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Electron-ion collision spectroscopy: Lithium-like xenon ions
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The resonant process of dielectronic recombination (DR) has been applied as a spectroscopic tool to
investigate intra-L-shell excitations 2s-2pj in Li-like 136Xe51+. The experiments were carried out at the electron
cooler of the Experimental Storage Ring of the GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt,
Germany. The observed center-of-mass energy range (0–505 eV) covers all resonances associated with the
2s + e− → (2p1/2nlj )J and (2p3/2nlj )J DR processes. Energies and strengths of isolated 2p1/2n and 2p3/2n

DR-resonance groups were obtained for principal quantum numbers n up to 43 and 36, respectively. The 2s-2p1/2

and 2s-2p3/2 excitation energies were deduced to be 119.816(42) eV and 492.174(52) eV. The excitation energies
are compared with previous measurements of other groups and with recent QED calculations. In addition,
the experimental spectra and extracted resonance strengths are compared with multiconfiguration Dirac-Fock
calculations. Measurements and theory are found to be in good agreement with each other.
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I. INTRODUCTION

In atoms, relativistic corrections to the nonrelativistic
Coulomb binding energies, the dominant self-energy cor-
rections, and vacuum polarization contributions of quantum
electrodynamics (QED) scale predominantly with the fourth
power of the nuclear charge number Z [1,2]. At the same time,
the electric field strength, which is the reference parameter of
a field theory, increases for s electrons by nearly 7 orders of
magnitude from hydrogen to uranium. The interaction strength
αZ between electrons and the nucleus transits from the the
perturbative regime to the nonperturbative domain. These facts
motivate the study of relativistic and QED effects in heavy
atoms and, in particular, in few-electron heavy ions. Here we
report on experimental measurements of the 2s → 2p1/2 and
2s → 2p3/2 excitation energies in Li-like Xe51+ ions employ-
ing electron-ion collision spectroscopy at a heavy-ion storage
ring. With this medium-Z ion we intend to bridge the gap
between similar work on low-Z [3] and high-Z [4] Li-like ions.

Since the seminal work of Schweppe et al. [5], who
benchmarked the 2s-2p1/2 splitting in U89+, Li-like systems
have attracted much attention from the experimental as well as
from the theoretical side. To date, the most precise values
for the 2s → 2p1/2 and 2s → 2p3/2 splittings in heavy
Li-like ions have been obtained, for example, by use of
x-ray spectroscopy at an electron-beam ion trap (EBIT) [6,7]
either by direct observation of the emitted photons or by
application of x-ray laser spectroscopy at a free electron laser
[8], by beam foil spectroscopy [5,9–11], and by electron-ion
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collision spectroscopy in heavy-ion storage rings [3,4]. The
experimental results are sensitive to second-order QED effects
[12–14].

Our approach, electron-ion collision spectroscopy, exploits
the spectroscopic properties of dielectronic recombination
(DR). DR is a resonant electron-ion collision process. DR
collision spectroscopy at heavy-ion storage rings is a well-
established spectroscopic tool [3,4,15–17]. It is a versatile
alternative to approaches that measure the wavelength of
emitted or absorbed photons. The list of questions tackled
with DR comprises such diverse topics as strong-field quantum
electrodynamics, relativistic atomic physics, the influence of
external fields on the recombination process, nuclear physics,
and astrophysics [3,4,15,17–21]. For further details and more
references please refer to the reviews in Refs. [16,22–24].

DR proceeds in two steps,

e− + Aq+ → [A(q−1)+]∗∗ → [A(q−1)+]∗ + photon(s),

where in the first step the initially free electron is captured
into a bound state of the ion with simultaneous excitation of a
core electron. This initial resonant dielectronic capture (DC)
forms the foundation of DR as a spectroscopic tool. DC is time
inverse to autoionization, and, thus, DR studies as conducted at
storage rings can be regarded as Auger spectroscopy in inverse
kinematics. In the second step the recombined doubly-excited
ion is stabilized by radiative deexcitation. The resonance
energy for DR, EDR, depends on the energy needed for the
excitation of the initially bound electron Eex and the binding
energy of the captured initially free electron EB :

EDR = Eex − EB. (1)
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DR spectroscopy determines Eex by using precise measure-
ments of EDR and calculated Rydberg binding energies EB ,
which are less affected by QED and correlation effects
and therefore can be calculated to low uncertainties [3].
Alternatively, the Rydberg energies can be extrapolated to
the series limit n → ∞ where EB = 0, thus yielding Eex [4].
In the present measurement DR of Li-like 136Xe51+ forming
136Xe50+ by the following processes:

Xe51+(1s2 2s) + e− → Xe50+ (
1s2 2pj̄ nlj

)∗∗
J

→ Xe50+ ∗ + photons

is studied. The angular momentum of the L-shell electron
is labeled j̄ with j̄ = 1/2,3/2, and the angular momentum
of the Rydberg-electron is given by j . J denotes the total
angular momentum of the doubly excited intermediate state.
The investigated energy range of 0–505 eV of our experiment
covers all DR resonances associated with the two �n = 0 DR
Rydberg resonance series (2p1/2nlj )J and (2p3/2nlj )J .

In our data analysis we benefit from this measurement
of the full series of Rydberg resonances inasmuch as we
utilize the regular pattern for an improved calibration of our
energy axis (Sec. IV C). From the measured DR resonances
we extract the 2s → 2p1/2 and 2s → 2p3/2 excitation energies
(see Sec. IV D).

The absolute measurement of the Xe51+ recombination
rate coefficient with high resolution allowed us to determine
strengths and energies for numerous individual resonance
groups of the 2p1/2n and 2p3/2n resonance series. The
experimental results are compared with state-of-the-art multi-
configuration Dirac-Fock (MCDF) calculations.

II. CALCULATION OF DIELECTRONIC
RECOMBINATION CROSS SECTIONS

For the calculation of DR cross sections we employ
the independent-processes isolated-resonances approximation
which neglects interference between DR and nonresonant
radiative recombination (RR) as well as interference between
overlapping DR resonances of the same symmetry.

A given DR channel proceeds from the Li-like initial level
(1s22s, i) through the doubly-excited intermediate level of
type 1s22pj̄nlj (indexed by d) to a final level (f ) formed after
radiative decay. The cross section for such a channel is given
as a function of the electron kinetic energy Ec.m. in the ion rest
frame as (in atomic units; see, e.g., Refs. [25,26])

σ
i→d→f

DR (Ec.m.) = S
i→d→f

DR Ld (Ec.m.) , (2)

with the resonance strength, i.e., the integrated cross section
for a selected peak, given as

S
i→d→f

DR = 2π2

p2

2Jd + 1

2(2Ji + 1)

�
d→f
r �d→i

a

�d
r + �d

a

. (3)

Here Jd and Ji are the total angular momenta of the inter-
mediate and the initial-state ion, respectively. The Lorentzian
line-shape function

Ld (Ec.m.) = �d/(2π )

(Ei + Ec.m. − Ed )2 + �2
d/4

is normalized to unity on the energy scale and p =√
(Ec.m./c)2 + 2Ec.m. in atomic units is the free-electron

momentum associated with the kinetic energy Ec.m.. Here c

denotes the velocity of light, Ei is the initial-level (ground-
level) total energy of the Li-like Xe ion, and Ed is the total
energy of the Be-like autoionizing level formed by dielectronic
capture. Furthermore, �d stands for the total natural width
of the intermediate autoionizing level d, given as the sum
of the radiative and autoionization widths: �d = �d

r + �d
a .

The radiative width is given as the sum over partial decay
widths describing decays to different final levels f : �d

r =∑
f �

d→f
r . We take into account electric dipole single-photon

radiative decay channels, populating a multitude of final levels
1s22pj̄n

′l′j ′ (with 2 � n′ < n) and 1s22snlj . Since in the
experiment the final levels of the ion are not resolved (e.g.,
the emitted photons are not detected), a summation over f is
performed additionally Eq. (2).

The bound-state wave functions are obtained by means
the multiconfiguration Dirac-Fock (MCDF) method, as im-
plemented in the GRASP code [27,28]. In this scheme, a
many-electron atomic state function (ASF) is given as a linear
superposition of configuration state functions (CSFs) sharing
common total angular momentum (J ), magnetic (M), and
parity (P ) quantum numbers [27,28]:

|γPJM〉 =
nc∑

k=1

ck|γkPJM〉. (4)

The CSFs |γkPJM〉 are constructed as jj -coupled N -particle
Slater determinants of one-electron wave functions. In Eq. (4),
γk is a multi-index that represents all quantum and occupation
numbers needed to fully specify the CSF. The number of
CSFs is denoted by nc. γ collectively denotes all the γk

included in the representation of the ASF. For the modeling of
intermediate and final levels, we use configuration expansion
sets constructed from the occupied orbitals in an average
level scheme [27]. The initial Li-like ground level of the
ion is described in the (single-configuration) Dirac-Fock
approximation.

After the application of the MCDF method for solving the
relativistic Coulomb problem, the Breit interaction correction
is included by use of a configuration interaction method: matrix
elements of the Breit interaction operator are calculated with
wave functions generated by use of the self-consistent method
with the Coulomb interaction added to the Dirac-Coulomb
Hamiltonian matrix, and the resulting matrix is rediagonalized
as in previous work [20].

The Auger width is given by

�d→i
a = 2π

2Jd + 1

∑
Md

∑
Mims

∫
sin(θ )dθdϕ

× |〈
d ; JdMd |VC + VB |
iEc.m.; JiMi, �pms〉|2

= 2π
∑
κc

|〈
d ; Jd ||VC + VB ||
iEc.m.; Jijc; Jd〉|2 .

In this equation, the matrix elements of the Coulomb and
Breit interaction (VC and VB , respectively) are calculated
with the initial bound-free product state i and the bound
resonant intermediate state d. The total angular momentum
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of a partial wave of the continuum electron is given by
jc, while κc is the corresponding Dirac angular quantum
number and �p is the vectorial momentum of the free electron.
After summation over the initial magnetic quantum numbers
and integration over the direction (θ,ϕ) of the incoming
continuum electron, and after performing the summation over
the magnetic quantum number of the autoionizing state, one
obtains the partial wave expansion in terms of the reduced
matrix elements, as given in the last line of the above equation.

After the generation of the bound wave functions and
mixing coefficients by use of the MCDF method, the radial
continuum orbitals entering the Auger matrix elements are
calculated numerically from a potential consisting of the
nuclear potential and an additional screening potential induced
by the frozen 1s2 2s inner-shell electrons. In the case of a heavy
highly charged ion such as lithiumlike xenon the frozen-core
assumption is expected to be a reliable approximation. The
autoionization widths are calculated with coding similar to
that used in Refs. [21,26].

III. EXPERIMENT

The experiment was performed using the accelerator
and storage-ring facilities of the GSI Helmholtzzentrum für
Schwerionenforschung (GSI) in Darmstadt, Germany. Li-like
136Xe51+ ions were stored in the Experimental Storage Ring
(ESR) [29] at energies of 58.43 MeV/u and cooled applying
electron cooling [30]. Typical stored-ion currents were 250
to 750 μA corresponding to 3 × 106 to 1 × 107 ions. The
ESR is equipped with an electron cooler [31] which provides
an electron beam with a narrow energy distribution mainly
determined in the lateral directions by the cathode temperature
kBT⊥ = 120 meV and a temperature in longitudinal direction
which is about three orders of magnitude lower, that is,
kBT|| ≈ 0.2 meV. The Xe51+ ion beam was cooled for several
seconds, employing an electron current of 100 mA in order to
reach equilibrium between cooling and intrabeam scattering
and thus to ensure well-defined and optimal experimental
conditions. Cooling adjusts the ion velocity to that of the
electrons, leading to a vanishing collision energy Ec.m. = 0.
The second purpose of electron cooling is the reduction of the
velocity spread of the ion beam to well below 10−4. It is worth
noting that after this initial cooling time essentially all Li-like
ions are in their atomic ground states.

In the present experiment, the cooler electron beam was
alternatingly switched for periods of a few tens of ms between
electron cooling and an offset potential, thus introducing col-
lision energies Ec.m. > 0. This procedure, which is described
in more detail in Sec. III A, ensured that ion beam energy
and its momentum spread are maintained during the data
taking. Experimental data were acquired for ∼120 s, which
is to be compared with a typical beam lifetime of ∼200 s.
Xe50+ recombination products from electron-ion collisions
that occurred in the beam overlap region of the electron and ion
beams are separated from the circulating Xe51+ primary beam
ions in the ring dipole magnet following the electron cooler.
A single-particle detector located in a detector pocket with a
25-μm steel entrance window was used to count the Xe50+

reactions products with practically 100% detection efficiency.
From the count rate in dependence on the collision energies

Ec.m. the DR resonance spectrum is inferred. By normalization
of the number of recombined ions on the initial electron
and ion beam intensities a merged-beams rate coefficient was
determined on an absolute scale (Sec. III B).

A. Experimental collision energies

The variation of the electron energy in the cooler is
performed with the aid of an additional potential Udt that is
applied to two drift tubes with a combined length of 1.94 m.
The drift tubes are located in the beam overlap region (length
L = 2.5 m) of the electron cooler. For a measurement step (M)
at a collision energy Ec.m. in the center-of-mass (c.m.) frame,
the drift tube potential Udt was set to a corresponding value
U

(M)
dt [see Eqs. (5) and (6)]. After a duration of ∼32 ms, Udt

was switched back to cooling (C) condition U
(C)
dt for likewise

∼32 ms. The two steps were repeated several hundred times
with different measurement-step energies each time. The steps
form a measurement cycle (ramp) that, in turn, was repeated
many times in order to reduce statistical uncertainties. The
individual measurement voltages of a ramp were chosen to
produce a series of energy steps that were equidistant in the
center-of-mass frame. The short measurement intervals and
the intermittent cooling steps serve several purposes. The
most important ones are as follows: The scheme prevents a
change in the ion velocity due either to a cooling drag force
towards the electron velocity at the measurement voltage or to
energy loss in the residual gas (∼10−11 mbar) of the storage
ring. Furthermore, the heating of the ion beam from intrabeam
scattering is compensated.

Swift and precise switching of the voltages up to ±5 kV
with rise times of about 1 ms was accomplished with a set of
eight individual power supplies that were toggled. A value of
zero volt was obtained by means of a fast grounding switch.
A description of the device can be found in Ref. [32]. Despite
this effort, in each step the drift tubes reach the desired value
only asymptotically. The actual value of the drift tube voltage
was measured as a function of time by means of two different
high-precision voltage dividers. In order to reach a voltage
stability of the drift tubes of the order of 10−4, the first 14 ms
of each ∼32-ms step were excluded from the data analysis.
The stability of the voltage was also verified by checking the
consistency and fixed values of the DR resonance positions for
different experimental settings.

The relevant potentials for determination of the collision
energy Elab in the laboratory frame are (a) the constant
(negative) cathode potential Ucath, (b) the drift tube voltage
U

(C,M)
dt , and (c) the (negative) space-charge potential U (C,M)

sc .
With the electron rest mass me0, the relativistic Lorentz factor
for the electrons γe can be determined as [4]

γ (C,M)
e = 1 + Elab

me0c2
= 1 + e

(|Ucath| + U
(C,M)
dt + U (C,M)

sc

)
me0c2

.

(5)

From the definition of electron cooling, the electron beam
(e) and the cooled ion beam (i) have identical velocities, that
is, γ

(C)
i ≡ γ (C)

e . The additional voltages of maximum ±5 kV
that are applied to the drift tube do not significantly changed
the energy (∼58 MeV/u) of the circulating 136Xe51+ ions.
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FIG. 1. Distribution of collision angles in the electron and ion
beam overlap section of the electron cooler (left), and potential
distribution of the drift tube used to accelerate or decelerate the
electrons (right). The drift tubes are schematically shown as well.
For details, see the text.

As a consequence, during measurement γ
(M)
i ≈ γ

(C)
i holds

to a high precision as well. Once γi and γe are known, the
relative collision energy Ec.m. in the center-of-mass frame can
be calculated using [33]

Ec.m. = mi0c
2(1 + μ)

[√
1 + 2μ

(1 + μ)2
(� − 1) − 1

]
(6)

with ion rest mass mi0, mass ratio μ = me0/mi0, and

� = γeγi −
√(

γ 2
e − 1

)(
γ 2

i − 1
)

cos ϑ.

The nominal angle ϑ between the merged electron and ion
beams is zero, that is, cos ϑ = 1 with good accuracy for about
4/5th of the beam overlap (for details, see Sec. III C 2, and
Fig. 1). The alignment of the beams was verified prior to
the measurement by variation of the interaction angle and by
minimizing the ion beam width using a beam profile monitor
and Schottky diagnostics.

Two measurement modes depending on the wanted center-
of-mass energy were applied: In our “standard measurement
mode”, the cathode potential was set to its cooling value
of Ucath = −32088 V, corresponding to an ion energy of
58.43 MeV/u (βi = 0.3385; γi = 1.06273). In this case, the
available drift-tube potential variation of up to ±5 kV restricts
the relative (center-of-mass) collision energy to Ec.m. <

206.2 eV [see Eqs. (5) and (6)].
For higher collision energies, an “extended measurement

mode” was used. In this mode, the cathode potential was set to
Ucath = −36163 V. Cooling was achieved by compensating
this offset with a drift tube potential of U

(C)
dt = −4.1 kV.

In doing so, the ion energy remained unchanged. This was
verified by monitoring the Schottky revolution frequency of
the circulating ions. The resulting voltage range between
cooling at U

(C)
dt = −4.1 kV and the maximum positive voltage

of +5 kV amounts to 9.1 kV, allowing for relative collision
energies of up to E(max)

c.m. = 550 eV.

Udt as well as Ucath were stable to a few 10−4. Other
sources of uncertainties for the determination of collision
energies arise from digitalization of the voltages (0.3 V) and the
space-charge corrections U (C,M)

sc . These values yield relative
uncertainties for Ec.m. between 3 × 10−4 and 1 × 10−3 at 550
and 10 eV, respectively. This initial energy determination is
further improved by utilizing the regular Rydberg pattern of
the DR resonances (see Sec. IV C).

B. Rate coefficient

The measured merged-beams rate coefficient α(vc.m.) is
a convolution of velocity and the cross section σ (v) with
the distribution of relative velocities of electrons and ions
f (vc.m.,�v):

α(vc.m.) = 〈vσ (v)〉 =
∫

σ (v)vf (vc.m.,�v) d3v. (7)

From the measured count rate R, normalized to ion current Ii ,
and electron density ne, the recombination rate coefficient α

is calculated as [20,34]

α = 1

1 − βeβi

qeβicR

IineL
, (8)

where ion and electron velocities βi,e = (1 − 1/γ 2
i,e)1/2 are

given in units of the speed of light c, q = 51 is the initial
ion charge state, e the electron charge, and L = 2.5 m
the nominal length of the electron-ion merging region. It is
worth emphasizing that for most early merged-beams DR
experiments at low relative collision energies (that is, for
βi ≈ βe), the term 1/(1 − βeβi) was approximated by γ 2

i [34].
For significantly different velocities of electrons and ions as,
for example, in Ref. [20], this approximation is invalid and
Eq. (8) has to be used.

The systematic uncertainty of the rate coefficient �α is
mainly caused by the uncertainties of the electron density
�ne/ne = 10%, the ion current �Ii/Ii = 7%, the detector
efficiency �R/R = 5%, and the corrections with respect
to the response function of 5%. The square sum of all
individual contributions results in a 14% uncertainty of the
rate coefficient. Background substraction (see Sec. III D)
causes an additional uncertainty of up to 10% for the DR
resonance strengths extracted from the spectrum. In total,
for the DR rate coefficient and the DR resonance strengths,
a systematic uncertainty of 17% results. In comparison, the
typical statistical uncertainties are significantly smaller.

C. Experimental response function

The measured merged-beams recombination rate coeffi-
cient depends on the atomic recombination cross section and
on the experimental response function f (vc.m.,�v), see Eq. (7).
Thus, a meaningful comparison between a measured DR
spectrum and a theoretical prediction has to take into account
the experimental conditions on a reasonably detailed level.
For the present experiment, f (vc.m.,�v) is mainly determined
by three contributions: first, a flattened Maxwell-Boltzmann
distribution that describes the thermal velocities of the elec-
trons. In addition, the merging and demerging sections of the
beams and the actual mapping of the magnetic guiding field of
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the electron beam lead to a distribution of nonzero interaction
angles. Finally, the distribution of potentials of the set of drift
tubes that is used to accelerate or decelerate the electron beam
has to be accounted for.

1. Thermal velocity distribution of the electrons

The experimental energy resolution is mainly determined
by the relative spread of the electron-ion relative velocity. For
an electron-cooled ion beam the contribution from the ion
beam is typically significantly smaller and can be neglected
in most cases [16] (for an exception, refer to Ref. [20]).
The electron beam is commonly described by a flattened
Maxwellian distribution around the average velocity v0, and
is characterized by the two temperatures kBT⊥ and kBT‖ with
kBT‖ � kBT⊥ [30]:

f (v0,�v) =
√

me0

2πkBT‖
exp

[
−me0(v‖ − v0)2

2kBT‖

]

× me0

2πkBT⊥
exp

[
− me0v

2
⊥

2kBT⊥

]
. (9)

Both temperatures determine the experimental electron-ion
collision energy spread �Ẽc.m. (full width at half maximum)
[35]

�Ẽc.m.(Ec.m.) =
√

[kBT⊥ ln(2)]2 + 16 ln(2)kBT‖Ec.m.. (10)

For low electron-ion collision energies, �Ẽc.m. is mainly
determined by the transversal temperature T⊥. Additionally,
T⊥ introduces an energy-independent asymmetry and a shift
of the center of gravity by about kBT⊥ towards lower colli-
sion energies. kBT‖ leads to an additional energy-dependent
symmetric broadening which at higher energies results in a
symmetric but still shifted resonance.

From the measured widths and shapes of resonances at dif-
ferent energies the electron beam temperatures were extracted.
The results of this analysis for the present measurement are
kBT‖ ≈ 200 μeV and kBT⊥ ≈ 120 meV. These values are
comparable to the parameters of earlier DR merged-beams
experiments at the ESR [4,36] and are used throughout the rest
of the paper for the parametrizations of the response functions.

2. Spatial variation of the B-field inside the electron cooler and
potential distribution of the drift tube

The electrons in the cooler follow the longitudinal magnetic
guiding field of B = 500 G. In the toroid sections where
electron and ion beams are merged and demerged, electrons
and ions interact at an angle that distinctively differs from zero.
Thus, from a total beam overlap length of 2.5 m electrons and
ions are parallel roughly over a distance of 1.7–2.0 m (see
Fig. 1). In addition, the solenoid field in the main part of the
beam overlap is collinear with the ion beam axis within a few
10−2 mrad even with corrections applied. Both contributions
introduce changes to the response function f (vc.m.,�v). The
actual field mapping (see Fig. 1, left panel) is taken into
account in a Monte Carlo (MC) simulation (see Sec. III C 3).
The simulation uses only the deviations from an average
angle of zero, thus reflecting the efforts that during the initial

preparation of the experiment in the storage ring a minimum
average interaction angle is set up.

A further contribution that enters the response function
stems from the drift tubes used to vary the electron energy.
The potential distribution on axis r = 0 between drift tubes
at potential VDT and with radius b, and additional adjacent
cylindrical electrodes VCE with the same radius can be
approximated by [37]

V (r = 0,z) = VCE + VDT

2
+ VDT − VCE

2
tanh

(
1.318 z

b

)
,

(11)

where the point z = 0 is located at the edge of the drift tube.
Outside the drift tubes of length L = 1.94 m the potential is
0 V. The right panel in Fig. 1 depicts the potential distribution
for the drift tubes of the ESR electron cooler.

3. Monte Carlo simulations

In order to simulate a merged-beams rate coefficient spec-
trum αsim on the basis of a given theoretical cross section and
the response function f (vc.m., �v′), a MC simulation program
was developed [36].

For the MC response function a pair of relativistic 4-
momentum vectors Pi,e = (Ei,e/c; �pi,e) for each of the col-
lision partners, electrons, and ions was set up. Such a pair of
4-vectors defines a collision event. Here E = E + m0c

2 the
total energy, E is the kinetic energy, and �p is the momentum
vector of the electron (e) and the ion (i). For a given collision
energy Ec.m., that is, for a given measurement step at a
set value Es , the nominal value for the drift tube voltage
was calculated from ion energy and cathode voltage. With
additional input parameters for ion momentum spread δp/p,
for ion beam emittance or the ion beam temperatures, and
the electron beam temperatures T⊥ and T‖ (see Sec. III C 1)
the according distributions were randomly sampled, and the
2 × 4 components of a Monte Carlo pair P ′

i,e are filled. In
addition, the 2.5-m beam overlap region is discretized and
a position z(k) ∈ [0,2.5 m] is likewise randomly generated.
From this position an interaction angle as given from the
magnetic field mapping and an actual potential value along
the drift tube (see Sec. III C 2) are chosen and are included
in the corresponding momentum vector components. The
full 4-momentum vector of a Monte Carlo collision event
(indicated by primed variables) in the laboratory frame is
P ′

lab = ( E
′
e+E ′

i

c
; �p′

e + �p′
i ,) for each collision event. Using the

Lorentz invariance P2
lab = P2

c.m. and the definition Pc.m. =
( Ec.m.

c
; 0) for the center-of-mass frame, E′ or v′ of the Monte

Carlo event in the center-of-mass frame are readily calculated
and are used for a numerical convolution with the cross section.
For a given set value Es the procedure is repeated up to a
few hundred thousand times until the outcome is no longer
biased by the Monte Carlo statistics. In the same manner,
further energy Es steps are simulated until completion of a
full spectrum.

Figure 2 shows a Monte Carlo simulation of the response
function f (E′,E) for settings at a nominal collision energy
Es = 10 eV, that is, Ucath = 32.088 kV and U

(m)
dt = 1161.21 V.

For the simplified assumption of δ-like DR resonances, a
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FIG. 2. Simulated Monte Carlo response function f (E′,Es) for
a set energy value in the center-of-mass frame of Es = 10 eV (black
line) for a cathode potential Ucath = 32.088 kV and a corresponding
drift tube voltage U

(M)
dt = 1161.21 V. The temperatures kBT⊥ =

120 meV and kBT‖ = 200 meV were used. Please note the axis break
and the according different scales used to emphasize details of the
response function.

convolution with f (E′,Ec.m.) for the full range of set energy
values of a given range leads to a simulated rate coefficient
spectrum αDR(EDR,Ec.m.), as shown in Fig. 3. As detailed in
Sec. III C 1, αDR(EDR,Ec.m.) is broadened and shifted to lower
collision energies caused by the T‖ and T⊥ of the electron beam,
respectively. The shape of the main part of the resonance is
nearly unaffected by the drift tube effects and angle variations
and is still determined by T‖ and T⊥. In addition, a tail and
a pedestal on the higher-energy side of the resonance are
visible that are caused by the slope of the potential at the
edge of the drift tubes, that is, the resonance at Ec.m. = 10 eV
still contributes to αDR, for example, at Ec.m. = 11 eV, due
to the lower voltages. The corresponding smooth background
increases with every new DR resonance. Contributions outside
the drift tube on potential close to 0 V are suppressed since the
interaction angle increases as a consequence of merging and
demerging in the toroid sections (compare Fig. 1).

Since the drift tubes are only about four-fifths of the full
overlap length L = 2.5 m [see Eq. (8)] and due to the “leakage”
of resonance strength into pedestal and background, the
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FIG. 3. Rate coefficients of a synthetic DR resonance at EDR =
10 eV (vertical line). Displayed are the rate coefficient as obtained
from a convolution with the anisotropic Maxwellian velocity distri-
bution [Eq. (9)] with kBT‖ = 200 μeV and kBT⊥ = 120 meV (black
line) and the rate coefficient from a full Monte Carlo simulation (gray
area). Please note the axis break and the according different scales.

measured apparent resonance strength is significantly lower
than the one from a convolution of the DR cross section with
the anisotropic Maxwell-Boltzmann distribution [Eq. (9)],
cf. Fig. 3. For small drift tube voltages Udt ≈ 0 nearly the
full overlap length of 2.5 m is on the desired potential, but
the merging and demerging result in an apparent resonance
strength of about 94% of the real one. For higher Udt, this ratio
rapidly decreases to about 0.55–0.6 depending on the actual
settings. All spectra shown in this paper are corrected for this
apparent resonance strength.

D. Background processes

The process of photorecombination (PR) consists of the
direct channel, radiative recombination (RR), and the resonant
channel, dielectronic recombination (DR). In the present study,
the smooth nonresonant contribution due to RR is treated as
a background and is subtracted from the data: The following
semiclassical cross section for RR into hydrogenic states with
quantum number n has been given by Bethe and Salpeter
[38,39]:

σ
(n)
RR(Ec.m.) = 2.1 × 10−22cm2 ×

(
Z2

effR∞
)2

nEc.m.

(
Z2

effR∞ + n2Ec.m.

) .

Here R∞ = 13.6057 eV is the Rydberg energy and Zeff is the
effective charge state. The total RR cross section σRR is the sum
over the partial cross sections σ

(n)
RR of all available final principal

quantum numbers n up to maximum cut-off nmax defined
by the highest Rydberg state that survives field ionization
in the ring dipole magnets [40]. In addition, the unoccupied
fraction of each shell is taken into account. Gaunt factors [39]
are applied as a correction of the semiclassical cross section
towards the quantum-mechanical calculation of Stobbe [41].
For background subtraction of the RR contribution, the RR
rate coefficient αsim

RR is included in our Monte Carlo code.
For the measured rate coefficient there is an additional

background αbg caused by collisions between ions and residual
gas atoms. The additional background contribution αbg not
caused by RR is fitted with a linear function and is also
subtracted from the data.

IV. RESULTS AND DISCUSSION

In this section we present the results of our 136Xe51+(2s) +
e− → 136Xe50+ (2p1/2, 3/2 nlj )J recombination experiment.
Section IV A provides an overview and a first discussion of
the bulk features of the DR resonance pattern. In Sec. IV B,
a closer look at the fine structure within the individual
2pj̄nlj Rydberg peaks is given and a comparison between the
measured spectrum and our MCDF calculations is performed.
Based on the regular structure of the DR resonance series, an
improved energy calibration is obtained (see Sec. IV C) that
is used in Sec. IV D to determine the 2s → 2p1/2 and 2s →
2p3/2 excitation energies. From the experimental spectra, DR
resonance strengths of fully resolved resonance groups are
extracted and are compared to MCDF calculations (Sec. IV E).
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FIG. 4. Measured 136Xe51+ DR spectrum (black line) after substraction of residual gas and RR background. Resonance energies, using
the excitation energies Eex(2s → 2p1/2) = 119.820 eV from Ref. [9] and Eex(2s → 2p1/2) = 492.4 eV from Ref. [10] and hydrogen-like
Dirac binding energies [Eq. (13)], are indicated by two sets of vertical bars. The shaded areas are the results of our MCDF calculations for
Xe51+(2s) + e− → Xe50+(2p1/2 nlj )J (light gray) and Xe50+ (2p3/2 nlj )J (dark gray) and cover DR Rydberg resonances for n up to 28. The
MCDF energies are shifted by the same values −0.47 and −0.345 eV for each of the 2p1/2nlj and 2p3/2nlj resonances, respectively. The
calculated cross sections have been convoluted with the experimental response functions (see Sec. III C 3).

A. DR spectrum of 136Xe51+: overview

In the investigated electron-ion collision energy range
between 0 and 505 eV, �n = 0 DR resonances of the two
Rydberg series 136Xe51+(2s) + e− → Xe50+ (2p1/2 nlj )J and
Xe50+ (2p3/2 nlj )J are located (see Fig. 4). The data are pre-
sented as a DR-only rate coefficient, that is, after background
subtraction (Sec. III D). These resonances are associated
with the excitations Eex(2s → 2p1/2) = 119.820(8) eV [9]
and Eex(2s → 2p3/2) = 492.4(6) eV [10], respectively. The
resonance energies are given according to

EDR(j̄ ,nlj ) = Eex(2s → 2pj̄ ) − EB(nlj ), (12)

where EDR is the DR resonance energy and EB (nlj ) the binding
energy of the Rydberg electron. The spectra show a complex
fine structure within a Rydberg peak. As a consequence, on the
present level of precision a plain Rydberg formula R∞Z2/n2

for the binding energy as used in many of the earlier DR
experiments is inadequate for an accurate description. An
improvement is achieved [21] by approximation of EB(nlj )
with Dirac binding energies for hydrogen-like ions,

EDirac
nj = me0c

2/

√√√√1+
(

Zα

n − K +
√

K2 − (Zα)2

)2

− me0c
2,

(13)

with K = j + 1/2 and α ≈ 1/137 the fine-structure constant.
The Dirac binding energy includes the fine structure of the
Rydberg electron. For Li-like ions an effective nuclear charge
Zeff = Z − 3 is employed, that is, the nuclear charge reduced
by the charge of the three core electrons.

As shown in Fig. 4 (vertical bars), the resonance po-
sitions within the DR spectrum are well described in this
approximation, in particular for high angular momenta j of
the Rydberg electron. The Dirac-based description, however,
neglects the mutual electron-electron interaction of Rydberg

and core electrons (compare Figs. 5 and 6). In a classical
picture, Rydberg electrons with high angular momentum j do
not penetrate the Li-like electron core, thus the approximation
is best for the highest values of j . For low angular momenta
j , the Rydberg electron has a significant probability density
inside the cloud of the three inner-shell electrons. For lower
j , the fine-structure splitting in Li-like ions is larger than the
Dirac approximation with a Zeff and tends towards the one
for the unshielded nucleus Z. This behavior is also directly
revealed in our spectra (see Figs. 5 and 6). The main resonance
strength within an n-Rydberg-manifold is cumulated in the
unresolved bulk peak consisting of high-angular-momentum
resonances. A more detailed investigation of these high-total-
angular-momentum contributions and their impact on the
determination of the underlying excitation energies can be
found in Refs. [4,21,42].

In our experimental spectra, individual Rydberg resonances
are resolved up to n = 43 for DR associated with 2s → 2p1/2

excitations and up to n = 36 for the 2p3/2 series. Contributions
from higher nonresolved Rydberg states are visible up to
energies close to the series limits EB(n → ∞) ≡ Eex. Weakly
bound electrons in high-Rydberg states can be reionized by
field ionization in the motional electric �vi × �B fields of the
magnets of the storage ring before they reach the particle
detector [40]. Due to the high charge state of Xe51+, this takes
place only for principal quantum numbers above n ∼ 110.
Thus, in contrast to storage-ring DR measurements with lighter
ions (compare, for example, Ref. [40]), in Xe51+ this field
ionization has only a minor effect on the measured DR rate
coefficient at the series limit.

B. DR spectrum: Details of fine structure and comparison
with MCDF calculations

Explicit MCDF calculations for DR of Xe51+ were car-
ried out up to the principle quantum number n = 28. The
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FIG. 5. Measured 136Xe51+ DR spectrum in the energy range of the 2s + e− → (2p3/2 9lj )J resonance group (black line) in comparison
with our MCDF calculation for the (2p3/2 9lj )J resonance group (dark shaded areas) and for the n = 22 and n = 23 groups of the 2p1/2 nlj
Rydberg resonance series (light shaded areas) shifted by −0.345 eV and −0.47 eV, respectively. The theoretical cross sections have been
convoluted with the Monte Carlo response function (see Sec. III C 3). Corresponding resonance strengths and (shifted) energies from our
MCDF calculations are given by black and white vertical lines for (2p3/2 9lj )J and (2p1/2 nlj )J resonances, respectively. The vertical bars
indicate resonance positions from the energy-shifted MCDF theory (black) and from the hydrogenlike (Dirac) approximation (gray). The later
are calculated according to Eqs. (12) and (13) with measured 2s → 2pj excitation energies from Refs. [9,10].

theoretical cross sections were convoluted with the experi-
mental response function (see Sec. III C 3) and are given as
shaded areas in Figs. 4 to 6. Contributions of the (2p1/2 nlj )J
and (2p3/2 nlj )J resonance manifolds are distinguished by
light and dark gray shading.

The lowest n into which the dielectronic capture (DC) can
proceed are nmin = 18 and nmin = 9 for 2s → 2p1/2 and for
2s → 2p3/2 excitations, respectively. Doubly excited states
with lower principle quantum numbers are below the autoion-
ization threshold and, consequently, a DC is energetically
forbidden. Figures 5 and 6 present enlarged views of the
respective lowest-energy resonance manifolds (2p1/2 18lj )J
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FIG. 6. 136Xe51+ DR spectrum in the energy range of the
2s + e− → (2p1/2 18lj )J resonance group. The experimental results
(black line) are compared with the result of the MCDF calculation
(light shaded area). The theoretical energy scale is shifted by
−0.47 eV and the theoretical cross section has been convoluted with
the experimental response function (see Sec. III C 3). Theoretical
resonance strengths and (shifted) energies are given by black vertical
lines. Black and gray vertical bars indicate resonance positions from
the energy-shifted MCDF theory and from 2s → 2p1/2 excitation
energy [9] combined with hydrogen-like approximated binding
energies, respectively.

and (2p3/2 9lj )J . As a consequence of the high Z, the
fine-structure intervals are strongly magnified. In combination
with our high experimental energy resolution, for many of the
high-n Rydberg states the fine structure was partly resolved,
thus allowing for a detailed comparison with calculations and
a state-resolved extraction of DR resonance strengths from the
measured data (Tables IV and V).

For a better comparison with the experimental data, the
whole theoretical MCDF Rydberg patterns (2p1/2 nlj )J and
(2p3/2 nlj )J were shifted by −0.47 and −0.345 eV, respec-
tively. The calculated DR cross sections were slightly adjusted
to the shifted energies, thereby taking into account the p−2

DR
scaling of the resonance strengths, see Eq. (3). This energy
shift of a Rydberg series as a whole is significantly higher
than the experimental energy uncertainty after our improved
energy calibration (see Sec. IV C). It can be attributed
due mainly to an incomplete incorporation of QED and
correlation contributions to the 2s-2pj̄ energy splitting (see
also Sec. IV D). Theoretical and experimental rate coefficients
are on independent absolute scales. The experimental rate
coefficients tend to be by a constant factor of ∼15% smaller
than the calculated ones. The factor is just at the edge of
our 1σ systematic uncertainty for the DR rate coefficient.
Beyond this common scaling factor and the overall small
energy shifts, the MCDF calculations describe the structure
and strengths of the resonance peaks very well. Unfortunately,
the two (2p3/2 9s1/2)J resonances at around 46 eV are an
exception to this behavior and are shifted by a few tenths
of an eV towards higher energies with respect to the rest
of the (2p3/2 9lj )J manifold. Please note that already the
(2p3/2 9p1/2)J resonances match perfectly. The reason for this
deviation is not yet explained.

In Figs. 5 and 6, fine-structure energies are indicated
as obtained from our MCDF calculations and, for compar-
ison, from relativistic hydrogen-like binding energies with
Zeff = Z − 3 = 51, Eq. (13). The excitation energies used
in the figures are Eex(2s → 2pj̄ ) = 119.820(8) eV [9] and
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Eex(2s → 2pj̄ ) = 492.4(6) eV [10]. In comparison to the
one-electron description, the electron-electron interaction in-
troduces an additional splitting within a given j group and
a shift of such a j ensemble towards lower energies. As is
expected from our naive classical picture above, this behavior
is most pronounced for j = 1/2 and j = 3/2 and decreases
significantly for higher j .

C. Improvement of the energy calibration

After the initial calibration of the energy scale from the
measured voltages [Eqs. (5) and (6)] a further significant
improvement of the energy calibration was achieved by
utilization of the well-known regular Rydberg pattern of the
DR process [compare Eq. (1) and Sec. IV]. The idea is similarly
applied in some early work about DR, e.g., in Ref. [43] and
was fully exploited by Brandau et al. [4]. For the present
experiment the latter approach is slightly modified.

As discussed in Secs. IV A and IV B the energies of high-
j DR resonances within a Rydberg manifold are given to a
good approximation within a hydrogen-like Dirac description.
Based on these considerations, the differences of the half-
height position of the high-energy tails E1/2(j̄ ,n) and therefore
the high-j components of the Rydberg resonances are used
as an experimental measure for differences in the Rydberg
binding energies. According to Eq. (13) for a given Z and j ,
the intervals between different n have fixed energy spacings
which are used for an improvement of the energy calibration.

In order to address the energy dependence of the exper-
imental response function (see Sec. III C), our Monte Carlo
simulation has been used to include its leading aspects. For
the half-height peak positions E1/2(j̄ ,n) the according cor-
rections amount to an energy shift of E→(E1/2) = d(E1/2)e

with d = (12.4 ± 0.2) meV and e = (0.598 ± 0.004) for the
present experiment yielding corrected half-height positions
1/2EDR(j̄ ,n) = E1/2(j̄ ,n) − E→[E1/2(j̄ ,n)].

From the experimental and theoretical differences in Ryd-
berg energies we obtain the conditions

[1/2EDR(j̄ ,n(i)) − 1/2EDR(j̄ ,n(k))]

!= [
EDirac

nj

(
n(i),j

(i)
max

) − EDirac
nj

(
n(k),j

(k)
max

)]
, (14)

with EDirac
nj from Eq. (13). It is worth noting that a detailed

knowledge of the resonance strength distribution within the
high-energy tail of the Rydberg peaks is not required since only
differences in their half-height positions and the differences
in the jmax Dirac binding energies are used. In order to
further minimize a potential bias, in our recalibration of
the energy scale only pairs of Rydberg peaks are used that
differ in principal quantum number by |n(i) − n(k)| � 4. For
these neighboring Rydberg peaks any change of the resonance
strength distributions is small [21]. For the present experiment
this has also been verified in a self-consistent manner by
comparison with pairs with larger �n.

The calibration was parameterized as a linear dependency
(factor and offset) on the measured drift tube voltage Udt.
Slightly different calibration values were used for the two
measurement modes (Sec. III A). The recalibration of the
drift tube voltages changed the values by less than 1% with
remaining relative uncertainties for the voltages <10−4. The

1 10 100
-150

-100

-50

0

50

100

150

R
es

id
ua

 δ
E

D
R
 (m

eV
)

Electron-ion collision energy (eV)

FIG. 7. • Residua Eres (see text) versus calibrated energy Ec.m..
The extracted energy-dependent 1σ energy uncertainty [Eq. (15)] is
indicated as a gray area. The calibration was carried out with the
combined data of the present experiment with Li-like Xe51+ and
a second experiment with Be-like Xe50+ [44] that used identical
settings.

calibration was carried out with the combined data of the
present experiment with Li-like Xe51+ and a second exper-
iment with Be-like Xe50+ [44] that used identical settings.
Figure 7 shows the residua after the calibration versus the
energy of the lower of the two resonances. The standard
deviation of the residua is taken as the energy uncertainty
�Ec.m. of the revised energy scale Ec.m.,

�Ec.m. = ±7.8 meV

(
Ec.m.

eV

)0.32

. (15)

The result is displayed in Fig. 7 and yields approximately
�Ec.m. = 16 meV at Ec.m. = 10 eV and �Ec.m. = 57 meV at
Ec.m. = 500 eV.

An additional major source of error in the determination of
DR resonance positions arises from uncertainties of transversal
T⊥ and longitudinal T‖ electron beam temperatures. kBT⊥ and
kBT‖ were determined to 120+40

−20 meV and (200 ± 50) μeV,
respectively. The unknown temperature contributes to the
uncertainty of DR resonance positions �EDR(�T‖,⊥) with

�EDR(�T‖,⊥)

meV
= 5.67 × ln

(
EDR

eV

)
+ 11.9. (16)

D. Excitation energies

Two basic approaches to determine the excitation energy
by means of DR collision spectroscopy can be found in the
literature: The first is based on the measurement of the energy
of well-resolved DR resonances at very low collision energies
[3,15] and the calculation of the Rydberg binding energies.
The second method employs an extrapolation of the series of
Rydberg resonances to the series limit n → ∞ [4].

Our present approach is a hybrid of these two methods.
In Sec. IV C we have already described how to utilize the
Rydberg pattern for an improved calibration of the energy axis.
Based on this initial work we deduct the excitation energies
Eex(2s → 2pj̄ ) from the (2p1/218lj )J resonances between 9
and 11 eV (see Fig. 6) and from the (2p3/29lj )J group between
45 and 56 eV (see Fig. 5). Both multitudes are the lowest DR-
resonance groups associated with the 2s → 2p1/2 and 2s →
2p3/2 excitations, respectively. The inclusion of higher-n
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FIG. 8. Measured DR spectrum (solid line), fitted synthetic DR
spectrum (gray area), and corresponding artificial resonance energies
EDR,i and resonance strengths Si (dashed bars). Full bars represent
the average energies ĒDR (see text and Table I) and strengths S =∑

i Si . (a) 2s + e− → (2p1/218lj )J resonance group. (b) 2s + e− →
(2p3/29lj )J resonance group. The hatched areas belong to the 2p1/2 n

resonance series.

resonances does not further improve the result. For each of
the two resonance manifolds we created a simplified synthetic
spectrum consisting only of a few “toy” resonances (Fig. 8).
The number i, the energies EDR,i , and the resonance strengths
Si of these artificial resonances were chosen and fitted applying
our Monte Carlo code such that all structures in the measured
spectrum were fully reproduced. The synthetic resonances i

(dashed bars) were averaged ĒDR = (
∑

i EDR,iSi)/(
∑

i Si) for
fully resolved peaks (full bars). For the (2p1/218lj )J group we
distinguish two fully resolved peaks and for the (2p3/29lj )J
manifold five, respectively.

Initially, we intended to use Rydberg binding energies EB

as calculated directly with our MCDF code but it turned out
that this approach is numerically not stable enough since
MCDF resonance energies are determined from differences
of the large total energies of initial and intermediate state. This
introduced a significant scatter of a few tenths of an eV between
individual calculations and would have lead to corresponding
uncertainties for EB . Still, the MCDF calculations describe
the strengths and the overall shape of a resonance very
well. Thus, we use the MCDF calculations to relate the
measured resonance position to the energy of maximum
angular momentum jmax state within each group and then
calculate their binding energy from the exact Dirac energies
EDirac

nj (n,jmax):

Eex = ĒDR + E→
DR,jmax

+ EDirac
n,jmax

,

where E→
DR,jmax

is the according energy shift from full MCDF
calculations to jmax. The results of this procedure are presented
in Table I for each considered resonance group.

The uncertainty in DR resonance positions �ĒDR is
dominated by the systematic uncertainties from the calibration

TABLE I. Determination of excitation energies Eex from mea-
sured averaged resonance position ĒDR, energy shift E→

DR,jmax
to jmax,

and Dirac binding energy EDirac
n,jmax

based on DR resonance group
energies ĒDR for different states (see text). Averaging yields the final
excitation energies Eex(2s → 2pj̄ ). All energies are given in eV.

State jmax ĒDR E→
DR,jmax

EDirac
n,jmax

Eex

2s → 2p1/2

181/2 35/2 9.490(29) 1.088(30) 109.235 119.813 (42)
18>1/2 35/2 10.447(30) 0.138(30) 109.235 119.820 (42)

Eex(2s → 2p1/2) 119.816(42)

2s → 2p3/2

9s1/2 17/2 45.815(43) 9.123(30) 437.081 492.019 (52)
9p1/2 17/2 47.307(43) 7.801(30) 437.081 492.189 (52)
9p3/2 17/2 50.939(44) 4.107(30) 437.081 492.127 (52)
9d3/2 17/2 52.075(44) 3.036(30) 437.081 492.192 (52)
9l>3/2 17/2 54.316(44) 0.789(30) 437.081 492.186 (53)

Eex(2s → 2p3/2) 492.142(52)
Without 9s1/2 (see text): Eex(2s → 2p3/2) 492.174(52)

of the energy axis [Eq. (15)] and from the electron beam
temperatures [Eq. (16)]. The model uncertainty, that is, the
shape and distribution of resonance strengths as well as the
according mapping to a hydrogen-like (Dirac) description that
enters the determination of the energy shift E→

DR,jmax
were

evaluated in detail within the scope of earlier measurements
[4,21]. For �E→

DR,jmax
we obtain an upper estimate of 30 meV.

Final excitation energies Eex(2s → 2p1/2) and Eex(2s →
2p3/2) are derived as weighted averages of the individual data
for Eex in Table I. Since our errors are mainly systematic,
the final uncertainty is not reduced due to the averaging.
For the 2s → 2p3/2 excitation the energy as derived from
(2p3/29s1/2)J resonances at 46 eV is significantly lower than
for the other four groups. A corresponding mismatch between
the MCDF calculations for the n = 9 fine-structure splitting
of the p3/2 resonances and our experimental data was already
discussed in Sec. IV B (compare to Fig. 5). In order to account
for this wrong bias on the excitation energy we treat the
(2p3/29s1/2)J resonance group as an outlier and exclude it
from the final determination of the Eex(2s → 2p3/2) excitation
energy. For comparison, in Table I we also provide the 2p3/2

excitation energy based on all five resolved groups.

1. Discussion

In Table II and Fig. 9 we compare the results for the
2s-2p1/2 and 2s-2p3/2 transition energies from this work
with a compilation of data from earlier experimental [6,9–11]
and theoretical [13,14,45–50] works. For both transitions an
excellent agreement of our values and the other measured
excitation energies is found. The same holds true for the
comparison of our work with theory if one excludes the
E(2s-2p1/2) calculation of Indelicato and Desclaux from 1990.
Interestingly, though, their 2p3/2 value is in good agreement
with the other calculations and all experimental data.

For the 2p1/2 excitation our collision spectroscopy result
is by far not as precise as the x-ray spectroscopy data of
Feili et al. [9] and of Träbert et al. [6]. In contrast, for the
2s-2p3/2 transition we were able to reduce the uncertainties

012710-10



ELECTRON-ION COLLISION SPECTROSCOPY: LITHIUM- . . . PHYSICAL REVIEW A 91, 012710 (2015)

TABLE II. Experimental and theoretical values for the 2s-2p1/2 and 2s-2p3/2 transition energies for AXe51+. All energies are given
in eV. Please note that different isotopes (A) were used in the studies. Abbreviations used in the table are as follows: DR (dielectronic
recombination), beam-foil (beam-foil spectroscopy), S-EBIT (super electron-beam ion-trap spectroscopy), QED (QED perturbation theory),
R/MBPT (relativistic or many-body perturbation theory), RCI (relativistic configuration interaction), and MCDF (multiconfiguration Dirac-
Fock).

Year Method A 2s → 2p1/2 2s → 2p3/2

Experiment
This work 2014 DR 136 119.816(42) 492.174(52)
Träbert et al. [6] 2003 S-EBIT mix 119.811(12)
Feili et al. [9] 2000 Beam-foil 124 119.820(8)
Büttner et al. [11] 1992 Beam-foil 136 119.91(23) 492.20(98)
Martin et al. [10] 1989 Beam-foil – 119.965(93) 492.39(59)

Theory
Sapirstein & Cheng [45] 2011 S-matrix – 119.821 492.206
Kozhedub et al. [14] 2010 QED 132 119.831(6) 492.225(6)
Yerokhin et al. [13] 2007 QED 132 119.820(40)
Chen et al. [46] 1995 RCI – 119.82 492.21
Blundell [47] 1993 RMBPT – 119.84(1) 492.22
Kim et al. [48] 1991 RMBPT & MCDF – 119.82 492.18
Indelicato & Desclaux [49] 1990 MCDF – 119.9 492.21
Seely [50] 1989 MBPT & MCDF – 119.822 492.22

by more than an order of magnitude compared to previous
measurements. We would like to emphasize that our approach
by means of electron-ion collision spectroscopy fundamentally

E
ex
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→
2p

1/
2)(

eV
)

Year
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E
ex
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FIG. 9. �n = 0 transition energies in AXe51+. This work (�),
previous experimental results (�) [6,9–11], and theory (•) [13,14,45–
50]. Panel (a) shows data for the 2s-2p1/2 transition, and panel (b)
that for the 2s-2p3/2 transition. The data are the same as in Table II.

differs from the other measurements that are based on the
precise determination of the wavelength of emitted photons.
Hence, the present work is an important benchmark of the
collision spectroscopy technique, in particular, since for U89+
a slight disagreement between DR spectroscopy [4] and x-ray
spectroscopy is noted [7].

The individual experiments and calculations use different
isotopes or nuclear charge radii in their determination of
the excitation energy (see Table II). Xenon possesses natural
isotopes from A = 124 to A = 136. Applying the results of
Li et al. [51] and nuclear mean-square radii from Angeli [52],
the volume shift amounts to ∼4 meV for both transitions,
and the mass shifts are even smaller. On the present level of
experimental accuracy the differences of the isotopes used in
the studies is not important. We do not consider magnetic
hyperfine splitting (HFS) here; however, in the work of Martin
et al. [10] and Träbert et al. [6], odd isotopes of xenon might
have been present. Our experimental results are sensitive
to one-loop QED contributions on a level <1% and to the
screened QED contributions on a level ∼15%. The experiment,
however, is not yet precise enough to test the relativistic recoil
part and two-loop QED contributions (compare Table III).

TABLE III. QED contributions to the 2s-2p1/2 and to the 2s-2p3/2

transition energies in Li-like xenon ions 132Xe51+ according to
Kozhedub et al. [14]. All values are given in eV.

Contribution 2s-2p1/2 2s-2p3/2

Electronic structure 126.1471(31) 497.8958(31)
One-loop QED −6.6851 −5.9880
Screened QED 0.3773(32) 0.3303(31)
Recoil −0.0257 −0.0278
Two-loop QED 0.0175(40) 0.0152(40)
Total theory 119.831(6) 492.225(6)
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TABLE IV. Scaled experimental S ′ = Sp2n3 and theoretical
S ′

T = ST p2
T n3 resonance strengths (in cm2 eV3 c−2) and mean

resonance energies ĒDR (in eV) for the DR process 2s + e− →
2p1/2nlj .

nlj ĒDR S ′ S ′
T

18l1/2 9.490 0.011 ± 0.002 0.008
18lj>1/2 10.447 0.132 ± 0.022 0.116
19l1/2 20.849 0.009 ± 0.002 0.012
19lj>1/2 21.658 0.125 ± 0.021 0.123
20lj 31.181 0.130 ± 0.022 0.098
21lj 39.426 0.133 ± 0.023 0.143
22lj 46.569 0.144 ± 0.025 0.145
23lj Blended with 2p3/2 9lj 0.146
24lj 58.269 0.127 ± 0.022 0.147
25lj 63.103 0.125 ± 0.021 0.149
26lj 67.380 0.126 ± 0.021 0.150
27lj 71.188 0.125 ± 0.021 0.151
28lj 74.602 0.128 ± 0.022 0.152
29lj 77.684 0.121 ± 0.021
30lj 80.464 0.124 ± 0.021
31lj 82.930 0.129 ± 0.022
32lj 85.191 0.124 ± 0.023
33lj 87.310 0.120 ± 0.021
34lj 89.180 0.117 ± 0.021
35lj 90.873 0.122 ± 0.021
36lj 92.461 0.103 ± 0.019
37lj 93.963 0.117 ± 0.030
38lj 95.279 0.120 ± 0.022
39lj 96.515 0.123 ± 0.023
40lj 97.674 0.122 ± 0.023
41lj 98.713 0.106 ± 0.020
42lj 99.727 0.106 ± 0.031
43lj 100.632 0.104 ± 0.025

E. Resonance strengths

Weighted mean resonance energies ĒDR (compare
Sec. IV D) and absolute DR resonance strengths were extracted
from the present measurement by integration of the peak
areas taking into account the experimental response function
(see Sec. III C). The derived resonance strengths SE of well-
separated resonances are listed in Tables IV and V for the
(2p1/2nlj ) and (2p3/2nlj ) resonance series, respectively. For
comparison, the corresponding calculated MCDF resonance
strengths ST (see Sec. II) are provided. Rydberg resonances
are experimentally resolved up to n = 43 and n = 36 for the
series 2p1/2nlj and 2p3/2nlj , respectively. Some resonance
groups are blended by other DR resonances. If both resonances
show significant resonance strengths, the measured resonance
strengths can not be attributed clearly to one of the resonances.
The presented (measured and calculated) resonance strengths
were scaled by the dominant expected proportionalities, that
is, S ∝ p−2n−3, compare Eq. (3) and [21]. For the overlap-
ping unresolved resonances n � 44 (2p1/2nlj ) and n � 37
(2p3/2nlj ), the resonance strengths are estimated from the
resonance continuum n → ∞. Only quantum numbers up to
nfi ∼ 110 that survive field ionization in the ring dipole magnet
are considered.

TABLE V. Same as Table IV but for the 2s + e− → 2p3/2nlj
resonance series.

nlj ĒDR S ′ S ′
T

9s1/2 45.831 0.006 ± 0.001 0.005
9p1/2 47.307 0.007 ± 0.001 0.005
9p3/2 50.939 0.006 ± 0.001 0.005
9d3/2 52.075 0.019 ± 0.003 0.014
9lj>3/2 54.316 0.189 ± 0.032 0.161
10l1/2 131.923 0.012 ± 0.002 0.012
10lj>1/2 137.384 0.195 ± 0.033 0.219
11l1/2 194.880 0.012 ± 0.002 0.013
11lj>1/2 199.010 0.194 ± 0.033 0.229
12l1/2 242.653 0.011 ± 0.002 0.013
12lj 245.865 0.198 ± 0.034 0.239
13lj 282.161 0.218 ± 0.037 0.261
14lj 311.099 0.217 ± 0.037 0.271
15lj 334.442 0.235 ± 0.040 0.281
16lj 353.536 0.250 ± 0.043 0.290
17lj 369.371 0.255 ± 0.043 0.301
18lj 382.635 0.269 ± 0.046 0.311
19lj 393.831 0.283 ± 0.048 0.321
20lj 403.432 0.294 ± 0.050 0.330
21lj 411.668 0.298 ± 0.051 0.344
22lj 418.804 0.309 ± 0.052 0.356
23lj 425.008 0.308 ± 0.052 0.366
24lj 430.502 0.311 ± 0.053 0.377
25lj 435.332 0.330 ± 0.056 0.385
26lj 439.618 0.349 ± 0.059 0.400
27lj 443.440 0.362 ± 0.062 0.404
28lj 446.861 0.357 ± 0.061 0.412
29lj 449.912 0.375 ± 0.064
30lj 452.693 0.395 ± 0.067
31lj 455.228 0.422 ± 0.072
32lj 457.500 0.417 ± 0.071
33lj 459.547 0.439 ± 0.075
34lj 461.479 0.434 ± 0.074
35lj 463.243 0.511 ± 0.087
36lj 464.825 0.507 ± 0.086

Figure 10 summarizes our experimental and theoretical
results for the DR resonance strengths. The uncertainty �S ′ of
the experimental resonance strengths given in Tables IV and V
is predominantly caused by the systematic 17% uncertainty of
the measured DR-rate coefficient (see Sec. IV A).

Experiment and MCDF calculations for the resonance
strengths agree well within the error bars, albeit just. For the
majority of the resonances the theoretical resonance strength
is by about 15% larger than the experimental one. Exceptions
are the n = 18,19,20 resonance groups of the 2p1/2 resonance
series and the n = 9 resonance group of the 2p3/2 resonance
series. In these cases, the theoretical values are slightly lower or
match the experimental ones. In all cases the shape, that is, the
distribution of the resonance strengths within one n manifold,
is well reproduced. For details, compare Secs. IV A and IV B,
in particular Figs. 6 and 5. Experimental and theoretical data
sets show the same n dependency of resonance strengths
(Fig. 10). Similarly to the (2p1/2nlj ) resonances in Li-like
Pb79+ [21,42] the measured resonance strength for the 2p1/2

series follow an n−3 scaling (Fig. 10). The n−3 dependency of
Rydberg DR resonances is a common notion in the literature
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FIG. 10. Measured and theoretical scaled DR resonance strengths
for �n = 0 DR in 136Xe51+. Experimental data for 2s + e− → 2p1/2n

(•) and 2s + e− → 2p3/2n (�). Open symbols (◦ and �) show the
corresponding results of the present MCDF calculations. Shaded
and hatched areas show the resonance strengths as derived from the
experiment for unresolved very high principal quantum numbers n.

[53–56] that, however, has to be treated with some caution: The
basis of the n−3 rule is again that the mutual overlap of the
wave functions of the core electron and the Rydberg electron
decreases for increasing principle quantum number n. In this
case, Auger rates predominantly scale as propto n−3, and the
radiative decay takes place via a fast dipole transition of the
Rydberg electron to one of the lower-n states (type II) in which
radiative rates are ∝n−3ν−1, with hν being the energy of the
emitted photon. At the same time, the transition rate of the
core electron (type I) stays constant.

With �rad
I = ∑

typeI �
rad
d→f ′′ and �rad

II = ∑
typeII �

rad
d→f ′′ for

the radiative width of core and Rydberg electron, respectively,
and �rad = �rad

I + �rad
II for the total radiative width of the

intermediate state from Eq. (3) we obtain for our simplified
model with one autoionization channel only:

σ DR
tot ∝ 1

Eel
�Aug �rad

I + �rad
II

�Aug + �rad
I + �rad

II

, (17)

that is, the product of autotionization width and fluorescence
yield ωd→f . Hence from this formula it is easy to see that
the slower of the two rates, Auger or radiative, determines the
cross section while the faster yields the natural width of the
resonance.

For two limiting cases one immediately arrives at an n−3

scaling (cf. in Refs. [56–58]) for the total cross section
[55]: For �Aug � �rad the fluorescence yield ωd→f � 1 and
σ DR ∝ �Aug. This is the case for heavy highly charged ions as
the Xe51+ under investigation. Alternatively, for �Aug � �rad

and �rad
I � �rad

II the cross section σ DR ∝ �rad
II and thus again

σ DR ∝ n−3.
In both cases one has to take into account that for increasing

n at some point the constant �rad
I of the core electron will

become the dominant decay channel and will lead to a
deviation from n−3. For the present case of the p1/2 resonances
of Xe51+ this takes place roughly at n = 60 . . . 80 and is visible
in Fig. 10 for the unresolved resonance strengths towards the
series limits.

The toy model above will fail if core excitations proceed
into higher excited atomic states. This is the case already for the
2s → 2p3/2 series of our Xe51+. The doubly-excited 2p3/2nlj
configurations allow more options for the decay channels,
for instance, a second strong Auger channel or cascades of
radiative and Auger transitions to below the auotionization
threshold. In fact, for the Xe50+(2p3/2nlj ) resonances we
notice for the resonance strength a behavior ∝n−2.3.

For further details about high-n Rydberg states and their
properties and scalings we refer to Refs. [36,53–56,59,60].

V. SUMMARY AND OUTLOOK

We have measured the recombination rate coefficient for
dielectronic recombination of Xe51+ forming Xe50+. An
electron-ion merged-beams configuration was used at the
heavy-ion storage ring ESR. The measurement covers a
collision energy range from 0 to 505 eV and includes all
�n = 0 DR resonances in Li-like xenon, that is, all DR
processes 2s + e− → 2p1/2nlj and 2s + e− → 2p3/2nlj up
to the respective series limits n → ∞.

Individual resonances were resolved and their resonance
strengths were extracted for Rydberg-resonance manifolds
with principal quantum numbers n up to 43 for the 2p1/2

excitation and up to n = 36 for the 2p3/2 series. Our measure-
ment is compared with results from MCDF theory. A good
agreement of the experiment and our MCDF calculation for the
recombination spectra and the absolute resonance strengths is
found. In particular, the calculations are in excellent agreement
within a Rydberg manifold with given n. For the 2p1/2 series
we find a trend of the resonance strength ∝n−3 and for the
2p3/2 series a dependency close to n−2.3.

The excitation energies E(2s → 2p1/2) and E(2s →
2p3/2) were precisely determined by means of DR
collision spectroscopy with values of E(2s → 2p1/2) =
119.816(42) eV and E(2s → 2p3/2) = 492.174(52) eV. Our
error bars for both excitations are about the same and are
mainly limited due to the imperfect knowledge about the
transversal electron beam temperatures and according energy
shifts. The 2s-2p1/2 transition energy is not as precise as the
ones from x-ray techniques, but the comparison of the different
methods provides an important benchmark of the DR approach
and setup. From the same measurement the energy for the 2p3/2

excitation is derived and its uncertainty compared to previous
studies is improved by more than an order of magnitude.

Within the extension of the present heavy-ion facilities at
the GSI-Helmholtzentrum für Schwerionenforschung towards
the international Facility for Anti-proton and Ion Research
(FAIR) [61] at the same site the former CRYRING storage
ring of the Manne-Siegbahn laboratory in Stockholm is
presently being relocated to Darmstadt and will be reinstalled
at FAIR within the next 2 years [62]. At GSI/FAIR the former
CRYRING will serve as a low-energy storage ring (LSR).
The CRYRING/LSR is equipped with an electron cooler with
electrons that are exceptionally cold in transversal direction
due to adiabatic magnetic expansion of the electron beam [63].

Experiments in Stockholm at the CRYRING [15,23,63]
have demonstrated transversal and longitudinal electron
temperatures of kBT⊥ = 1.5 meV and kBT‖ = 50 μeV,
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respectively, to be compared to the present ESR experiment
with kBT⊥ = 120 meV and kBT‖ = 200 μeV. The decrease
of T‖ and T⊥ by factors of 80 and 4 will lead to significant
reductions of the experimental energy spread and resolution,
refer to Eq. (10) and Ref. [16]. In addition, the uncertainty
due to the transversal temperature becomes smaller by nearly
two orders of magnitude and, thus, the according uncertainties
will be significantly reduced down to the 1-meV range. The
potential of cold electron targets has already been exploited for
many-electron cases at the CRYRING in Stockholm [15] and
for few-electron medium-Z ions [3] at the TSR storage ring of
the Max-Planck Institute for Nuclear Physics in Heidelberg. At
GSI/FAIR the combination of a very capable injector that can
deliver highly charged ions up to bare uranium or even intense
beams of radioisotopes will boost precision, sensitivity, and
extend the scope of topics. For very heavy ions uncertainties of

the order of 1 meV will provide conclusive tests of higher-order
contributions of QED in strong fields as well as to physics at
the interface of electrons and atomic nucleus such as nuclear
size, nuclear shape, hyperfine, and even nuclear polarization
effects [16].
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