line).

independent of the phase and TAM differences. The same
pattern, which is influenced only by the opening angle θk , will
be also observed for any larger difference m > 3.

The m dependence of the Wdec(θ ) can be used, for
example, to determine the TAM projection of an unknown
Bessel beam if it is coherently mixed with a “reference” beam
whose m is well known. Similar information can be obtained
also from the measurement of the linear polarization of the
fluorescence light. For the sake of brevity we shall not discuss
here such a polarization and just mention that it is uniquely
defined by the set of alignment parameters A(2,tw)

2 qf
and, hence,

by the difference in the TAM projections of the two beam
components.

IV. SUMMARY AND OUTLOOK

The density-matrix theory has been applied to investigate
the excitation of atoms (or ions) by twisted light. Special
emphasis was placed on the magnetic sublevel population of
the excited atomic states, that is usually described in terms of
the alignment parameters Akf qf

. In particular, we have derived
a general expression for the Akf qf

if we had assumed that the
incident photon beam is prepared as a coherent superposition
of two Bessel beams and that it collides with a macroscopic
target. This expression depends neither on the number of
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electrons nor on particular shell structure of target atoms and
fully accounts for the higher-order multipoles of the radiation
field. From the analysis of the alignment parameters we found
that the population of photoexcited atomic states can be very
sensitive not only with regard to the kinematic parameters
of the Bessel beams, such as the ratio of transverse 
 to
longitudinal kz momenta, but also to their relative phase and
the difference of the projections of the total angular momenta.
It was shown, moreover, how the parameters of the (incident)
twisted radiation affects also the angular distribution of the
subsequent decay photons.

While the formalism developed here can be employed
to study the photoexcitation of any atom, detailed calcula-
tions have been performed for the 3s 2S1/2(Ji = 1/2) + γ →
3p 2P3/2(Jf = 3/2) transition in neutral sodium. For this
transition, we paid particular attention to the second-rank
alignment parameters A2qf

(Jf = 3/2) which uniquely define
the emission pattern of the fluorescence radiation. We have
shown that the parameter A20(Jf = 3/2) with zero projection
qf depends only on the opening angle θk = arctan(
/kz)
of the incident beams but is otherwise insensitive to their
TAM projections m1 and m2. In contrast, the reduced tensors
A2qf

(Jf = 3/2) with qf �= 0 can be strongly affected by the
difference m = ±|m1 − m2| of the total angular momenta
as well as by the relative phase of the Bessel states. This

dependence on the “twistedness” of incoming radiation can
be extracted from the angular distribution of the subsequent
3p 2P3/2 → 3s 2S1/2 decay. Experimental observations of the
3p-3s fluorescence photons are well established today and can
provide, therefore, valuable information about the interaction
of twisted light with atomic ensembles.

In the present study we have evaluated the alignment
of the (photo)excited atomic states for the case where the
size of the target is much larger compared to the cross
section of the incident photon beam. Owing to the recent
advances in trapping and optical lattice technologies, however,
experiments with microscopic atomic (or ionic) targets may
become feasible in the near future. If the transverse extension
of such targets will be comparable to the characteristic scale
of the Bessel beams, one then expects a rather complicated
dependence of the magnetic sublevel population of excited
atoms on the parameters of twisted light. A more detailed
analysis of this dependence is currently underway and will be
presented elsewhere.
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