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Internal consistency in positron-hydrogen-scattering calculations
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Internal consistency in a close-coupling approach to positron-hydrogen scattering is investigated with a
particular focus on the potential overlap between the atomic and positronium continua. We present results
for total, total ionization, and 1s positronium-formation cross sections for projectile energies up to 100 eV. We
show that, irrespective of whether the continuum is treated by one center, or the other, or both, the same cross
sections are generally obtained. This is true only if sufficiently large orbital angular momentum is taken in the
close-coupling expansion. Furthermore, unitarity of the close-coupling approach ensures convergence of the
physically observable cross sections even if the individual components are not convergent.
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I. INTRODUCTION

The positron-atom-scattering problem is of interest to the
scientific community from both the theoretical and practical
perspectives. Theoretical complexity arises from the existence
of the rearrangement channel, known as positronium forma-
tion. This is more complicated than exchange processes in
electron scattering due to the requirement for (at least two)
separate coordinate systems. Much of the foundational work
has been carried out some time ago [1–5]. On the practical
side, positron scattering is important in medical imaging and
materials science, with considerable recent activity [6–10].
Comprehensive reviews of the field have been given by Surko
et al. [11], Laricchia et al. [12], and Chiari and Zecca [13].

The positron-hydrogen-scattering system has two natural
centers, hydrogen (H) and positronium (Ps). Both have a dis-
crete and a continuous spectrum. For positron scattering on the
ground state of H, excitation of the H continuum corresponds
to combined Ps formation and three-body breakup (electron
loss). On the other hand the Ps continuum corresponds solely to
three-body breakup, with the discrete spectrum corresponding
to explicit Ps formation. Hence any complete (discrete and
continuum) treatment of both centers in a close-coupling
approach may potentially double count the three-body breakup
scattering processes. Here our interest is to investigate this
issue within the two-center convergent close-coupling (CCC)
method. We require that the two-center CCC calculations be
internally consistent, i.e., yield the same physical results even
when substantially different expansions on the two centers are
undertaken.

The CCC method was originally developed by Bray and
Stelbovics [14] for electron-hydrogen scattering, with the most
recent review of applications given by Bray et al. [15]. When
first applied to the positron-hydrogen-scattering problem it did
not include Ps formation, but was able to yield the correct phase
shifts at low energies [16] and resolve discrepancies between
experiments for total ionization at high energies [17].

The close-coupling method has been successful in treating
the positron-atom-scattering problem. It has many numerical
implementations [2,3,18,19]. Following the work of Mitroy
[3] and Campbell et al. [20], Kadyrov and Bray [21] de-
veloped a two-center CCC method which explicitly includes
Ps-formation channels, and obtained good agreement with
experiment without any double-counting problems. This was

further supported by considering convergence in the s-wave
model, where pseudoresonances of the type identified by
Higgins and Burke [18] could only be eliminated using a
near-complete treatment of both centers [22]. Furthermore,
application to three-body breakup near threshold showed that
the contribution from both centers becomes the same as
threshold approaches [23].

II. METHOD

The details of the two-center CCC formalism for positron
scattering have been given in Ref. [21]. Briefly, the one-
electron target (T) Hamiltonian HT is diagonalized for each or-
bital angular momentum l � lmax to obtain target pseudostates
using

〈
φ

(T)
f

∣∣HT

∣∣φ(T)
i

〉 = ε
(T)
f δfi, (1)

where the φ(T)
n (r) are linear combinations of the complete

Laguerre basis:

ξ
(λ)
n,l (r) =

(
λ(n − 1)!

(2l + 1 + n)!

)1/2

×(λr)l+1 exp[−λr/2] L2l+2
n−1 (−λr), (2)

where L2l+2
n−1 (x) is the associated Laguerre polynomial, and

n ranges from 1 to the basis size Nl . With increasing Nl the
negative-energy states converge to the true discrete eigenstates,
while the positive-energy states yield an increasingly dense
discretization of the target continuum. Explicit inclusion of
Ps (pseudo)states also requires diagonalization of the Ps
Hamiltonian in a Laguerre basis:

〈
φ

(Ps)
f

∣∣HPs

∣∣φ(Ps)
i

〉 = ε
(Ps)
f δfi. (3)

To get the scattering cross sections we solve the set of
momentum-space coupled Lippmann-Schwinger equations for
the transition-matrix elements:

Tγ ′,γ (qγ ′ ,qγ ) =Vγ ′,γ (qγ ′ ,qγ ) +
N (T)+N (Ps)∑

γ ′′

∫
dqγ ′′

(2π )3

× Vγ ′,γ ′′ (qγ ′ ,qγ ′′ )Tγ ′′,γ (qγ ′′ ,qγ )

E + i0 − εγ ′′ − q2
γ ′′/(2Mγ ′′)

, (4)
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where E is the total energy, qγ is the momentum of the free
particle γ relative to the c.m. of the bound pair in channel γ (H
or Ps), εγ is the corresponding energy of the bound pair, Mγ

is its reduced mass, and Vγ ′,γ is the effective potential [21].
The set of integral equations (4) is solved using the partial-

wave expansion in total orbital angular momentum.

III. RESULTS AND DISCUSSION

One of the strengths of the two-center CCC formalism is
the ability to check the internal consistency. Both expansions
approach completeness with increasing N , but are not orthog-
onal. The unitarity of the close-coupling formalism ensures
that double counting should not occur, but the potential over-
completeness manifests itself through ill-conditioned linear
equations when solving Eq. (4). Thus, we cannot arbitrarily
increase our basis sizes, but need to be particularly careful in
demonstrating convergence.

At the very low energies where only elastic scattering is
possible only the target ground state is open. All other states
are closed, and correspond to virtual excitation, ionization, and
Ps formation. These virtual effects can be very large and, due
to the completeness of the Laguerre basis, can be treated by
either center. This is a very good but a somewhat indirect
test of the two-center formalism, and has been performed
previously [16]. As we are interested in the interplay between
the continuum of H and that of Ps, here we will concentrate
on energies above the ionization threshold.

The critical aspect of the CCC approach is to demonstrate
convergence at each energy of the projectile with increasing
basis size parameters Nl and lmax, for specified exponential
falloff λl . We are free to vary Nl and λl for each l, for both
the H target and Ps. This creates considerable flexibility, but
for the purpose of a clear presentation of the convergence we
take λ

(Ps)
l =1 and λ

(H)
l = 2 in all presented calculations. This

yields exact Ps(1s) and H(1s) with N
(Ps)
0 = N

(H)
0 = 1. We will

demonstrate convergence by variation of Nl and lmax for each
center.

The bases used in this work are denoted as
CCC(NH

0 ,NPs
0 ,lmax), where lmax is the maximum orbital an-

gular momentum of the target and Ps states. For each l,
the number of included pseudostates is N0 − l. We consider
the four bases CCC(30,0,9), CCC(20,20,2), CCC(20,4,3), and
CCC(8,25,2), where each basis represents the three-body
continuum in a different way, and is chosen to give a convergent
final result. A bar indicates the use of pseudostates and no
bar means only exact bound states are included. The first
calculation has a near-complete set of H (pseudo)states, but
has no Ps states. The second has an equally distributed
number of pseudostates across both centers. The third has
a near complete set of H (pseudo)states with just a few
Ps bound eigenstates. Finally, the fourth calculation has a
near-complete expansion of Ps (pseudo)states with few H
bound eigenstates. The last is particularly noteworthy because
this is the first time that the CCC calculations were performed
in this way, and we are unaware of any other method that
has attempted such calculations. All four bases were used to
perform e+-H calculations for partial waves of total orbital
angular momentum ranging from zero to twenty over the
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FIG. 1. (Color online) Total cross section for the zeroth par-
tial wave of e+-H scattering calculated with the specified
CCC(NH

0 ,NPs
0 ,lmax) calculations (see text).

full energy range. The full, summed over all partial waves,
results are much the same as those presented previously [21].
Here, for the purpose of this study the zeroth partial wave is
representative of the behavior within each partial wave.

In Fig. 1 we present the four sets of calculations for
total cross sections (TCS). Excellent agreement between them
is a necessary starting point which says that all physical
cross sections, when summed, give the same result. At the
lower energies elastic scattering dominates, but virtual Ps
formation is very important. Implicit inclusion via lmax = 9 in
the single center CCC(30,0,9) calculation, or explicit inclusion
of Ps states in the other three bases, provides an equivalent
treatment.

An even more interesting case is the total ionization cross
section (TICS) presented in Fig. 2. This is a combination of
Ps-formation and breakup cross sections. The CCC(30,0,9)
calculation yields this cross section by simply summing the
excitation cross sections for all of the positive-energy atomic
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FIG. 2. (Color online) Same as Fig. 1, except for the total
ionization cross section (Ps formation plus breakup cross sections).
The individual unconnected points indicate the contribution from the
Ps continuum.
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FIG. 3. (Color online) Same as Fig. 1, except for the Ps(1s)
formation cross section.

states. It needs the large lmax and Nl near the ionization
threshold as it should yield a near step function with the
positive-energy cross sections yielding the total Ps formation at
the step height (the breakup cross section is zero at threshold).
The absence of explicit Ps formation is why this cross section
starts at 13.6 eV. The other three two-center calculations
start at the Ps(1s) formation threshold and quickly converge
to the single center CCC result. To show how remarkable
that is we also present the individual contributions from the
Ps continuum, which is nonzero only in the CCC(20,20,2)
and CCC(8,25,2) calculations. In the case of CCC(20,20,2)
this is relatively small, with the majority of the contribution
to the TICS (not shown) coming from the cross sections
for excitation of the positive-energy atomic states, with the
remainder coming from the Ps bound states. However, in the
CCC(8,25,2) case, where there are no positive-energy atomic
states, the contribution from the positive-energy Ps states is
enormous, with the remainder being due to Ps formation.
Clearly, there is no convergence in the individual components,
yet the four calculations give an almost identical TICS at
energies above the ionization threshold. It is the unitarity of
the close-coupling formalism that ensures convergence in the
physically observable cross sections.

To complete the task of checking the internal consistency
we consider the Ps(1s) formation cross section in Fig. 3. Only
the three calculations that explicitly include Ps states generate
this cross section. Given that this is a relatively small cross
section it is a particularly sensitive test of the two-center CCC
formalism. Nevertheless, we see generally good agreement
between the three calculations.

IV. CONCLUSION

Given the vastly different set of states included, such broad
agreement between the diverse calculations allows us to draw
some solid conclusions.

First, we note that there were no unphysical resonances
found in the present study, as discussed earlier when only l = 0
states were included [22]. This indicates that the inclusion of
a substantial lmax > 0 has resolved this problem. Given that
Ps formation is electron-positron correlation away from the
atomic center it is not surprising that substantial lmax is required
for convergence.

Second, unitarity of the CCC formalism is responsible
for obtaining convergent physical cross sections, even when
individual components are not convergent. In this sense this is
similar to the case found in electron-sodium scattering, where
the total ionization cross section converged much faster than
its individual components [24]. However, in the present study
there is the greater complexity in that the contribution to the
three-body breakup channel can come from the atomic center,
the positronium center, or both.

The internal consistency checks presented here rely on
the ability to calculate the underlying matrix elements [21]
to a very high precision. This is required to deal with the
ill-conditioned sets of equations arising when the three-body
continuum is treated by both centers. It is our goal to be
able to do the same for e+-He scattering using the two-center
CCC method [25]. However, as yet we are unable to do so.
This is a four-body problem where Ps is formed in the field
of He+ requiring the treatment of excitation, virtual or real,
and electron exchange with the Ps electrons. While problems
are evident in the lowest partial waves, when summed over
all partial waves they become negligible and agreement with
experiment is excellent [25]. This indicates the importance of
performing the kind of internal consistency study presented
here, with the results acting as benchmarks for any new
approaches to the problem.

Finally, the internal consistency we have established here
was for discrete channels, including Ps formation and total
ionization. However, the effect of two-center expansions
on differential breakup cross sections remains an ongoing
challenge; see Kadyrov et al. [26] for some preliminary
discussion. Full understanding of this aspect would be an
important step toward solving the genuine three-body problem
that is e+-H scattering.
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