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Torsional control is studied theoretically using a four-dimensional (4D) model introduced recently [Phys. Rev.
Lett. 107, 113004 (2011) and Phys. Rev. A 87, 043403 (2013)] for calculating energy levels and eigenfunctions
of nonrigid biphenyl-like molecules undergoing internal rotation and subject to a strong electric field. The
time-dependent Schrödinger equation is solved to determine the behavior of the molecule when submitted to a
short laser pulse. Torsional alignment is investigated for four limiting hindering potentials and for several peak
laser intensities. The results obtained with the 4D model are compared to those from already available 2D and
1D models. Similar results are found with the 4D and 2D model and are consistent with the molecule interacting
the most with the electric field for the hindering potential displaying four minima with D2d symmetry staggered
equilibrium configurations. Molecular axis alignment is also investigated and it is found that the one arising with
the 4D model starts deviating substantially from the one arising with a rigid rotator for a value of the peak laser
intensity of 3 × 1013 W/cm2.
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I. INTRODUCTION

Torsional control aims at controlling the large amplitude
torsional modes of a molecular system with the help of an
external field. Torsional control has been explored in nonrigid
molecules displaying one torsional mode when the external
field is a strong laser field. In the far-off-resonance regime [1],
such molecules interact with the laser electric field through the
electric field-induced dipole coupling described by the polar-
izability tensor. As the latter depends on the torsional angle,
this angle can be directly manipulated by the laser field [2,3].

Torsional control is usually conducted submitting a
molecule to one or several laser pulses [4] and monitoring
the torsional angle in order to study the ensuing dynamics
and the torsional alignment. An important aspect of torsional
control is the overall molecular rotation. During the laser-pulse
molecular axis alignment takes place [5] and modifies the
coupling of the torsional mode with the laser field. Also, as the
torsional mode is coupled to the overall rotation, this greatly
influences the dynamics of the molecule when the electric field
is turned off. Accurate torsional control modeling requires
solving a time-dependent Schrödinger equation dictated by a
four-dimensional (4D) Hamiltonian depending on the torsional
internal degree of freedom and on the three degrees of freedom
corresponding to overall rotation.

The theoretical models developed for torsional control can
be divided into three types depending on the number of degrees
of freedom taken into account. The model used in Refs. [6–8]
is one dimensional (1D) as only the torsional mode was
considered. The model considered in Refs. [3,9–11] is two
dimensional (2D) as both the internal rotation and the overall
rotation about a fixed axis in the laboratory were treated. At
last, the model developed in Refs. [12,13] is 4D as the internal
rotation and the three degrees of freedom corresponding to
overall rotation were considered. 1D and 2D models have
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already been used to solve the time-dependent Schrödinger
equation arising when modeling torsional control [6,8,10]; this
has not been attempted yet with a 4D model.

In this paper the 4D model developed in Refs. [12,13] is
used to investigate theoretically torsional control in the case
of a biphenyl-like molecule subject to a short laser pulse.
Torsional alignment is explored and the time evolution of the
expectation value of the torsional angle is computed with the
1D, 2D, and 4D models for different values of the peak laser
intensity and for different potential-energy functions hindering
the internal rotation. The fast variation of this angle during and
after the pulse, the amplitude of its variations, and the value
around which it is centered are examined with each model and
compared. Molecular axis alignment [5] is also explored in
order to evaluate the effects of the coupling between the overall
molecular rotation and the torsional motion. The molecular
axis alignment obtained with the 4D model is compared to
that arising in a rigid rotator for several values of the peak
laser intensity.

The paper has three remaining sections. Section II deals
with the three, 1D, 2D, and 4D, theoretical models and the time
propagation of the wave function. These models are applied in
Sec. III to a biphenyl-like molecule. The time evolution of the
expectation value of the torsional angle and of one of the di-
rection cosine matrix elements between space- and molecule-
fixed axis systems are computed. Section IV is the discussion.

II. THEORY

We consider biphenyl-like molecules consisting of two
identical planar groups with C2v symmetry which can rotate
with respect to each other about an axis coinciding with
their C2 axis. The 4D, 2D, and 1D approaches used for such
molecules to model torsional control are described below. The
calculation of their field-free eigenvalues and eigenfunctions
is presented and the field-matter Stark interaction operator to
be used for each model is given. In all three approaches, the
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field-free eigenfunctions are used to setup the matrix of this
operator. During the laser pulse, the wave function, expanded
in this basis set, is propagated using a time grid and the
Chebyshev scheme [14,15] for each time interval.

A. 4D model

The 4D rotation-torsion Hamiltonian Hrt is written using
four coordinates: the usual Euler angles [16] χ,θ,φ, denoted
�, and the angle ρ, with 0 � ρ � 2π , describing the internal
rotation and defined as in Ref. [17]. As in this reference, the
molecule-fixed axis system is attached to the molecule so that
the z axis coincides with the axis of internal rotation; the x and
y axes bisect the symmetry planes of both groups. The rotation-
torsion Hamiltonian, given in Ref. [17], takes the following
expression:

Hrt = AJz
2 + BxJx

2 + ByJy
2 + AJρ

2 + V (ρ), (1)

where Jx , Jy , and Jz are the components of the rotational
angular momentum in the molecule-fixed axis system; Jρ =
−i∂/∂ρ is the momentum conjugated to ρ; A is a structural
parameter equal to the rotational constant of the molecule
along the molecule-fixed z axis; Bx and By are the ρ-dependent
rotational constants along the x and y axes, respectively;
and V (ρ) is the potential energy function. The rotational
constants Bx and By can be found in Eqs. (3) of Ref. [17]
where, in addition to A and ρ, they are expressed with the
structural parameter B. The volume element to be used for the
Hamiltonian in Eq. (1) is d�dρ.

Field-free rotation-torsion eigenvalues and eigenfunctions
are computed for the 12 single-valued symmetry species
of the double group G

(2)
16 , which is the symmetry group to

be used for the present problem [17], using the symmetry
adapted rotational functions and the finite basis representation
(FBR) torsional functions in Table IV of this reference. The
Hamiltonian matrix is set up with a DVR approach [18,19]
using the weights and nodes in Table I which are appropriate
for these FBR torsional functions. An approach similar to that
described in Secs. II A and II B of the previous paper [13]
is used to set up the Hamiltonian matrix in the DVR for
each symmetry species of G

(2)
16 . For instance, the matrix

corresponding to the A+
2u symmetry species should be retrieved

using A−
1u and B−

1u FBR torsional functions and A−
2g and B−

2g

symmetry adapted rotational functions. When setting up this
matrix, the nonvanishing Hamiltonian matrix element within
as well as between A−

2g and B−
2g rotational functions should

be evaluated. For each symmetry species 	, for each value of
the rotational angular momentum quantum number J , and for
each value of its projection onto the space-fixed Z axis M ,
numerical diagonalization of the Hamiltonian matrix yields
rotation-torsion eigenvalues and eigenfunctions written as

E	
JKaKc,M,vt

, 
	
JKaKc,M,vt

(�,ρ), (2)

where JKaKc are the usual asymmetric-top rotational quan-
tum numbers and vt is a torsional quantum number.

Biphenyl-like molecules have no permanent dipole and the
field-matter interaction reduces to the electric-field-induced
dipole coupling described by the ρ-dependent polarizability
tensor α(ρ). This tensor can be retrieved in the case of
biphenyl-like molecules assuming that it is the sum of that

TABLE I. FBR torsional functions and corresponding weights
and nodes.a

Functionsb Weights Nodesc n,α ranges

C4n(ρ)

C4n+2(ρ)

2π

N + 1
π

4N − α + 9/2

4N + 4

0 � n � N

1 � α � N + 1

S4n(ρ)

S4n−2(ρ)

2π

N + 1/2
π

4N − α + 2

4N + 2
1 � n,α � N

C2n+1(ρ)
2π

N + 1
π

2N − α + 5/2

2N + 2

0 � n � N

1 � α � N + 1

S2n+1(ρ)
2π

N + 3/2
π

2N − α + 3

2N + 3

0 � n � N

1 � α � N + 1

aIn the body of the table N is an integer such that the number of
quadrature points is N + 1 except for S4n(ρ) and S4n−2(ρ) FBR
functions for which it is N .
bCn(ρ) = cos nρ/

√
π for n > 0, C0(ρ) = 1/

√
2π , and Sn(ρ) =

sin nρ/
√

π . The range of the integer n is given in the last column
of the table in terms of N .
cNode values depend on N and on the integer α identifying each
node. The range of α is given in the last column of the table in terms
of N .

of each subunit; its nonvanishing components in the molecule-
fixed axis system can then be found in Eqs. (1) of Ref. [12].
The molecule is subject to a laser pulse consisting of a
nonresonant circularly polarized laser beam propagating along
the laboratory-fixed Z axis with nonvanishing laboratory-fixed
components of the electric field: EX = E(t) cos ωt/

√
2 and

EY = E(t) sin ωt/
√

2, where ω is the laser frequency and
E(t) the envelope of the laser-pulse field. The operator HS(t)
describing the interaction with the laser pulse can be obtained
from Refs. [12,13]. Using the polarizability tensor parameters
α0

x , α0
y , and α0

z introduced for Eq. (1) of Ref. [12] and assuming
α0

x = α0
z , which is verified in the case of a phenyl ring, we

obtain

HS(t) = E2(t)

8

[(
α0

x − α0
y

)
sin2 θ cos 2χ cos 2ρ

+ (
α0

x − α0
y

)
cos2 θ − 3α0

x − α0
y

]
. (3)

Due to the form of HS(t), its matrix elements between two
rotation-torsion functions of Eq. (2) can be written as

〈

	

n

∣∣HS(t)
∣∣
	′

n′
〉 = E2(t)M	,	′

n,n′ , (4)

where n and n′ are shorthand notations for JKaKc,M,vt and
J ′K ′

aK
′
c,M

′,v′
t , respectively, and M

	,	′
n,n′ is a time-independent

matrix element. The form of HS(t) ensures [12,13] that this
matrix element is nonvanishing if 	 = 	′, M = M ′, and
|J − J ′| � 2.

B. 2D model

The 2D model is a special case of the 4D model corre-
sponding to setting θ and φ to zero. This leads to a fixed axis
of internal rotation taken parallel to the space-fixed Z axis as
in Refs. [3,9–11]. Starting from the torsional angles χ1 and χ2

parametrizing the rotation of either group and taken equal to
zero when the corresponding group lies in the XZ plane, the
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rotation-torsion Hamiltonian of the 2D model is written using
the angles χ = (χ1 + χ2)/2 and ρ = (χ1 − χ2)/2. The χ and
ρ coordinate system is double valued [17] as the transformation
χ,ρ → χ + π,ρ + π leaves the spatial configuration of the
atoms unchanged. The rotation-torsion Hamiltonian of the 2D
model takes the form

Hrt = AJχ
2 + AJρ

2 + V (ρ), (5)

where Jχ is the momentum conjugated to χ , and Jρ , V (ρ), and
A are defined as for Eq. (1). As in the previous paragraph, the
molecule is subject to a laser pulse consisting of a nonresonant
circularly polarized laser beam. For consistency with the
4D model and because this maximizes the coupling with
the electric field, the beam should be propagating along the
laboratory-fixed Y axis. Using the same notation as for Eq. (3),
the operator HS(t) describing the field-matter interaction takes
the following expression:

HS(t) = E2(t)

8

[(
α0

y − α0
x

)
cos 2χ cos 2ρ − 3α0

x − α0
y

]
. (6)

The symmetry operations to be considered in the 2D model
are the identity, π rotations of either group, their exchange, and
changing both torsional angles χ1 and χ2 into their opposite.
These symmetry operations are denoted E, c1, c2, q, and g and
their effects on the angles χ and ρ and on the torsional angles
χ1 and χ2 are given in Table II. The a, b, c, and d generating
operations of G

(2)
16 used in Ref. [17] and defined in Table II

of this reference can be expressed in terms of the present
symmetry operations provided the angles φ and θ in this table
are ignored. Using Table II of the present paper, the relations
a = c2q, b = gq, and c = c1c2gc2

1 are obtained; operation d

being defined in the same way in both investigations. These
relations show that the generating operators of G

(2)
16 are valid

symmetry operations in the case of the 2D model. For this
reason, this group can be used for the present model as well
as most of the results in Ref. [17]. The symmetry adapted
functions in this reference need to be redefined and those
appropriate for the present model are listed in Table III.

The matrix of the Hamiltonian in Eq. (5) can be set up
using the symmetry adapted functions in Table III. Field-free
rotation-torsion eigenvalues and eigenfunctions are written as

E	
k,vt

, 
	
k,vt

(χ,ρ), (7)

where 	 is the symmetry species in G
(2)
16 , k is the quantum

number associated with the eigenvalue of Jχ , and vt is
a torsional quantum number. Rotation-torsion-Stark energy
levels for the 2D model are evaluated using the rotation-torsion

TABLE II. Symmetry operationsa for the 2D model.

Coordinatesb E c1 c2 q g

χ χ χ + π/2 χ + π/2 χ 2π − χ

ρ ρ ρ + π/2 ρ − π/2 2π − ρ 2π − ρ

χ1 χ1 χ1 + π χ1 χ2 2π − χ1

χ2 χ2 χ2 χ2 + π χ1 2π − χ2

aThe four symmetry operations are defined in Sec. II B.
bThe angles χ and ρ and the torsional angles χ1 and χ2 are defined
in Sec. II B.

TABLE III. Symmetry adapted functionsa for the 2D model.

ρ dependent χ dependent

	b f 	(ρ) 	b f 	(χ )

A+
1g C4n(ρ) A+

1g C4n(χ )

A−
1u S4n+2(ρ) A−

2g S4n(χ )

B+
1g C4n+2(ρ) B+

1g C4n+2(χ )

B−
1u S4n(ρ) B−

2g S4n+2(χ )

E1(g) S2n+1(ρ) Eg(1) C2n+1(χ )

E1(u) C2n+1(ρ) Eg(2) S2n+1(χ )

aSymmetry adapted functions are expressed in terms of the Cn and
Sn FBR functions defined in Table I.
bFour doubly degenerate species, component functions (1) and (2),
and (g) and (u) are defined as in Ref. [17].

eigenfunctions of the field-free Hamiltonian in Eq. (7) as basis
set functions. Matrix elements of the field-matter interaction
operator should then be evaluated using an equation similar to
Eq. (4) and keeping in mind that it belongs to the symmetrical
A+

1g symmetry species of G
(2)
16 .

C. 1D model

In the 1D model, a torsional Hamiltonian is written using the
angle ρ, defined as in Sec. II A, and an axis of internal rotation
coinciding with the laboratory-fixed Z axis. When ρ = 0, both
groups lay in the XZ plane. The two symmetry operations to
be considered are d, corresponding to π simultaneous rotations
of both groups, and q, corresponding to their exchange. The
symmetry group to be used is G4, a commutative group of
order 4. Its character table and the symmetry transformations
of ρ are given Table IV. Symmetry adapted functions can be
found in Table V. Using the same notation as for Eq. (5), the
torsional Hamiltonian of the 1D model takes the form

Ht = AJρ
2 + V (ρ). (8)

Field-free torsional eigenvalues and eigenfunctions can be
computed using the symmetry adapted function in Table V
and labeled with their symmetry species in G4 and a torsional
quantum number vt .

As in the previous paragraph, the molecule is subject to
a laser pulse consisting of a nonresonant circularly polarized
laser beam. For consistency with Sec. II A and because this
maximizes the coupling between the torsion and the electric
field, the beam should be propagating along the laboratory-
fixed Y axis. Using the same notation as for Eq. (3), the

TABLE IV. Character tablea of G4 and symmetry transformation
of ρ.

	/ρ E d q dq

Ag 1 1 1 1
Au 1 1 −1 −1
Bg 1 −1 1 −1
Bu 1 −1 −1 1
ρ ρ ρ + π 2π − ρ π − ρ

aSymmetry operations are defined in Sec. II C.
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TABLE V. Symmetry adapted functionsa for the 1D model.

	 f 	(ρ) 	 f 	(ρ)

Ag C2n(ρ) Au S2n(ρ)
Bg C2n+1(ρ) Bu S2n+1(ρ)

aSymmetry adapted functions are expressed in terms of the Cn and
Sn FBR functions defined in Table I.

operator HS(t) describing the field-matter interaction takes
the following expression:

HS(t) = E2(t)

8

[(
α0

y − α0
x

)
cos 2ρ − 3α0

x − α0
y

]
. (9)

Torsion-Stark energy levels for the 1D model can be evaluated
using an equation similar to Eq. (4) and allowing for the
fact that the field-matter interaction operator belongs to the
completely symmetrical Ag symmetry species of G4.

D. Laser pulse and time propagation

The laser-pulse envelope is taken to be of the form E(t) =
E0 exp − 1

2 [(t − t0)/T ]2, where t0 is the time of the pulse, T =
τrise for t < t0, T = τfall for t > t0, and E0 is the peak laser
electric field at t0. Depending on the values of E0 and of the
polarizability tensor components, there are two time values ti
and tf , with ti < t0 < tf , such that the electric field can be
neglected when t < ti or t > tf .

The time-evolution operator allowing us to propagate the
wave function from a time t ′ < ti , before the laser pulse, to a
time t > tf , after the laser pulse, is written U (t,t ′). It should be
evaluated in three time intervals [t ′,ti], [ti ,tf ], and [tf ,t]. For
the first and last intervals, the time-evolution operator reduces
to exp −iH0(ti − t ′)/� and exp −iH0(t − tf )/�, respectively,
where the field-free Hamiltonian H0 is either Hrt or Ht. In both
cases, the time evolution operators can be evaluated using field-
free eigenvalues and eigenfunctions. In the time interval [ti ,tf ],
the system is governed by the time-dependent Hamiltonian
H0 + HS(t) and the time-evolution operator is partitioned
into a product of short-time propagators U (tn+1,tn), where
ti � tn < tn+1 � tf . Provided tn+1 − tn is small compared
to the duration of the pulse, U (tn+1,tn) can be calculated
using the Chebyshev scheme [14,15] for a Hamiltonian equal
to H0 + HS(tn). Since the field-matter interaction operator
HS(tn) belongs to the completely symmetrical symmetry
specie of the symmetry group arising for all three models,
using symmetry adapted field-free eigenfunctions leads to an
efficient calculation as in this basis set each symmetry species
can be propagated independently and the size of the matrices
to be dealt with is reduced.

III. NUMERICAL RESULTS

Below, the time evolution of the expectation value of the tor-
sional angle is calculated with all three models and compared.
Molecular axis alignment is also investigated evaluating the
time evolution of the direction cosine matrix element between
the laboratory-fixed Z axis and the molecular-fixed z axis with
the 4D model and a rigid-rotator model. In all cases, the laser
pulse is assumed to take place at t0 = 0 and the parameters

describing its shape τrise and τfall are both set to 0.6 ps. Peak
laser intensities up to 6.25 × 1013 W/cm2 are considered. The
wave function is propagated starting from a time t ′ = −5 ps
for which the effects of the laser field can be neglected and the
system can be described using the field-free Hamiltonian.

The structural parameters A and B and the three polariz-
ability tensor parameters α0

x , α0
y , and α0

z are set to the values
in Table I of Ref. [12]. Like in Ref. [13], four hindering
potentials are considered and referred to as case I, II, III,
and IV. In case I, there is no barrier to internal rotation. In
case II, four eclipsed planar D2h asymmetric-top equilibrium
configurations with ρ = 0◦, 90◦, 180◦, and 270◦ arise and are
separated by a 500 cm−1 barrier. In case III, there are four
staggered D2d symmetric-top equilibrium configurations with
ρ = 45◦, 135◦, 225◦, and 315◦ also separated by a 500 cm−1

barrier. At last, in case IV, the torsional potential is that of the
biphenyl molecule [12] and displays eight minima at ρ = 22◦,
68◦, 112◦, 158◦, 202◦, 248◦, 292◦, and 338◦ separated by a
barrier of 669 cm−1 for the eclipsed planar configurations and
a barrier of 879 cm−1 for the staggered D2d configurations.

With the 4D model, rotation-torsion energies were com-
puted setting N in Table I to 23 for nondegenerate levels
and to 46 for doubly degenerate levels. With the 2D and 1D
models, rotation-torsion or torsion energies were computed
taking cos Nρ and sin Nρ basis set functions with N � 94.
With the 4D (2D) model, a maximum J value (k value) of 22
was adopted.

A. Time evolution of the torsional angle

The torsional angle expectation value ρe is defined in terms
of the expectation value of cos 4ρ as ρe = 1

4 cos−1〈cos 4ρ〉.
With this definition, ρe depends primarily on the location
of the torsional function maxima and to a lesser extent on
how well it is localized. The time evolution is calculated
taking as an initial state a low-lying level in the field-free
limit. For the 4D model, the level taken as an initial state
is the A+

1g , M = vt = 0, 202 level for case I potential; for
case II, III, and IV potentials, the 000 rotational level is taken
instead of the 202. For the 2D and 1D models, the levels taken
as initial states are the A+

1g , k = vt = 0 and the Ag , vt = 0
levels, respectively, for all case potentials. The variations of
ρe obtained with the three models are plotted in Fig. 1 for
case I and II potentials and in Fig. 2 for case II and IV
potentials.

In order to study the effects of the pulse, two parameters are
used: �E, the energy change, and the angle ρf . The energy
change is calculated with

�E = 〈
|H0|
〉 − Ei, (10)

where H0 is the field-free Hamiltonian, 
 is the time-
dependent wave function, and Ei is the energy of the field-free
rotation-torsion state taken as initial state. The angle ρf is
evaluated like ρe except that only diagonal matrix elements of
cos 4ρ within a field-free eigenfunction are taken into account.
Evaluation of �E and ρf is straightforward since the wave
function is expanded using field-free wave functions. Before
the pulse, �E and ρf are both time independent and are equal
to zero and ρe, respectively; after the pulse, �E and ρf are
also time independent. In the remaining sections only the final
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FIG. 1. (Color online) Time evolution of the torsional angle expectation value ρe for case I and II potentials [13] starting from the field-free
levels listed in Sec. III A. The left, center, and right panels display the results obtained with the 4D, 2D, and 1D models, respectively. Red (dark
gray) and orange (gray) lines correspond to peak laser intensities of 1013 and 6.25 × 1013 W/cm2, respectively.

values of these two parameters will be used. Table VI gives
�E and ρf in all case potentials, for all three models, and for
two peak laser intensity values. As confirmed by Figs. 1 and 2,
the angle ρf is the value around which the variations of ρe are
centered after the pulse.

1. Case I potential

A peak laser intensity of 1013 W/cm2 is considered. As
shown by Fig. 1, before the pulse, ρe = 1

4 cos−1 0 = 22.5◦
since there is no torsional alignment for this potential. During
the pulse, torsional alignment occurs and ρe decreases down to
19◦, 15◦, and 13◦ for the 4D, 2D, and 1D models, respectively.
After the pulse complicated variations take place with an
amplitude which is the largest for the 1D model. Figure 1
emphasizes that for the 2D, and 1D models, quantum revivals
leading to strictly periodic variations with a period of 22 ps
can be seen; for the 4D model, revivals are also observed but
they are not strictly periodic.

For the 2D model, using the results in Table III and Eq. (5),
the field-free energy of levels belonging to the A+

1g symmetry
species can be expressed in terms of k and vt as

E
A+

1g

k,vt
= Ak2 + Avt

2, (11)

where k and vt are even and k + vt is a multiple of 4. For the
1D model, Table V and Eq. (8) allow us to write the field-free
energy of levels belonging to the Ag symmetry species as

E
Ag

vt
= Avt

2, (12)

where vt is even. For the 2D and 1D models, the operator
describing the torsional angle expectation value has �J =
�k = 0 and �vt = ±4 matrix elements and can only couple
levels with vt values differing by a multiple of 4 and thus
energies differing by an integer times 16A = 45 968 MHz.
Since this frequency corresponds to a period of 21.7 ps, the
periodic revivals observed for the 2D and 1D models are due to
free rotation of both biphenyl groups about the laboratory-fixed

FIG. 2. (Color online) Time evolution of the torsional angle expectation value ρe for case III and IV potentials [13] starting from the
field-free levels listed in Sec. III A. The left, center, and right panels display the results obtained with the 4D, 2D, and 1D models, respectively.
Red (dark gray) and orange (gray) lines correspond to peak laser intensities of 1013 and 6.25 × 1013 W/cm2, respectively.
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TABLE VI. Energy changesa and ρf valuesb after the pulse.c

Model Case I Case II Case III Case IV

I = 1013 W/cm2

4D 34, 22◦ 6, 3◦ 6, 41◦ 10, 21◦

2D 76, 22◦ 16, 3◦ 7, 41◦ 46, 21◦

1D 98, 22◦ 0, 3◦ 8, 41◦ 0, 21◦

I = 6.25 × 1013 W/cm2

4D 83, 22◦ 42, 5◦ 146, 32◦ 63, 21◦

2D 141, 22◦ 94, 7◦ 226, 30◦ 61, 21◦

1D 183, 22◦ 238, 14◦ 318, 25◦ 112, 22◦

aThe energy change �E, defined in Eq. (10), is given in cm−1.
bThe angle ρf , defined in Sec. III A, is given in degrees.
cResults obtained with all three models are listed for all case potentials
and for two peak laser intensity values. The field-free level taken as
the initial state is given in Sec. III A.

Z axis. For the 4D model, there is no closed-form expression
of the rotation-torsion energy and it should be obtained using
the results in Sec. II A. A rough approximation of the energy
can be obtained using

E
A+

1g

JKaKc,M,vt
= AKa

2 + Avt
2, (13)

where Ka and vt are even and Ka + vt is a multiple of 4.
This equation leads to the same type of energy difference as
for the 2D and 1D models and thus to a periodic variation
with the same period as with these models. Equation (13)
is approximate in that it neglects the J dependence of the
rotation-torsion energy. Inclusion of this dependence leads to
energy differences that are no longer an integer times 16A and
to the nonperiodic variations in Fig. 1.

2. Case II potential

Peak laser intensities of 1013 and 6.25 × 1013 W/cm2 are
considered. Before the pulse, ρe is almost zero as the torsional
function is centered near ρ = 0◦. For the low intensity, there
is almost no change of ρe. For the large intensity, 3◦, 5◦, and
11◦ increases can be seen during the pulse for the 4D, 2D,
and 1D models, respectively. After the pulse, for all three
models, small nonperiodic variations are observed and they
are centered around a ρe value close to the one reached during
the pulse. This should not be interpreted as a change of the
value around which the torsional function is centered but as
a less localized torsional function leading to a ρf value larger
than the initial value of ρe. Table VI shows that the largest
energy increase takes place with the 1D model displaying also
the largest ρf .

3. Case III potential

For this potential, the peak laser intensities are the same
as in case II. Before the pulse, ρe is close to 45◦, the ρ value
around which the torsional function is centered [13]. For the
low intensity, during the pulse, ρe undergoes a small decrease
for all models. For the high intensity, larger decreases of ρe

are observed and a change as large as 37◦ is reached with the
1D model. After the pulse, for the low intensity, small periodic
variations with a 2◦ amplitude and a frequency of 54 cm−1 are
observed with all three models; this frequency is the energy

FIG. 3. (Color online) Rotation-torsion energy increase �E and
the angle ρf as functions of the peak laser intensity in 1013 W/cm2

for case III potential and with the 4D, 2D, and 1D models in the
upper, middle, and lower part of the figure, respectively. Red (dark
gray) and orange (gray) lines correspond to the variations of �E and
ρf , respectively.

difference between the vt = 2 and ground torsional states. For
the large intensity, after the pulse, the variations are no longer
periodic and their amplitude is barely larger than for the low
intensity. The angle ρf is also much smaller than the initial
value of ρe.

Figure 3 gives the variations of �E and ρf as functions of
the peak laser intensity with all three models. The variations of
these two quantities are strongly correlated, not monotonous,
and display two extrema. For the 4D model, the extrema
intensities are I1 = 3.8 × 1013 W/cm2 and I2 = 5.5 × 1013

W/cm2; for the two other models the values are slightly
smaller. At the extremum intensity I1, the torsional function
undergoes substantial changes that can be understood examin-
ing the population of each vt torsional level Pop(vt ). Plots of
this population can be seen in Fig. 4 for peak laser intensities
close to I1 and for the 1D model. For the low intensity, the
population decreases rapidly with increasing vt values and is
zero for vt = 12. This indicates that the torsional function is
not too altered by the pulse. For the high intensity, the slower
decrease and the fact that levels with vt = 20 are populated
shows that the torsional function is altered by the pulse. For
the 4D and 2D models, similar changes of Pop(vt ) also occur.

Insight about the value of the extremum intensity I1 can
be obtained studying the rotation-torsion-Stark energies as a
function of the (time-independent) laser intensity. For all three
models, Fig. 5 shows the variations of the energy of seven
low-lying levels with respect to that of the lowest-lying one.
The levels appearing in this figure are levels populated by
the laser pulse. Due to the nature of the initial state and to
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FIG. 4. (Color online) Population Pop(vt ) of the torsional levels
after the pulse as a function of the torsional quantum number vt for
case III potential with the 1D model and for peak laser intensities
of 2.1 × 1013 W/cm2, red (dark gray) line, and 3.8 × 1013 W/cm2,
orange (gray) line. The population of the vt = 0 and 1 levels is not
given.

the form of the field-matter interaction operator, only levels
correlating to field-free levels characterized by an even J value
are populated in the case of the 4D model and only those
correlating to field-free levels with an even k value in the case
of the 2D model.

For the 1D model, Fig. 5 emphasizes that the levels arising
for intensities lower than 2 × 1013 W/cm2 are, as expected,
those of a harmonic oscillator. For intensities larger than
5 × 1013 W/cm2 the effects of the laser field are becoming
dominant leading to levels close to those of a harmonic
librator [20] with M = 0. For the 4D and 2D models, the
energy-level diagrams are more complicated and Fig. 5 shows
that a large number of avoided crossings [13] occur when the
intensity of the laser field increases. With all three models,
the lowest-lying level remains isolated for intensities below
3 × 1013 W/cm2. The first avoided crossing involving this
level takes place for an intensity of 3.8 × 1013 W/cm2 which
agrees well with the extremum intensity I1.

4. Case IV potential

For this potential, the peak laser intensities are the same
as in case II and III potentials. Before the pulse, ρe is very
close to 22◦ which is the value of the torsional angle for the
first minima of the hindering potential. Figure 2 shows that,
for both intensities, the value of ρe changes during the pulse.
For the low intensity, there is a variation smaller than 1◦ for all

three models. For the high intensity, a pronounced change, as
large as 5◦ for the 1D model, takes place. After the pulse, for
the low intensity, a small periodic variation is observed and its
frequency is 60 cm−1, which is the energy difference between
the vt = 1 and ground torsional states. For the high intensity,
after the pulse, the variations are semiperiodic and are the
largest for the 1D model; quantum revivals are also observed
for this model. The variations with case IV potential are smaller
than with the three other case potentials and Table VI shows
that this also applies for the energy increases.

Figure 2 also shows that during the pulse ρe decreases with
the 4D and 2D models, while it increases with the 1D model.
The two former models exhibit the expected behavior since the
molecule is forced into a planar configuration characterized by
ρ = 0 when the intensity of the laser beam increases [13]. The
unexpected behavior arising with the 1D model stems from
the definition of ρe and the fact that the field-free function has
π/2 periodicity, while the field-matter interaction operator in
Eq. (9) only has π periodicity.

B. Time evolution of the molecular axis alignment

The expectation value of �2
Zz, the squared direction cosine

matrix element between the laboratory-fixed Z axis and
the molecule-fixed z axis, is calculated for an ensemble of
molecules described by a Boltzmann distribution before the
pulse. This thermal average, denoted 〈〈�2

Zz〉〉, is a measure
of the molecular axis alignment. It is calculated using the
4D model with a case III potential and a rigid-rotator model.
The latter is parametrized in terms of rotational constants and
polarizability tensor components matching those of one of
the equilibrium configurations of the molecule. Taking the
configuration with ρ = 45◦ yields a D2d prolate symmetric
top rigid rotator with an S4 symmetry axis parallel to the
molecule-fixed z axis. The rotational constants along and
perpendicular to this symmetry axis are A = 0.095 cm−1 and
B = 0.017 cm−1, respectively, and the diagonal components
of the polarizability tensor along the same axes are 2α0

x and
α0

x + α0
z , respectively. The time evolution of 〈〈�2

Zz〉〉 is given
in Fig. 6 for a temperature of 2 K and for two peak laser
intensities of 6.25 × 1011 and 3 × 1013 W/cm2.

The calculation with the 4D model was carried out taking a
maximum J value of 10; higher values could not be considered
as they led to prohibitive calculation times. The results with

FIG. 5. (Color online) Rotation-torsion-Stark energies with respect to that of the lowest-lying level are plotted as functions of the (time-
independent) intensity of the laser beam. The left, center, and right panels correspond to the 4D, 2D, and 1D models, respectively. For the 4D
model, the levels shown are characterized by M = vt = 0 and belong to the A+

1g symmetry species. They are identified with their field-free
quantum numbers: JKaKc. For the 2D model, levels also belong to the A+

1g symmetry species and are identified with their field-free quantum
numbers k and vt . For the 1D model, levels belong to the Ag symmetry species and are identified with their field-free torsional quantum number
vt . The levels appearing in this figure are those populated after the laser pulse.
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FIG. 6. (Color online) Time evolution of 〈〈�2
Zz〉〉 for an ensemble

of molecules described before the pulse by a Boltzmann distribution
with a temperature of 2 K. Results with the 4D model for a case
III potential [13] and with the rotator model are compared for two
peak laser intensities. In the upper panel, for an intensity of 6.25 ×
1011 W/cm2, the red (dark gray) line corresponds to the variations
with the 4D and rotator models, for a maximum J value of 10,
which overlap exactly. The variations with the rotator model for a
maximum J value of 22 are plotted with a yellow (light gray) line.
In the lower panel, for an intensity of 3.06 × 1013 W/cm2, the red
(dark gray) and orange (gray) lines correspond to the 4D and rotator
models, respectively, with a maximum J value of 10. The yellow
(light gray) line corresponds to the variations with the rotator model
for a maximum J value of 22.

the rotator model were retrieved using two maximum J values.
A maximum J value of 10 was adopted for consistency with
the 4D model calculation; the other maximum J value was 22
leading to converged results.

Before the pulse, Fig. 6 emphasizes that 〈〈�2
Zz〉〉 is as

expected equal to 1/3. After the pulse, the molecule is
kicked towards a molecular axis alignment [13] with �Zz =
0 corresponding to θ = π/2 and to the molecule-fixed z

axis perpendicular to the laboratory-fixed Z axis. The four
calculations carried out with the rotator model lead to the
periodic behavior expected for a symmetric top molecule.
Quantum revivals can be seen with a period [21] equal to
1/(2B) = 984 ps. For the low intensity, the 4D model and
the rigid-rotator calculation with J = 11 lead to identical time
evolutions. For the high intensity, the time evolutions obtained
with both rigid-rotator calculations are quite different from
those arising with the 4D model. As revealed by a careful
examination of Fig. 6, the latter model also leads to variations
which are not strictly periodic. More precisely, the 984 ps
periodicity no longer exists with this model.

IV. DISCUSSION

Torsional control in nonrigid biphenyl-like molecules
displaying internal rotation of their two groups is studied

theoretically using the 4D model developed in Refs. [12,13],
the 2D model proposed in Refs. [3,9–11], and the 1D model
introduced in Refs. [6–8]. The 4D model is appropriate
for studying torsional control in gas phase molecules. It
treats exactly the internal rotation and the three degrees of
freedom corresponding to overall rotation. The 2D model treats
accurately the internal rotation but only one degree of freedom
is considered for the overall rotation, which is assumed to take
place about a fixed axis. The 1D model only accounts for the
internal rotation. In a first set of calculations, the time evolution
of the expectation value of the torsional angle is computed with
all three models in the case of a short laser pulse characterized
by a peak laser intensity up to 6.25 × 1013 W/cm2. In a second
set of calculations, indirect effects of the torsional motion are
probed, for the same kind of pulse, by evaluating the time
evolution of the molecular axis alignment with the 4D model
and with a rigid-rotator model. In all calculations, symmetry
considerations are used to block diagonalize the Hamiltonian
and allow us to propagate efficiently the wave function.

The results concerning the time evolution of the expectation
value of the torsional angle are presented in Figs. 1 and 2 where
the time evolution was calculated for hindering potentials
corresponding to four limiting cases. The duration of the laser
pulse was 1.2 ps and the time evolution was evaluated up
to 200 ps after the pulse. The results obtained with the 4D
model are usually consistent with those obtained with the 2D
model. The latter model leads to slightly increased effects of
the electric field as the averaging due to overall rotation is less
important with the 2D model than with the 4D. The results
obtained with the 1D model tend to differ from those arising
with the two other models. The 1D model predicts much larger
variations of the torsional angle.

Two limiting cases of the hindering potential are of special
interest. In the case of free internal rotation, the time evolution
retrieved for the expectation value of the torsional angle with
the 4D model is qualitatively different from those retrieved
with the two other models. As emphasized by Fig. 1, the 2D
and 1D models lead to strictly periodic variations, while the
4D model does not. In the case when the hindering potential
displays four minima at the four staggered configurations of
the molecule, the expectation value of the torsional angle after
the pulse is only slightly time dependent. Its final value is
strongly correlated with the energy increase after the pulse and
depends on the peak laser intensity, Fig. 3, in a nonmonotonic
fashion. This behavior can be understood examining the
rotation-torsion-Stark energy-level diagram of the molecule,
Fig. 5.

The results concerning molecular axis alignment were
obtained computing the time evolution of �2

Zz, the squared
direction cosine matrix element between laboratory- and
molecule-fixed Z and z axes, respectively. The expectation
value of �2

Zz can only be calculated with the 4D model
as, unlike the 2D and 1D models, it accounts for all three
degrees of freedom corresponding to overall rotation. The
time evolution was computed taking a hindering potential
displaying four minima at the four staggered configurations
of the molecule, for two peak laser intensities, and for an
ensemble of molecule described by a Boltzmann distribution
with a temperature of 2 K. Figure 6 gives the time evolution
obtained with the 4D model together with that obtained with
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a rigid rotator characterized by the rotational constants and
polarizability tensor components of the molecular equilibrium
configuration. For the low intensity, both models yield identical
time evolutions. For the high intensity, the 4D and rigid-rotator
models lead to qualitatively different time evolution and this
stems from the coupling between the overall rotation and the

torsional mode, which is taken into account in the former
model but not in the latter. Thus molecular axis alignment
in a molecule undergoing a torsional motion is qualitatively
different from that in a rigid molecule. This implies that
measuring molecular axis alignment provides us with an
additional tool to study torsional control.
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