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Measurement of the low-energy Na+-Na total collision rate in an ion-neutral hybrid trap
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We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient
kia of cold sodium (Na) with optically dark low-energy Na+ ions in a hybrid ion-neutral trap. To determine kia, we
measured the trap loading and loss rates from both a Na magneto-optical trap (MOT) and a linear radio-frequency
quadrupole Paul trap. We found the total rate coefficient to be 7.4 ± 1.9 × 10−8 cm3/s for the type-I Na MOT
immersed within an ≈140-K ion cloud and 1.10 ± 0.25 × 10−7 cm3/s for the type-II Na MOT within an ≈1070-K
ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal ab
initio calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be
used to probe an optically dark ion cloud’s spatial distribution within a hybrid trap.
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I. INTRODUCTION

A hybrid ion-neutral trap is a combination of two normally
separate technologies: a cold neutral atom trap within an ion
trap, e.g., a linear radio-frequency quadrupole or octupole [1]
Paul trap (LPT). Typically, the neutral trap consists of a
magneto-optical trap (MOT) [2–5], an optical dipole trap
(ODT) [6], or a magnetically trapped Bose-Einstein conden-
sate (BEC) [7,8]. Recently, a hybrid trap was developed that
also incorporates an optical cavity [9]. Over the past decade,
since the hybrid trap was originally proposed [10,11], both
experimental [2,4–9,12–22] and theoretical [23–30] interest
in low-energy ion-neutral collisions has surged.

Cold ion-neutral collisions are of intermediate range be-
tween neutral-neutral and ion-ion. Compared to neutral-neutral
van der Waals cross sections ∼1 a.u., they have large elastic
scattering cross sections ∼106 a.u. at 1 mK [23–25]. These
large cross sections are a consequence of the ion polarizing
the colliding neutral atom, which leads to universal long-range
polarization potentials [31], with the principal term ∝−C4/R

4.
Here, C4 is the atomic dipole polarizability of the neutral
collision partner and R is the internuclear ion-atom separation.

The large ion-neutral elastic scattering cross sections
have been utilized to demonstrate hybrid trap sympa-
thetic cooling [10,11,20,26] of atomic ions’ translational
motion [1,2,9,16] and molecular ions’ internal degrees of
freedom [32]. Additionally, there have been several measure-
ments of low-energy ion-neutral elastic [6–8] and charge-
exchange [5,12–14,33] rate coefficients within hybrid traps.
The rate coefficient measurements are of interest to both
astrophysics [34–38] and quantum information [22,39].

Several methods have been used to measure scattering rates
using a hybrid trap, including monitoring the neutral atom
fluorescence decay from an ODT [6–8] and measuring the ion
fluorescence decay from a Paul trap [12,14]. Recently, hybrid
trap measurements of the total elastic and change-exchange
collision rate for closed-shell, optically dark Rb+ ions on Rb
(rubidium) were reported by Lee et al. [17]. The fluorescence
of the neutral species is used to measure the total collision
rate of optically dark ions. Our method uses the loading and
decay of both the atoms in the MOT and the dark ions in the

LPT to determine the collision rate. Additionally, for optically
accessible ions, the methods presented here for determining
the total collision rate can be used in conjunction with
the previously demonstrated charge-exchange measurement
methods to isolate the elastic collision rate.

We present measurements of the total collision rate coef-
ficient for the Na+-Na (sodium) system. Our experimental
results show excellent agreement with previously reported
fully quantal ab initio theoretical calculations [23]. We use a
similar experimental procedure to the one reported in Ref. [17].
However, we find deviations between our experimental results
and the LPT loading model presented in Ref. [17].

This manuscript is organized as follows: In Sec. II,
we begin with a discussion of our hybrid apparatus, the
semiclassically predicted Na+-Na total collision rate model,
and our experimental model. In Sec. III, we present our
results for MOT loading, LPT loading, and determining the
volume of the optically dark Na+ ion cloud. We conclude
in Sec. IV

II. BACKGROUND

A. Apparatus

1. Magneto-optical trap

A description of our experimental apparatus can also be
found in our earlier references [2,20], but for the convenience
of the reader we will briefly describe the apparatus here. A
diagram of the apparatus can be found in Fig. 1.

Our group’s hybrid trap consists of a standard vapor-cell
Na MOT [41–43] concentric within a segmented LPT [44,45]
and held in a vacuum chamber at a pressure ∼10−10 Torr. The
MOT is loaded with 346 ± 3 K Na vapor from a biased getter
source within the vacuum chamber. The MOT simultaneously
uses velocity- and spatially-dependent light pressure forces
that both damp and trap the neutral Na atoms [41]. This force
is provided by three intersecting pairs of counterpropagating
circularly polarized 589-nm laser beams within a quadrupole
magnetic field gradient of ≈30 G/cm, created with external
anti-Helmholtz electromagnet coils. The 589-nm radiation is
frequency stabilized to the saturated-absorption spectrum of
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FIG. 1. (Color online) Schematic of the hybrid trap apparatus
within the vacuum chamber (top view, not to scale). The Na magneto-
optical trap (MOT) is created in the center of the segmented linear
Paul trap (LPT) with six 589-nm laser beams. MOT fluorescence
measurements can be taken with our CMOS camera or with our
photomultiplier tube (PMT). The MOT can be translated within the
LPT using the electromagnet shim coils. A pair of anti-Helmholtz
coils and a third shim coil sit outside the vacuum chamber and
are not shown in the figure. The LPT is loaded with Na+ ions by
photoionization (PI) of excited Na(3P) MOT atoms with a 405-nm
laser beam collinear with one MOT beam. Ions are destructively
detected by extracting the ions toward the Channeltron electron
multiplier (CEM). The mesh is both used for extraction ion optics
and to create a more uniform gain across the CEM cone [40].

a Na vapor cell. Additionally, three shim coils (two of them
shown in Fig. 1) are used for translating the MOT location
within the LPT. We have seen no experimental evidence to
suggest that the MOT apparatus interferes with the operation
of the LPT apparatus or vice versa [2–4].

We can create two Na MOTs that use different hyperfine
cycling transitions: type (I) 3S F = 2 → 3P F′ = 3 or type (II)
3S F = 1 → 3P F′ = 0,1 [46]. Images taken with our CMOS
camera of both MOTs (looking down the LPT’s long axis) are
shown in Fig. 2. A diagram of the energy-level structure and
laser cooling schemes for both MOTs is shown in Fig. 3.

By adjusting the relative MOT cooling beam intensities,
each MOT can be formed with approximately spherical
Gaussian spatial distributions, as seen with our camera
measurements. We can measure the total number of atoms
using the MOT fluorescence with our camera or a photo-
multiplier tube (PMT); both measurements typically agree
within 5% of one another despite using different collection
optics, different viewpoints, and having been independently
calibrated. Release and recapture measurements [47] taken
with the PMT indicate that the MOT atoms follow a cumulative
distribution function consistent with a Maxwell-Boltzmann
(MB) speed distribution.

FIG. 2. (Color online) CMOS camera image, without false color-
ing, of the smaller, denser, and colder type-I MOT (a) and the larger,
warmer type-II MOT (b). As depicted in Fig. 1, the camera is looking
down the axial (long) dimension of the segmented LPT. The inner
edges of the LPT’s end-segment electrodes can be seen in the corners
of the image. The images are saturated to be more visually striking,
but care is taken to avoid saturation when taking data.

Because the type-I MOT has a stronger cycling transition
strength, it forms a denser and colder MOT, with typical
measured densities nMOT ∼ 1010 cm−3, 1/e density radius
ra ≈ 0.025 cm, and temperature TMOT = 0.5 ± 0.1 mK. The
type-II MOT is larger and warmer, typically having nMOT ∼
109 cm−3, ra ≈ 0.075 cm, and TMOT = 2.0 ± 0.5 mK. For
the results presented here, the type-I MOT has a fe ≈ 33%
excited-state population [48] and the type-II MOT has fe ≈
23%.

We have established the excited-state population using
a two-level model-dependent measurement of the effective
saturation intensity of the Na MOT [49]. We are currently
experimenting with a hybrid trap model-independent mea-
surement of fe and plan to publish our findings in the near
future.

2. Linear Paul trap

The ion-trapping part of the hybrid trap consists of a seg-
mented LPT [45]. The radio-frequency (rf) driving field, with
amplitude Vrf = 80 ± 2 V, is applied to the center electrode
segments creating a sinusoidally oscillating quadrupole saddle
potential. Oscillating the quadrupole potential at a frequency
�/2π = 720 kHz creates a pseudoharmonic potential that
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FIG. 3. (Color online) Energy-level diagram that shows the hy-
perfine structure of the D2 Na line. We indicate the cooling laser (C)
and the repumping laser (R) transitions for the type-I and -II MOTs.
Each detuning from resonance (δ23 and δ22) was chosen for maximum
MOT fluorescence intensity. For the type-I MOT, the cooling laser is
the carrier signal from our electro-optical modulator (EOM). For the
type-II MOT, the cooling laser is the EOM sideband signal.

provides trapping in the transverse dimension [50]. The axial
(long dimension) confinement is established by a static voltage
Vend = 30.0 ± 0.2 V applied to the end segments.

The evolution of a single trapped ion in an LPT is described
by the stable solutions to the Mathieu equation [51]. Each
trapped ion undergoes a superposition of fast motion at the
driving field’s rf angular frequency � and a slow secular
motion at an angular frequency ωr in the transverse dimensions
and ωa in the axial dimension [45,52,53].

The ion trap is loaded by photoionizing (PI) an excited
Na(3P) MOT atom with a 405-nm photon. The PI laser beam
has a r1/e = 0.20 ± 0.01 cm collimated intensity radius and
is collinear to one MOT beam. Therefore, the region of PI is
always larger than the MOT, even when the MOT is translated
off axis from the beam as much as ≈0.125 cm. While some
background excited Na atoms are also PI loaded into the LPT,
approximately all of the ions are created directly from the
MOT since the MOT density is ≈3 orders of magnitude larger
than that of the background Na vapor.

The equilibrium temperature of the trapped ion cloud
TI , loaded from either the type-I or the type-II MOT, was
determined using SIMION 7.0 simulations [54,55] of ion clouds
containing an ion population NI of up to 1000 interacting ions.
It takes approximately 1.4 ms or 238 secular periods for the ion
cloud to equilibrate. For a detailed discussion of our group’s
simulations, see Refs. [20,56]. The most important factor in

predicting the ion cloud’s thermalized mean secular energy
(from which one can assign a temperature, assuming a MB
speed distribution) is the size of the MOT when the LPT is
loaded via PI from a MOT [3,20]. Because the initial speed
of the ions created from the MOT is so small, the total initial
energy of the ion cloud is primarily determined by the potential
energy of the ions, which is directly related to the initial size of
the MOT. Therefore, since we can accurately measure the size
of the Na MOT, we can accurately initialize our simulations.
The simulation determined the thermalized temperature of
the ion cloud loaded from the type-I and -II MOTs to be
TI = 140 ± 10 K and TI = 1070 ± 30 K, respectively. The
uncertainty in TI is only based on the precision of camera
measurements of the MOTs’ dimensions.

An undesirable complication with a Na MOT hybrid
trap is that the MOT continuously forms Na+

2 molecular
ions via photoassociative ionization and energetic (∼0.5 eV)
atomic Na+ is subsequently created via 589-nm photodissocia-
tion [57–60]. To remove the undesired Na+

2 ions, we add to the
driving rf voltage a small mass selective resonant quenching
(MSRQ) [53,56,61,62] voltage with amplitude Vrad = 0.625 ±
0.005 V at a frequency 157 ± 1 kHz, which corresponds to the
measured second harmonic secular frequency 2 [ωr/(2π )] for
Na+

2 . The MSRQ signal resonantly drives the secular motion
of the co-trapped Na+

2 until the molecular ion’s energy exceeds
the LPT’s trap depth. As a result, the added MSRQ field
continuously quenches the Na+

2 population with little to no
off-resonant heating of the trapped Na+ [56].

Because the Na+ ions have a closed electronic con-
figuration, optical measurements are not possible, so we
must destructively measure the trapped ion population. We
apply a dipole field to the end segments, which extracts
the ion cloud axially out of the trap and into a Channeltron
electron multiplier (CEM). The ion extraction trajectories are
controlled by the ion optics, which are determined by the
end segment and mesh electrode voltages. The CEM signal
goes through a charge-sensitive preamplifier, which produces
a signal whose peak voltage is proportional to the number of
detected ions. We will refer to the peak preamplifier voltage
as the “CEM measured ion signal.” Details regarding the
calibration of the CEM will be discussed in Sec. III B.

We tested the linearity of the dynamic range of the CEM
to ensure that it was not saturated when detecting large ion
populations NI ∼ 105. CEMs typically produce linear output
in an analog mode when the output current Io < 20% of the
bias current. The bias current is linearly proportional to the
applied CEM cone voltage Vc [63]. The output current Io =
GIi depends on the gain G and the input current Ii , where the
gain increases exponentially with increasing Vc.

We use a MEGASPIRALTRON from Photonis, which has a
particularly large bias current ≈160 μA at Vc = 2500 V. By
operating at a low Vc = 1250 ± 6 V, we reduced the gain
exponentially while the bias current falls off linearly, which
helps to keep Io below the 20% limit for large ion signals.

When the CEM saturates, the gain will cease to increase
exponentially with increasing Vc for a fixed input ion current
Ii . We measured the output ion signal, which is ∝G for a fixed
Ii , as a function of Vc for many different PI intensities, for both
MOTs, and at several different ion optic settings. In all cases,
we found that for a fixed Ii the logarithm of the ion signal
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FIG. 4. We tested for deviation from the expected exponential
behavior of the CEM gain as a function of the voltage applied to
the CEM detection cone Vc at a fixed ion input current. We find that
the output ion signal (which is proportional to the gain) looks linear
when plotted with a log-linear plot scaling, indicating that we are not
saturating the CEM. The uncertainty in the power supply voltage Vc

and the ion signal is approximately the size of the plot markers. In
the experiments presented here, we operate at a Vc = 1250 V.

was linear with Vc within the experimental uncertainty, which
suggests that the CEM is not saturating (as seen in Fig. 4).

We were surprised by this result because if the ion output
current is estimated using the expected order of magnitude
for the gain, it is >20% of the bias current and should be in
the nonlinear region. We speculate that not all of the ions are
reaching the CEM detection cone. This subunity collection
efficiency is not a problem as long as we are approximately
losing the same fraction of the total number of ions trapped
during each extraction, which we found to be consistent with
our data.

We assume the trapped ions adhere to a prolate Gaussian
spatial distribution with 1/e radii rI,1 = rI,2 in the transverse
dimensions and rI,3 > rI,1 in the axial dimension. The number
of ions loaded into the LPT and the size of the ion cloud will
be discussed later in Secs. III B and III C, respectively.

B. Semiclassical scattering model

Fully quantal ab initio calculations have shown that both
elastic and charge-exchange two-body ion-neutral scattering
cross sections follow semiclassical power-law functions of
energy in the 104–10−6 K temperature range. Two-body charge
exchange occurs when an electron is transferred from the ion to
the atom. The charge-exchange process is considered resonant
if the internal states are exchanged without changing the total
internal energy. A collision is elastic if no charge exchange
occurs and the total kinetic energy is conserved.

The total scattering cross section σtot has a

σtot = σel + σce = CtotE
−1/3 (1)

relative collision energy E dependence, where Ctot is the total
scattering proportionality constant, σel is the elastic scattering
cross section, and σce is the charge-exchange scattering cross
section [25]. The total scattering constant Ctot is proportional
to (μC4

2)1/3, where μ is the reduced mass of the two-body

TABLE I. Table of semiclassically predicted total (elastic and
charge-exchange) ion-atom scattering rate coefficients kia for both
excited (3P) and ground state (3S) Na on ground state Na+ at the
experimentally relevant ion cloud temperatures TI . The total rate
coefficient is calculated using Eq. (2). The uncertainty in kia is due to
the propagated uncertainty in TI .

Species C4 (a.u.) Ctot (a.u.) TI (K) kia(cm3/s)

Na(3S)-Na+ 162.7a 4174a 140(10) 7.00(8) × 10−8

1070(30) 9.82(5) × 10−8

Na(3P)-Na+ 361.4b 7106 140(10) 1.19(1) × 10−7

1070(30) 1.67(1) × 10−7

aReference [23].
bReference [65].

collision. Equation (1) is incorrectly stated as only the elastic
scattering cross sections in Refs. [23,24], but is correctly
identified as the total cross section in Ref. [25]. However,
the distinction makes little difference in our case because
σce � σel, as found in Ref. [23].

By averaging over the relative energy distribution, the
total rate coefficient for the ion-neutral collisions kia can be
expressed in atomic units as

kia =
〈
σtot

√
2E

μ

〉
E

= Ctot�

(
5

3

) √
8

πμ
(kBTI )1/6 , (2)

where � is the gamma function, and kB is the Boltzmann
constant [24]. We make the standard assumption that the ions
have a MB speed distribution [16,17,64] and that because
TMOT � TI , the relative speed distribution is approximated
well by the ion cloud’s speed distribution [6,17,21]. According
to Eq. (2), kia depends weakly on TI . Therefore, determining TI

via SIMION simulations is sufficiently accurate for determining
the theoretical total rate coefficient to be used for comparison
with experiment.

The values for the total collision rate coefficient for the
Na+-Na system can be found in Table I, where the input for
Eq. (2) comes from the power-law fits found in Ref. [23] at
the relevant temperatures TI associated with our experiment.
We use the scaling of C4 to determine the excited Na(3P) Ctot

value.

C. Experimental scattering model

When the Na MOT is overlapped with the ion cloud in the
hybrid trap, Na+-Na elastic and resonant nonradiative charge-
exchange collisions will occur within the volume of overlap.
Because the trap depth of the MOT is fairly small ∼0.1 K [41],
we can make the approximation that every elastic or charge-
exchange collision will result in the loss of a MOT atom [17].

We can check the validity of this approximation with a
simple calculation. Let us consider two-body hard-sphere
collisions [66] between T ≈ 0 K (near delta function speed
distribution) Na atoms held within a 0.1 K deep MOT and a
TI = 500 K Na+ ion cloud. For charge-exchange collisions,
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we need only integrate over the Na+ ion cloud MB speed
distribution from the MOT trap depth to infinity. We find that
more than 99% of the ion population has a velocity large
enough to cause an atom to be lost from the trap after a
charge-exchange collision.

For two-body hard-sphere elastic scattering, we can as-
sume an isotropic solid-angle center-of-mass scattering angle
distribution. Again, by integrating over the entire angular dis-
tribution and the relevant speeds of the MB speed distribution,
we find that on average more than 99% of the ion population
will eject a MOT atom during an elastic ion-atom collision.
The only consequence of assuming that ion-atom collisions
cause MOT loss with unit efficiency is that the experimentally
determined value for kia will be systematically underestimated,
but our simple calculations suggest this systematic error should
be negligible.

We define the loss rate per atom from the MOT due to
ion-atom collisions γia to be

γia = kia 〈n〉

= kiaNI

3∏
i=1

∫ ∞

−∞

(
e−(xi−x0,i )2/r2

a

ra

√
π

)(
e−x2

i /r2
I,i

rI,i

√
π

)
dxi,

where 〈n〉 is the average ion density experienced by the
MOT [14], xi is the distance from the center of the ion cloud
in the i = 1, 2,or 3 dimensions, and x0,i is the center position
of the MOT relative to the center of the ion cloud in the
ith dimension. Upon integrating over the ion and atom cloud
Gaussian spatial distributions, we arrive at

γia = kiaNIC

Via
, (3)

which shows that the loss rate is proportional to the total
trapped number of ions NI , the relative concentricity function

C = e−(x2
0,1+x2

0,2)/(r2
a +r2

I,1)e−x2
0,3/(r2

a +r2
I,3), (4)

and inversely proportional to the addition in quadrature of the
effective volumes of the ion and atom clouds

Via = π3/2
(
r2
a + r2

I,1

)√
r2
a + r2

I,3. (5)

Equation (4) is equal to unity when the MOT is perfectly
centered on the ion cloud. If we also approximate ra � rI ,
then Eq. (3) reduces to a similar expression to that used in
Ref. [17]. We can experimentally measure the loss rate γia, the
number of ions NI , and the volumes that make up Via, which
gives enough information to solve for kia using Eq. (3).

We followed the choice of Ref. [17] to measure the loss rate
γia when the LPT is saturated, which has three advantages.
First, the saturated ion cloud volume ṼI remains constant
for each measurement, thereby making the saturated addition
in quadrature of the ion and atom cloud volumes Ṽia time
independent. Second, because the LPT is in steady state, the
ion population ÑI can be approximated as time independent.
Third, the saturated LPT holds the largest possible number of
ions ÑI (for a given cloud temperature TI and trap settings).
Therefore, the saturated LPT maximizes γia, which gives the
greatest experimental resolution of kia.

III. EXPERIMENT AND RESULTS

A. Na MOT loading measurements

In the temperature-limited regime [43,67], the volume of
the MOT VMOT remains constant while the MOT density
nMOT increases linearly with atom population Na . Collisions
between two MOT atoms lead to a nonexponential two-body
loss rate βnMOT [68], while collisions with constant density
background Na atoms result in a linear loss rate γb. Because
we operate in the temperature-limited regime, we model the
MOT loading behavior with a nonlinear rate equation

dNa

dt
= LMOT − γtNa − β

VMOT
N2

a , (6)

where LMOT is the constant rate at which atoms are loaded into
the MOT and γt is the total single-body linear loss rate [43].
The solution to Eq. (6) is

Na(t) = 2LMOT(1 − e−γet )

γe + γt + (γe − γt )e−γet
, (7)

where

γe =
√

γ 2
t + 4βLMOT

VMOT
. (8)

We found that using Eq. (7) significantly improved our
fits to the MOT fluorescence loading data, as opposed to
the more commonly used linear rate equation [17,43,69].
However, to reduce the number of free parameters, we found
that constraining β to a value of ≈1.0 × 10−11 cm3/s for the
type-I MOT and a value of ≈1.0 × 10−10 cm3/s for the type-II
MOT gave the most consistent fits. These values are fairly
close to the previously reported value of β for a Na MOT of
4 × 10−11 cm3/s, which has a factor of 5 uncertainty [68].

We found the MOT loading rate LMOT to be insensitive to
the presence of PI or an ion cloud. Similar behavior has been
observed elsewhere [17,69]. Furthermore, an experiment that
modeled changes to LMOT in a Na MOT due to PI found that
the modification was small [43], therefore, we neglect it in the
interest of simplicity.

Figure 5 shows the Na fluorescence measured by the PMT
and fit with Eq. (7) when the type-II MOT is loaded at three
different loss rates γt . The type-I MOT loading curves are
qualitatively identical to those of the type-II MOT. The total
loss rate depends upon the loss mechanisms that are present
at the time the MOT is loaded. Figure 5(a) is for an isolated
MOT loaded from background Na vapor γt = γb.

When the MOT is also experiencing PI, there is an
additional loss rate γpi, which increases the total loss rate
γt = γb + γpi, as is the case in Fig. 5(b). At low enough PI
intensity Ipi, the PI loss rate γpi is linearly proportional to Ipi

and can be expressed as

γpi = σpifeIpi

hνpi
= ζ Ipi, (9)

where σpi is the PI cross section, h is Planck’s constant, and νpi

is the frequency of the PI radiation, and again fe is the fraction
of MOT atoms in the excited state [17,43,69].

We find that γpi is linear with Ipi for both MOTs over the
full PI intensity range achieved with our setup, as shown in
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FIG. 5. (Color online) Fluorescence from a type-II MOT as it
loads, with the corresponding fits to Eq. (7). Curve (a) shows the raw
PMT data (light blue) and fit (royal blue) of an isolated MOT loaded
with a total loss rate γt = γb. Curve (b) shows the raw PMT data
(gray) and fit (green) of a MOT loaded with PI (Ipi ≈ 80 mW/cm2),
making γt = γb + γpi. Curve (c) shows the raw PMT data (magenta)
and fit (black) of a MOT loaded with the same PI intensity as curve
(b), but the MOT is also immersed in a saturated LPT ion cloud,
making γt = γb + γpi + γia.

Fig. 6. The y intercept (at Ipi = 0) of Fig. 6 is equal to γb,
while the slope can be used to determine σpi. The slope of
Fig. 6(a) for the type-I MOT gives σpi = 1.1 ± 0.2 × 10−17

cm2 and the slope of Fig. 6(b) for the type-II MOT gives σpi =
4.1 ± 0.9 × 10−18 cm2. Both results are fairly close to the
previously reported (type-I MOT) experimental value of σpi =
9.1 ± 1.4 × 10−18 cm2 for 404-nm PI radiation from Ref. [43],
which also had very good agreement with theory [70].

FIG. 6. (Color online) Plot of the total MOT loss rate in the
presence of PI (γt = γb + γpi) as a function of the total peak PI
intensity and corresponding linear fits. Curve (a) shows type-I MOT
data and curve (b) shows type-II MOT data. The y intercepts
(at Ipi = 0) are γb and the slopes are proportional to σpife. The
statistical uncertainty in the rates is smaller than the plot markers.
The uncertainty in the intensity is primarily due to power fluctuations
and the precision of the beam waist measurement.

FIG. 7. Plot of the ion-atom loss rate γia as a function of increasing
rf voltage amplitude Vrf . Because the saturated LPT density increases
quadratically with Vrf , the ion-atom loss rate also appears to increase
quadratically. Although, the data could also be interpreted as being
linearly propostional to Vrf .

The final loss mechanism is from ion-atom collisions
between the MOT and the saturated LPT ion cloud, as seen in
Fig. 5(c). These collisions introduce an additional term, which
increases the loss rate to γt = γb + γpi + γia. The ion-atom loss
rate γia at each PI intensity Ipi was determined by subtracting
the loss rate measured with the PI laser on and the LPT turned
off from measurements with both the PI laser and the LPT
turned on.

Unlike the experimental sequence presented in Ref. [17],
before taking the MOT loading data in Fig. 5(c), the LPT is
preloaded from the MOT until the LPT is saturated. The MOT
is then briefly unloaded by blocking one of the retro-reflected
589-nm beams with an electronic shutter. Last, the MOT is
reloaded while immersed in the saturated ion cloud. The PI
laser remains on during the entire sequence to ensure the
LPT remains saturated. By preloading the LPT to saturation
before taking the PMT measurement, we can approximate
the ion cloud surrounding the MOT as having a constant
volume in each measurement ṼI . We can also approximate
the density ÑI /ṼI as time independent during a MOT loading
measurement, thus making γia time independent.

To achieve the greatest experimental resolution for γia, we
worked at a high rf voltage amplitude Vrf , which put us close
to the edge of the Mathieu equation’s stability region [45]. We
found that γia increased approximately quadratically with Vrf ,
as suggested in Fig. 7. We can rationalize the proportionality
between γia and Vrf through the following scaling arguments.

When the LPT is saturated, we can determine the size of
the ion cloud by equating the effective LPT trap depth to the
energy of the outermost ion in a simple harmonic potential
with a frequency equal to the secular frequency [17,21]. For
an idealized single particle in a perfect quadrupole field, the
LPT trap depth is proportional to (Vrf)2 [71], as is the square of
the secular frequency. Therefore, we expect the saturated size
of the cloud ṼI to be insensitive to Vrf . By equating the LPT’s
spring force to the ion cloud’s space-charge Coulomb repulsion
(for an infinite cylinder of charge), it can be shown that the
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FIG. 8. (Color online) Plot of the ion-atom loss rate as a function
of the saturated LPT steady-state ion population and corresponding
linear fit to Eq. (3). Curve (a) shows type-II MOT data and curve
(b) shows type-I MOT data. The type-II MOT has larger loss rates
and fewer steady-state ions at saturation because it produces a hotter
lower density ion cloud that has a slightly larger kia. The uncertainty
in the measurements is discussed in the text.

saturated number of trapped ions ÑI ∝ (Vrf)2. Therefore, since
γia ∝ ÑI /ṼI ⇒ γia ∝ (Vrf)2.

As seen in Fig. 8, we plot γia as a function of the steady-state
LPT ion population ÑI . As predicted by Eq. (3), these
quantities are linearly proportional. The observed linearity
supports our assumption from Sec. II A 2 that the fraction
of extracted ions that miss the CEM is fairly constant, if we
assume Eq. (3) to be correct.

The fractional uncertainty in the measurement of γia

appears to increase with Ipi (Fig. 11) or steady-state ion
population (Fig. 8). This can be explained by the fact that
γia is the difference of two measurements whose individual
fractional uncertainty remains fairly constant. However, since
the difference between these measurements saturates, as seen
in Fig. 11, the fractional uncertainty in the difference must
increase.

We will discuss the LPT loading behavior including how
the steady-state ion population seen in Fig. 8 was determined
in Sec. III B. Finally, using the slopes from Fig. 8 and the ion
cloud size, which we will discuss in Sec. III C, we will have
enough information to determine the rate coefficient kia.

B. LPT Na+ loading and decay measurements

1. LPT loading

According to Eq. (3), γia’s dependence on Ipi comes from
ÑI ’s dependence on Ipi. Due to experimental difficulties with
CEM saturation, Ref. [17] attempted to derive an LPT loading
model that determined ÑI solely from MOT fluorescence
measurable quantities, such as the MOT atom population Ña ,
the PI MOT loss rate γpi, and the ion-atom MOT loss rate γia.

They modeled the LPT loading with the linear rate equation

dNI

dt
= LI − λNI , (10)

FIG. 9. (Color online) CEM measured LPT loading (from the
type-I MOT) as a function of time and corresponding two-parameter
fits to the solution to rate Eq. (14). Each curve corresponds to a differ-
ent PI intensity: Curve (a) is measured with Ipi ≈ 670 mW/cm2, curve
(b) is with Ipi ≈ 108 mW/cm2, curve (c) is with Ipi ≈ 42 mW/cm2,
and curve (d) is with Ipi ≈ 15 mW/cm2. The uncertainties are smaller
than the size of the plot markers.

where LI is the LPT ion loading rate and λ is the LPT ion
loss rate. We find good agreement between Ref. [17]’s LPT
rate equation [our Eq. (10)] and our experimental data, as
seen in Fig. 9, which shows typical LPT loading curves taken
with the CEM at four different Ipi intensities loaded from the
type-II MOT. The fits use LI and λ as free fitting parameters,
which make the steady-state ion population the ratio of the
two fitting parameters ÑI = LI/λ. Experimentally, for each
PI laser intensity we preset the MOT into a steady-state atom
population Ña with the PI laser on before turning on the LPT.
The LPT is loaded from the MOT for a fixed time and then the
ions are immediately extracted and detected. This procedure
is repeated with increasing loading times until the LPT has
reached its steady-state ion population.

Reference [17] argues that the number of MOT atoms lost
are proportional to the number of ions gained by the LPT.
Accordingly, the loss rate lambda is equated to the ion-atom
MOT loss rate γia and the loading rate is modeled with a linear
dependence on Ipi,

LI = Naγpi = NaζIpi, (11)

which diverges as Ipi → ∞. Because the LPT cannot hold
an infinite number of ions, they introduce an intensity loss
coefficient κ and the PI intensity differential equation

dNI

dIpi
= Naζ

γia
(1 − e−γiat ) − κNI . (12)

In deriving Eq. (12) and its solution (as t → ∞)

ÑI = Ñaζ

γiaκ
(1 − e−κIpi ), (13)

Ref. [17] appears to make the approximation that dNa/dIpi =
dγia/dIpi ≈ 0.

Because the MOT is much smaller than the trapping volume
of the LPT, every PI ion created from the MOT can be
considered loaded into the LPT. However, unlike Ref. [17], we

012709-7



D. S. GOODMAN et al. PHYSICAL REVIEW A 91, 012709 (2015)

FIG. 10. (Color online) CEM measured LPT loading rate as a
function of Ipi and corresponding fit to Eq. (14). Curve (a) shows the
LPT loaded from the type-II MOT and curve (b) shows the LPT loaded
from the type-I MOT. The fit to Eq. (14) is only a single parameter
y-scaling constant, whose value is the CEM calibration. All other
parameters are independently determined from MOT fluorescence
measurements.

consider PI intensity dependence of Na according to Eq. (7),
and we do not make the assumption that dNa/dIpi ≈ 0. Also,
because we allow the MOT to come to steady state Ña before
turning on the LPT, our ion trap loading rate is

LI = Ñaγpi

≈ 2LMOTζ Ipi

γb + ζ Ipi +
√(

γb + ζ Ipi
)2 + 4βLMOT

VMOT

. (14)

By including the atom number’s PI intensity dependence, we
see that the ion trap loading rate already saturates as Ipi → ∞
without the need for introducing an intensity-loss coefficient
κ .

Figure 10 shows the ion trap loading rate measured with the
CEM as a function of Ipi, when loaded from both the type-I
and -II MOTs. We see that LI is not linearly proportional to
Ipi, as Eq. (11) would suggest. We have fit LI to Eq. (14),
with only a single fitting parameter to scale the y axis. All
other parameters are independently determined from the MOT
fluorescence measurements discussed in Sec. III A. The single-
parameter y-scaling fit result gives the CEM calibration. The
type-I MOT [Fig. 10(b)] has a calibration result of 1.19 ±
0.02 × 10−6 V/ion and the type-II MOT [Fig. 10(a)] gives
2.70 ± 0.01 × 10−6 V/ion. The calibrations are fairly close.
We used the calibration for the corresponding MOT when
calculating our results.

For simplicity, like Ref. [17], we ignored Ña’s dependence
on γia, as this is only a small correction, since γb + γpi  γia.
By ignoring this term, LI does not depend on NI , which makes
solving Eq. (10) much easier.

We find that the solution to Ref. [17]’s intensity-loss
coefficient model [our Eq. (13)] for determining the steady-
state ion population, which is linearly proportional to γia

[according to our Eq. (3)], fits within the experimental error,
as shown in Fig. 11. We found the agreement to be surprising
since the model’s derivation required that dγia/dIpi ≈ 0, which

seems inconsistent with the lower PI intensity γia results. We
do find a small systematic difference between our experimental
data and the intensity-loss coefficient model. The fits slightly
overshoot the data at the knee of the curve and then the fits
undershoot the data at the high-intensity end of the curve. The
discrepancy is small (as compared with the error bars) but
systematic, since it appears in every data run that we have
performed for both MOTs. However, it is understandable that
this small discrepancy was not observed in Ref. [17] since the
PI intensities used were two orders of magnitude smaller in
that study and, thus, the nearly saturated regime seen in Fig. 11
was not reached.

As we mentioned before, the LPT loss rate λ was equated
with γia in Ref. [17]. Unfortunately, we find this to be
inconsistent with our data. By comparing Figs. 11 and 12,
we see that λ does not have the same Ipi dependence as γia.
Additionally, λ is an order of magnitude larger than γia. The
ion-atom MOT loss γia goes to zero as PI intensity is decreased.
By equating λ with γia, Ref. [17] suggests that the trap loss
would also go to zero without PI or without the MOT, which
is inconsistent with the fact that the LPT always exhibits some
trap loss.

A resonant charge-exchange collision results in a Na+ with
an energy close to that of a MOT atom. Elastic collisions with
MOT atoms may cause the ion to gain energy but more often
result in a lower energy. Because collisions with neutrals, on
average, reduce the energy of an ion, only a very small fraction
of these collisions cause an ion to be ejected from the very
deep (as compared to the MOT) trapping potential of the LPT.
Also, elastic and resonant charge-exchange collisions cause no
net increase in the number of trapped ions, so for a saturated
LPT, ion-atom collisions do not necessarily lead to ion loss.
Therefore, it is unlikely that an ion-neutral collision will cause
an ion to be ejected, suggesting that γia should not be equivalent
to λ.

We suggest that λ’s apparent PI intensity dependence is
actually due to a dependence on NI . Therefore, the LPT steady-
state population Ipi dependence comes entirely from LI . If λ

depends on NI , this would mean that the LPT loss has a space
charge dependence, despite the fact that we are operating in
the low coupling regime � � 1, where � is the ratio of the
nearest-neighbor Coulomb repulsion to the average thermal
energy [51].

To incorporate the effects of two-body collisions, which to
lowest order are proportional to the number of trapped ions,
we approximated λ’s ion-number dependence as

λ ≈ λ1 + λ2NI , (15)

where λ1 is the linear loss rate constant and λ2 is the nonlinear
loss rate constant. Substituting Eq. (15) into (10) gives a rate
equation with the same form as the temperature-limited MOT
loading rate Eq. (6):

dNI

dt
= LI − λ1NI − λ2N

2
I . (16)

We found that the solution to Eq. (16) fits the time-
dependent loading data slightly better than the fits shown in
Fig. 9, probably because of the additional fitting parameter.
Because the fits were slightly better, we used the steady-state
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FIG. 11. (Color online) Plot of the ion-atom loss rate γia as a
function of PI intensity for the type-I MOT (black) squares and the
type-II MOT (red) circles. We find that γia measurements of the MOT
fluorescence are not equivalent to the LPT loss rate measurements
seen in Fig. 12. Furthermore, we show fits to the type-I (black dashed
line) and type-II (solid red line) MOT data obtained as the solution
of Ref. [17]’s intensity-loss rate equation.

ion population fitting results from the solution to rate Eq. (16)
as the independent variable in Fig. 8. However, we found that
there was little to no difference in the fit results of LI or
ÑI when we used the solution to rate Eq. (10) versus that
of Eq. (16). The uncertainty in the steady-state values comes
from propagating the uncertainty in the ion loading fit results
and the CEM calibration fit results.

Unfortunately, we find that the LPT loss rates λ1 and λ2

still have an Ipi dependence, which suggests that Eq. (16) is
also not the correct rate-equation model for LPT saturation.

2. LPT decay

The missing piece to the LPT loading dynamics is how to
accurately model the LPT loss rate. In an attempt to better
understand the loss mechanism, we looked at the LPT ion
decay when the LPT is initially saturated, as seen in Fig. 13.
Experimentally, the LPT is initially saturated with either the
type-I or -II MOT. After loading to saturation, the MOT is
turned off and the ions are held in the trap for some delay
without the MOT. The ions are then extracted and detected
with the CEM. The process is repeated for increasing delay
times until only a small ion signal is detected.

We did not see the simple exponential decay (red dashed
curve in Fig. 13) often observed [4,14,72], even previously
by our own group [2]. We also found poor agreement with
the decay model developed in Ref. [16]. We found a slight
improvement when the ion decay was fit to the solution of
Eq. (16) with LI = 0 (blue dotted-dashed curve in Fig. 13), but
the best fit was with a two-exponential decay (green solid curve
in Fig. 13). Granted, the two-exponential decay has the largest
number of free parameters, but this equation emphasizes that
there is an initial rapid loss after 0.1 s and then a more gradual
loss after 1.1 s. We suspect that the departure from the simple
exponential decay is due to the fact that the LPT is saturated,
which was not the case in Ref. [2].

FIG. 12. (Color online) Plot of the LPT loss rate λ as a function
of Ipi. Each value is determined from fits to loading curves like the
ones seen in Fig. 9. Curve (a) is the λ fitting value when the LPT is
loaded with the type-II MOT and curve (b) is the λ fitting value when
the LPT is loaded with the type-I MOT.

Saturation of the LPT occurs when the Coulomb space
charge force and the spring force are balanced. Therefore, it
is reasonable to expect space charge effects to play some role
at saturation, even in the weakly coupled regime � � 1. The
early rapid loss may be due to ion-ion interactions playing a
significant role in the dynamics or possibly caused by a slightly
non-Gaussian LPT initial saturated spatial distribution. The
two-exponential decay solution would come from a second-
order rate equation, like that of an undriven overdamped
harmonic oscillator. Unfortunately, we do not have a physical
motivation for introducing such a rate equation at this time.

We have also conducted simulations of 500 interacting ions
in an idealized quadrupole field, which decay from an ion
trap over 100 000 rf periods. These simulations do not use
the exact dimensions of our LPT, as they are not the same
SIMION simulations discussed earlier. Furthermore, these
ions are simulated in the absence of any ion-neutral collisions,
patch fields, or electrode imperfections. An ion is considered
lost from the trap when its position exceeds a critical radius.
In a real LPT, the critical radius would be determined by
the effective ion trap depth or physical edge of the trapping
electrodes (whichever is smallest). However, in the simulations
the critical radius is arbitrarily chosen to approximately be
double the size of the initial simulated ion cloud width.

These simulations (shown as the solid red curve in Fig. 14)
also exhibit three regimes: a brief initial period of stability,
then a rapid loss, followed by a more gradual loss at low
ion number. The simulations show good qualitative agreement
despite being idealized. The qualitative agreement with Fig. 13
suggests that ion-ion rf heating [73–76] is the main cause of
the trap decay since it is the only simulated loss mechanism
here. In the interest of having reasonable computation times,
the simulations are performed with much higher ion cloud
densities and within a much smaller trap depth, as compared
to the actual experimental conditions. Therefore, Fig. 14’s
decay occurs over a much shorter period of time, making the
comparison strictly qualitative.
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FIG. 13. (Color online) Experimental LPT ion population decay
as a function of time on a log-log scale. The LPT is saturated with
the type-I MOT and Ipi ≈ 670 mW/cm2. Loading from the type-II
MOT gives qualitatively identical behavior. The decay is initially
nonexistent and is then followed by a sudden rapid decay (after 0.1 s)
and then a slower decay (after 1.1 s). We have fit the decay curve to
three solutions: the red dashed curve is the solution to Eq. (10) with
LI = 0, the blue dotted-dashed curve is the solution to Eq. (16) with
LI = 0, and the solid green curve is for a double-exponential decay.
The uncertainty in the data is smaller than the plot markers.

We also performed numerical simulations of a likely
physical underlying process: an ion cloud with a Gaussian
spatial distribution diffuses due to ion-ion rf heating, until one
of the hot ions in the tail reaches the critical radius and is lost
from the trap. When an ion is lost, it carries off a fraction
of the cloud’s energy, lowering the temperature of the cloud.
This causes a shrinking of the cloud, which diffuses back to
the critical radius. As the number of ions is reduced, each
successive ion removes a larger fraction of the total energy
when it is lost, leading to a nonexponential decay, as seen
in the black dashed curve in Fig. 14. The diffusing Gaussian
model shows good quantitative agreement with the ion trap
simulations.

In this section, we have revised the loading model from
Ref. [17]. In doing so, we are confident that we can accurately
model the LPT loading rate LI and the steady-state ion
population ÑI , but have yet to determine a completely
satisfactory closed-form analytic solution to both the LPT
loading and decay rate equations. We plan to continue our
studies on the subject of LPT loading and decay and we hope
to present our findings in a more detailed manuscript in the
near future.

C. Dark Na+ ion cloud size

To determine kia, we must first determine the dark Na+

ion cloud size. For optically accessible ion clouds, this can be
accomplished by simply imaging the ion cloud in the same
way we image the MOT, but for a dark ion cloud this is not
an option. In principle, if the trap is saturated and the radial
trap depth D is known, then the maximum transverse radius
of the ion cloud r̃I can be determined by equating the depth to
the harmonic potential energy of the outermost ion’s turning

FIG. 14. (Color online) Ion trap simulations (red solid curve) and
numerical diffusing Gaussian model (black dashed curve) of 500
ions decaying from an idealized ion trap. The simulation and model
calculations show good quantitative agreement with each other and
good qualitative agreement with the experimental data in Fig. 13.

point, which gives

r̃I,1 =
√

2D

mIω2
r

(17)

in the radial dimension [9,17,21], where mI is the mass of the
trapped ion. Because the radial depth is much greater than the
axial trap depth [71], we can assume the cloud is limited by
the equally partitioned [52] transverse secular energy mode,
making the maximum axial extent r̃I,3 = ωr r̃I,1/ωa , if we
assume a harmonic axial potential. However, it is difficult
to experimentally determine the effective trap depth, which
can be quite different from the theoretical single-ion idealized
quadrupole radial trap depth [71], which is merely a function
of the trap voltage settings. For example, this was found to be
the case in Ref. [16].

The first upper bound on the radial extent of the ion cloud is
the mechanical inner electrode radius of the trap r0 ≈ 9.5 mm,
as seen in Fig. 2. We can reduce this upper bound by using our
SIMION simulations. We simulated an ion that is initialized
with no initial kinetic energy at ever-increasing transverse
displacement from the LPT’s nodal line [9]. If the ion starts at
a distance �3 mm from the nodal line at the experimental trap
settings, we find that the ion cannot remain trapped for more
than two secular periods. If we consider this upper bound to
be equivalent to the 1/e2 radius of the Gaussian distribution,
then the upper bound on rI,1 = 3/

√
2 ≈ 2.12 mm.

Other groups [7,8,15] have used a single trapped ion in
a hybrid trap to probe a neutral BEC. We have essentially
employed the reverse process: we use the MOT to probe a
dark ion cloud. By translating the MOT across the saturated
ion cloud along one transverse dimension, we measured γia as
a function of the changing concentricity function C(x0,1) in
Eq. (4). As we translate the MOT, the steady-state number of
saturated ions changes slightly, due to the fact that both the
PI rate and the saturated ion-cloud temperature depend on the
MOT’s position. Therefore, we normalize γia to the steady-
state ion population point for point. We found the normalized
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FIG. 15. MOT ion-atom loss rate γia normalized by the steady-
state ion population ÑI as a function of the center position of the
type-I MOT (as measured with the CMOS camera) relative to the
geometric center of the LPT [x0,1 in Eq. (4)]. The data are fit to
Eq. (3) and the fitted ion cloud radius is rI,1 = 1.6 ± 0.1 mm.

ion-atom loss rate fit well to Eq. (3), as seen in Fig. 15, which
supports our claim that the ion cloud had a Gaussian spatial
distribution.

We have assumed that as the MOT is translated, kia remains
constant. Because the temperature of the ion cloud will change
when the LPT is loaded from a MOT displaced off the nodal
line, kia is technically different from point to point. However,
since kia has a weak temperature dependence, the model still
fits well.

Measurements taken over several days found that the
saturated ion cloud size did not depend on the PI intensity
used. Typical fit results gave rI,1 = 1.6 ± 0.1 to rI,1 = 1.9 ±
0.1 mm, always less than but close to the simulation upper
bound. Therefore, we will use the experimental data as a lower
bound on the ion cloud radius of rI,1 = 1.75 mm.

Instead of using the ratio of the secular periods to determine
the lower and upper bounds on the axial extent of the ion cloud,
we used our SIMION simulations with an ion initialized at the
center of the trap having the kinetic energy equivalent to the
potential energy at the maximum radial turning point for rI,1 =
1.75 and 2.12 mm, respectively. The SIMION simulations found
the lower and upper bounds axial extent to be rI,3 = 10.57 and
12.10 mm, respectively. Using the SIMION simulations should
be more accurate because it models the actual LPT electrode
geometry, which yields a more quartic axial electrical potential
than harmonic.

Having determined the ion cloud size and the MOT
dimensions via CMOS camera measurements, Ṽia can be

TABLE II. Table of total rate coefficient experimental and
theoretical results for the type-I and -II MOTs. The saturated ion-atom
volume Ṽia is determined using Eq. (5) with input from measurements
discussed in Sec. III C.

Experimental Theoretical
MOT Ṽia (cm3) kia(cm3/s) kia(cm3/s)

Type I 0.247 ± 0.061 7.4 ± 1.9 × 10−8 8.62 ± 0.07 × 10−8

Type II 0.267 ± 0.060 1.10 ± 0.25 × 10−7 1.14 ± 0.01 × 10−7

determined. The final results are summarized in Table II. The
experimental kia is calculated using the slopes from Fig. 8 while
the theoretically determined kia values are weighted averages
of the values found in Table I, based on the MOT fe.

IV. CONCLUSION

We have demonstrated a modified version of a method,
originally reported in Ref. [17] for Rb+-Rb, for measuring
the total ion-atom collision rate coefficient of Na on optically
dark Na+. The experimental results show very good agreement
with previously reported fully quantal ab initio calculations.
In determining kia we demonstrated that the MOT can be used
as a probe of a dark ion cloud spatial distribution. We have
also measured the two-body Na MOT atom-atom collision
rate coefficient β and the PI cross section σpi at 405-nm
radiation for both the type-I and -II MOTs. The measurements
of β and σpi showed good agreement with previously reported
experimental and theoretical values.

For optically bright ion clouds, the charge-exchange rate
coefficient can be determined by the ion decay alone. However,
by also using the MOT ion-atom loss rate to determine
the total collision rate coefficient, the elastic scattering rate
coefficient can be determined by subtracting the two results.
We plan to implement this procedure in measurements on the
Ca+-Na system. Finally, we have presented some preliminary
simulation and experimental results toward the development of
an analytical closed-form model of LPT trap loss, saturation,
and loading dynamics.
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