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Energy-sharing (e,2e) collisions: Ionization of the inert gases in the perpendicular plane
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The triple differential cross section for ionization of the inert gases He, Ne, Ar, Kr, and Xe in energy-sharing
perpendicular plane geometry is investigated. Encouraging agreement with recent experiments is found using
the distorted-wave Born approximation (DWBA). Mechanisms are discussed which explain the He and Ne
data but which seem to be masked by the greater distortion effects in the heavier targets. The inclusion of
postcollisional interaction is explored using Gamow, Nee, and Ward-Macek, Mee, factors. While both help to
improve the shape of the cross section for He and Ne at the lower energies, they are not successful for the
other targets, and both factors prove to be too strong for all the inert gases with increasing impact energy. It is
well known that Nee destroys normalization. Comparing DWBA + Mee results with some absolute experimental
points at 1 and 2 eV indicates that it is also not to be trusted on normalization. An interesting situation with
Ar is highlighted near 25 eV, where the cross section may be tending towards a strong interference minimum
or zero.
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I. INTRODUCTION

An (e,2e) process is one in which an electron of well-
defined energy and momentum is fired at a target and ionizes
it and the two exiting electrons are detected in coincidence.
The energies and positions in space of these electrons are
determined by the experiment, so in effect all but the spin
quantum numbers are then known. We can therefore describe
it as a kinematically complete experiment; if we could also
measure all the spins, we would have all the information from a
scattering experiment that quantum mechanics will allow. The
technique offers both the possibility of a direct determination
of the target wave function and profound insights into the
nature of few-body interactions. What information is extracted
from such an experiment really depends on the kinematics cho-
sen and the target used. Integrated cross sections can be crude
things, and the full power of a highly differential measurement
is needed to tease out the intricacies of the interactions. Indeed,
often, the most intriguing effects turn up in peculiar geometries
where the cross sections are small and where a number of
relatively subtle few-body interactions are present. In this
paper we are concerned with understanding the low-energy
triple differential cross section (TDCS) for electron impact on
the inert gases He, Ne, Ar, Kr, and Xe in perpendicular plane
geometry. For this study we employ the distorted-wave Born
approximation (DWBA). This has proved to be an extremely
useful tool for teasing out the different mechanisms and
competing effects observed in (e,2e) processes. For recent
reviews, see [1,2]. We use the DWBA here to help understand
the shape of the cross sections observed in the recent
experiments of [3]. Atomic units (� = e = me = 1) are used
throughout.

II. THE DISTORTED-WAVE BORN APPROXIMATION

The DWBA has been applied to electron impact ionization
for quite some time, with the first detailed account being given
by [4]; the version we use is, in essential features, the same with
some refinements. For a full discussion of the approximation,
its strengths, weaknesses, and our computational implementa-
tion see [5].

For the ionization of the n,l orbital of an inert gas atom
the TCDS, after summing over all final and averaging over all
initial spin states, is given by

d3σDWBA

d�f d�sdE
= 2(2π )4 kf ks

k0

l∑
m=−l

[|fnlm|2

+ |gnlm|2 − Re(f ∗
nlmgnlm)], (1)

where

fnlm(kf ,ks) = 〈χ−(kf ,rf )χ−(ks ,rs)

∣∣∣∣ 1

‖rf − rs‖
∣∣∣∣

×χ+
0 (k0,rf )ψnlm(rs)〉,

(2)

gnlm(kf ,ks) = 〈χ−(kf ,rs)χ
−(ks ,rf )

∣∣∣∣ 1

‖rf − rs‖
∣∣∣∣

×χ+
0 (k0,rf )ψnlm(rs)〉.

Here, χ+
0 is the distorted wave calculated in the static-exchange

potentials of the atom, and χ− are the distorted waves which
are calculated in the static-exchange potentials of the ion and
then orthogonalized to ψnlm. These are normalized to a δ
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function, i.e.,

〈χ±(k,r)|χ±(k′,r)〉 = δ(k − k′).

In actual calculations, it is not usual to work with the full
nonlocal exchange potential; rather, one employs a localized
version [5–9]. Its use greatly simplifies the static exchange
calculations in that one needs to solve only differential equa-
tions rather than the integro-differential equations. Because
we treat each of the exiting electrons as moving in the field of
a spin- 1

2 ion, there is an inherent ambiguity in the choice of
exchange potential in the final channels; we could chose it to
be singlet or triplet [5,10]. For most energies there is little or
no difference between results calculated with the singlet and
triplet potentials [5,8], but at low energies there is a weakness
in the singlet form because for some energies it can become
complex. A method has been proposed in [7] to make the
potential real again if this happens, but this method results in
a discontinuous singlet potential and generally gives results in
poorer agreement with experiment than the equivalent triplet
calculation (see [5]). In the results presented below we have
used the singlet potential for consistency with our earlier
calculations [11] except for the lowest energies on helium
(see Fig. 3), where the singlet potential breaks down and we
use the triplet potential. The DWBA includes the possibility of
the incoming electron being elastically scattered in the field of
the atom and the exiting electrons being elastically scattered
in the field of the ion. The electron-electron interaction occurs
exactly once, and no account is taken of postcollisional
interactions (pci) between the two final-state electrons or
polarization of the target by the incident projectile. For low-
energy collisions pci could be important; to take some account
of it a Gamow factor Nee [12,13] is sometimes employed,

d3σPCI

d�f d�sdE
= Nee

d3σDWBA

d�f d�sdE
,

where

Nee = γ

eγ − 1
, (3)

with

γ = 2π

‖kf − ks‖ .

The Nee factor tends to give the dominant angular behavior of
the TDCS at low energies due to final-state electron-electron
interaction, and it does correctly force the cross section to go to
zero when kf = ks . However, the overall normalization is lost.
To ameliorate this it is usual to have Nee normalized so that it
is fixed to 1 when the angle 	f s = 2η between kf and ks is
180◦. A modified version of the Nee factor has been suggested
by Ward and Macek [14]. These authors suggested replacing
Nee with

Mee = Nee|1F1(−iν3,1, − 2ik3r3av)|, (4)

where

k3 = 1

2
‖kf − ks‖, ν3 = − 1

‖kf − ks‖ ,

(5)

r3av = 3

ε

[
π

4
√

(3)

(
1 + 0.627

π

√
ε ln ε

)]2

,

with ε being the total energy of the two emerging electrons.
The factor r3av has been chosen because of the requirement
that the Mee factor reproduce the correct Wannier threshold
law, and thus it is hoped that the use of Mee rather than Nee

will lead to a correctly normalized cross section. Al-Hagan
et al. [15] recently found that using the Mee factor was helpful
in describing the low-energy ionization of molecular hydrogen.
Using Nee, or, indeed, Mee for that matter, is a relatively crude
way of including pci effects, and it is only really useful very
close to the threshold [5].

Despite its inherent simplicity the DWBA has the great
advantage that we can explore the relative importance of
different effects by “switching” interactions on and off;
for example, by replacing χ+

0 (k0,rf ) in (2) with the plane
wave (2π )−3/2 exp(ik0 · rf ) we switch off the elastic collision
between the incident electron and the atom.

III. IONIZATION INTO THE PERPENDICULAR PLANE

For the inert gases there are experimental data for ionization
into the perpendicular plane [3]. In these experiments both
final-state electrons are detected in the plane perpendicular to
the incident electron,  = 90◦ in Fig. 1 with equal energies
kf = ks = k and with equal angles θs = θf = η. The recoil
momentum is

krecoil = k0 − kf − ks
⇒ k2

recoil = k2
0 + 2k2 + 2k2 cos 	f s. (6)

The new experiments [3] are an extension of those of
Woolf [16], who presented experimental results for the
ionization of helium into the perpendicular plane. Good
agreement was found between the earlier results and the
DWBA calculations of [11,17]. It should be noted that 	f s

is quoted to be in the range 0◦ to 360◦; of course, the ranges
0◦ to 180◦ and 360◦ to 180◦ correspond physically to the same
process, so the TDCS should be symmetric about 	f s = 180◦.
For experiment this is a test of consistency, e.g., alignment of
apparatus; for theory it should follow automatically. For ease
of comparison with coplanar symmetric [18] and coplanar con-
stant 	f s [19] geometries we give all our results as a function
of the angle η = 	f s

2 , so this symmetry will be about 90◦.
To understand ionization into the perpendicular plane we

must ask how the final-state electrons get into the plane.

FIG. 1. (Color online) The general experimental setup envisaged
for the (e,2e) processes considered in the paper. k0,kf,ks denote,
respectively, the wave vectors of the incident and final-state electrons.
k0 makes an angle  with the plane of kf and ks. The exiting electrons
are detected with angles θf ,θs left and right of the line defined by
 = 0◦. Their angle of mutual separation is given by 	f s = θf + θs .
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A. Single-scattering mechanism

In a free collision between two electrons with two equal-
energy final-state particles conservation of energy and mo-
mentum would require that k0,kf,ks all be coplanar and the
angle between kf and ks be 90◦. Therefore there can be no
ionization into the perpendicular plane for a collision with a
free electron. Our target electron is not free, however, but has an
initial momentum distribution appropriate to its orbital in the
atom. There could be ionization into the perpendicular plane

as a result of a collision with an electron of the distribution
whose momentum κ would exactly cancel out the momentum
of the incident electron in the k0 direction, i.e.,

κ = −k0 + k⊥,

where k⊥ is perpendicular to k0. Since

kf + ks = k⊥,

the direction of the two outgoing electrons will depend on k⊥.

FIG. 2. (Color online) TDCS for perpendicular plane ionization of He(1s) for Es = Ef = E plotted as a function of the angle η =
	f s

2 . Energies E are as shown in each panel; experimental points are from [3]. DWBA: blue solid line; DWBA +Nee: red dashed line;
DWBA + Mee: purple dash-dotted line; PWA: green dotted line. Experiment is relative and has been normalized to the DWBA at η = 90◦.
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FIG. 3. (Color online) TDCS for perpendicular plane ionization of He(1s) for Es = Ef = E plotted as a function of the angle
η = 	f s

2 . Energies E are as shown on each panel. The experimental points are from [3] for E = 1.5 and 2.5 eV, are relative, and
have been normalized to DWBA. The single experimental points at E = 1 and E = 2 eV are from [21] and are absolute. DWBA:
blue solid line; DWBA + Nee: red dashed line; DWBA + Mee: green dotted line. Note the triplet exchange potential is used in these
calculations.

B. Double-scattering mechanism

A second path into the perpendicular plane is the following:
the incident electron could be scattered into the perpendicular
plane as a result of an elastic collision with the target
atom. Then in a second momentum- and energy-conserving
free collision the atomic electron is ionized, with both
electrons emerging in the perpendicular plane. We have
performed calculations for He(1s), Ne(2p), Ar(3p), Kr(4p),
and Xe(5p) [20] in (i) the regular DWBA which contains
both the single- and double-scattering mechanisms and their
interference and very little else, (ii) a model calculation where
χ+

0 (k0,rf ) in (2) is replaced by the incident plane wave
(2π )−3/2 exp(ik0 · rf ) so that we switch off the elastic collision
between the incident electron and the atom [the plane-wave
approximation (PWA) then contains only the single-scattering
mechanism], and (iii) calculations using both the Mee and
the Nee terms to try to get some idea of the importance
of pci between the exiting electrons. Since the experiments
are relative, we have chosen to normalize the experiment to
the DWBA value at η = 90◦. The other approximations are
normalized to the same point.

C. Helium(1s)

In Fig. 2 we show a comparison between our calculations
and the relative experimental data of [3]. The experiments
have been normalized to the DWBA at η = 90◦. The DWBA
performs reasonably well at all energies, with the single-
scattering maximum at η = 90◦ dominating at low impact
energies, while at the higher energies the double-scattering
maxima near 45◦ and 135◦ become dominant. We also
show our plane-wave calculations, which do not contain
the double-scattering mechanism and which exhibit only a
single-scattering peak at η = 90◦. A feature missing from the
straight DWBA is pci. This has the effect of reducing the
cross section at small (large) η and will make it zero at η = 0◦

(180◦). In order to take pci into account we have repeated our
calculations with the Nee and Mee factors, which, in Fig. 2, have
each been normalized to unity at η = 90◦. The pci corrected
approximations give a reasonable fit to the experimental data
at the lower energies, in particular killing the “wings” on the
DWBA results at small and large η. The Mee calculations give
marginally better shape agreement than Nee.
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FIG. 4. (Color online) TDCS for the perpendicular plane ionization of Ne(2p) for Es = Ef = E plotted as a function of angle η = 	f s

2 .
Energies E are as shown on each panel; experimental points are from [3]. DWBA: blue solid line; DWBA + Nee: red dashed line; PWA: green
dotted line. Experiment is relative and has been normalized to the DWBA at η = 90◦.

It is well known that Nee gives poor results for normaliza-
tion, producing cross sections that can be much too small. Mee

was introduced to correct for this normalization discrepancy.
So the question of absolute size is very significant. In addition
to the experimental data shown in Fig. 2, Nixon et al. [3] also
performed measurements at E = 1.5 and 2.5 eV. Unfortunately,
not exactly at, but near, E = 1.5 and 2.5 eV (at E = 1
and 2 eV), there are absolute measurements from Rösel and
collaborators [21] in the coplanar symmetric geometry. This
geometry has one point in common with perpendicular plane
geometry, namely, η = 90◦. In Fig. 3 we compare the DWBA,
DWBA + absolute Mee, and DWBA +Nee normalized to unity
at η = 90◦, with the absolute points from [21] and the relative
data from [3] at the these energies. The DWBA agrees well with
the absolute points, but the Mee-corrected DWBA clearly fails
on normalization. At the nearby energies of E = 1.5 and 2.5 eV
the DWBA + normalized Nee has good agreement with the
relative measurements [3] and, judging by the absolute results
at 1 and 2 eV, presumably gives a good representation of the
size of these measurements. Since Mee has poor agreement for
absolute size and there is only a very small difference in shape
compared with that of the Nee calculations, we will not show
the Mee results for the other inert gases, with the exception

of results for xenon when they are relevant to the comparison
with the relativistic calculations of [22].

Finally, we note the calculations of [23] at the two
energies E = 10 and 20 eV. Those authors also performed
DWBA +Nee calculations but added a polarization potential
in the initial and final channels. Their results are strikingly
different from both our calculations and experiment. The
multiple-peak structure seen in Fig. 2 is absent in their results,
and they found only a single broad peak centered at η = 90◦.

D. Neon(2 p)

Our results for Ne(2p) are shown in Fig. 4. In contrast to
He(1s), there is a minimum in the PWA and DWBA cross
sections at all energies. The PWA and DWBA both show
the development of peaks in the wings. Since the PWA only
contains the single-scattering mechanism, these peaks can no
longer, in general, be unambiguously attributed solely to the
double-scattering mechanism. In PWA they are the result of
the interplay of the p-state target orbital and the waves χ−
describing the ejected electrons. However, by E = 25 eV
the side peaks in PWA have declined significantly, while
the DWBA peaks have grown; this is the double-scattering
mechanism showing through.
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FIG. 5. (Color online) TDCS for perpendicular plane ionization of Ar(3p) for Es = Ef = E plotted as a function of angle η = 	f s

2 .
Energies E are as shown on each panel; experimental points are from [3]. DWBA: blue solid line; DWBA + Nee: red dashed line; PWA: green
dotted line. Experiment is relative and has been normalized to the DWBA at η = 90◦.

At 5 eV, it is only when we include pci, through the Nee

factor, that we get agreement with experiment. The effect of
the pci is to smooth out the minimum in the DWBA at η = 90◦
and turn it into a maximum. While the Nee correction is very
helpful at 5 eV, it appears to be too strong at the higher energies
where the “pure” DWBA does much better. This is consistent
with what we have seen for He(1s). In Purohit et al. [23]
results are presented for Ne(2p) but only at 10 eV and then
in their variation of the DWBA, which includes a polarization
potential. Their results have the same general form as our
DWBA calculations.

E. Argon(3 p)

We show the results for Ar(3p) in Fig. 5. Here the
maximum at η = 90◦ has returned, in both the PW and DWBA
approximations, albeit very weakly in DWBA at 5 and 25 eV. In
the energy range shown the DWBA does not develop maxima
in the wings as we have seen for He(1s) and Ne(2p). However,
the rapidly rising wings do lead to good agreement with the
experimental data at 17.5 and 20 eV. The agreement of DWBA
with experiment at 15 eV is also not too bad. For Ar(3p) the
double-scattering mechanism appears to have been buried by
other distortion effects.

At 5 eV experiment does show maxima near η = 50◦ and
130◦, and one might think that the inclusion of pci, in the
form of DWBA +Nee, could bring agreement with experiment
as it did for He(1s) and Ne(2p). But it does not. Indeed,
DWBA +Nee is rather poor for Ar(3p), except possibly near

15 eV. As with He(1s) and Ne(2p), the Nee factor seems to
be too strong with increasing energy, much too strong in the
case of Ar(3p). The experimental results at 25 eV, which,
like all the other cases in Fig. 5, have been normalized to
the DWBA at 90◦, seem rather anomalous. Here the shape
of the experimental data has changed significantly, adopting
a parabolic form with much more pronounced wings. By
contrast, the wings on the DWBA appear to be collapsing.
This discrepancy between theory and experiment is odd since

FIG. 6. (Color online) TDCS for perpendicular plane ionization
of Ar(3p) for Es = Ef = E = 25 eV plotted as a function of angle
η = 	f s

2 . The DWBA calculation as in Fig. 5 and the experimental
results of [3], which have now been normalized to the DWBA at 60◦,
are shown.
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FIG. 7. (Color online) TDCS for perpendicular plane ionization of Kr(4p) for Es = Ef = E plotted as a function of the angle η = 	f s

2 .
Energies E are as shown on each panel; experimental points are from [3]. DWBA: blue solid line; DWBA + Nee: red dashed line; PWA: green
dotted line. Experiment is relative and has been normalized to the DWBA at η = 90◦.

for the rest of the inert gases (see Figs. 2, 4, 7, and 8) we
get relatively good shape agreement between the experiment
of [3] and the DWBA in the region of 25 eV. In Fig. 6 we
show the DWBA results for 25 eV once more, but now we
have normalized the experiment to the DWBA at 60◦. Now
there is good agreement in the wings but at the expense of
the experimental points reaching a much lower minimum at
η = 90◦. This is suggestive of a strong interference effect
coming into play, maybe leading to a zero, or near zero, in
the cross section. Such an effect was predicted for Li(2s),
Ar(2s), and Ne(2s) in [24] and was subsequently observed in
neon experiments [25]. Rasch et al. [24] also examined Ar(2p)
and Ne(2p) but found that the effect could be masked by the
different behaviors of the magnetic sublevels. The observation
of interference effects is very sensitive to the kinematics of
the measurements. More detailed experimental investigation
in the region between 20 and 30 eV is recommended.

F. Krypton(4 p)

Our results for Kr(4p) are shown in Fig. 7. Except at
25 eV, the results are not too dissimilar from those for
Ar(3p). In particular, DWBA is in quite good agreement
with experiment at 15 eV and above. Unlike Ar(3p), both
DWBA and experiment develop distinct peaks at small and
large η. However, PWA also has such peaks, although not
as pronounced, so it is difficult to attribute them to the
double-scattering mechanism. As with Ar(3p), DWBA +Nee

is poor, and the pci effect, as described by the Nee factor, is too

strong. The results at 25 eV contrast strongly with the Ar(3p)
case, both in the shape of the experimental points and in their
agreement with DWBA.

G. Xenon(5 p)

For Xe(5p) (Fig. 8), our plane-wave approximation gives
something of the character of the cross section at all energies.
At 10 and 15 eV the DWBA gives some structure which is, to
some degree, mirrored by the experiment. At higher energies
these structures disappear. The Mee and Nee factors only make
a relatively small difference to shape. All in all, the DWBA is
in reasonable agreement for all energies.

There are fully relativistic DWBA calculations from
Illarionov and Stauffer [22] with which to compare the
results for Xe(5p). While both sets of calculations tend
to produce the same general trend there are a number of
puzzling discrepancies. Naively, one would expect that the
nonrelativistic and relativistic calculations would be very
similar [26]. In [22] an Mee factor is included, so we include
the Mee results in Fig. 8. In [22], at 5 eV, there is a single
central peak with only a slight indication of structure in the
wings, while our DWBA + Mee shows a central peak and two
well-defined, if smaller, peaks in the wings. At 10 eV our
calculation and theirs seem to have reasonable agreement, but
at 15 eV the large-angle peaks are more pronounced in [22];
indeed, they are bigger than the central peak. The large-angle
peaks remain clearly visible in their calculations for all
the remaining energies but are essentially eliminated in our
DWBA +Mee calculations above 20 eV.
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FIG. 8. (Color online) TDCS for perpendicular plane ionization of Xe(5p),2P 3
2
, for Es = Ef = E plotted as a function of the angle

η = 	f s

2 . Energies E are as shown in each panel; experimental points are from [3]. DWBA: blue solid line; DWBA + Nee: red dashed line;
DWBA + Mee: purple dash-dotted line; PWA: green dotted line. Experiment is relative and has been normalized to the DWBA at η = 90◦.

IV. CONCLUSION

We have considered the ionization of the inert gases in
the perpendicular plane geometry and have compared our
results with the relative experimental measurements of [3].
We have used the DWBA as our basic approximation. This
approximation includes the single- and double-scattering
mechanisms proposed by Zhang et al. [11]. However, except
for the lightest gases, He and Ne, we have been unable to

identify these mechanisms. That is not to say that they do not
exist but rather that the distortion effects are so strong in the
heavier gases that they get masked. Agreement between our
DWBA calculations and the experiment is very encouraging,
especially for He and Xe.

At the lowest energies pci are very important. We have
tried to include them by using the Gamow factor Nee and
the Ward-Macek factor Mee. For He and Ne these factors
are very effective at improving the shape of the low-energy
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TDCS, but they fail for the heavier inert gases Ar, Kr, and Xe.
Also, with increasing energy the Nee and Mee factors become
much too strong, distorting the shape of the DWBA away
from the experimental results. Here the straight DWBA is in
very much better agreement with experiment. It is also well
known that the Nee factor fails dramatically on normalization.
To correct for this defect we have normalized it to unity at
η = 90◦. We have also used the same renormalization of the
Mee factor. However, Mee was introduced to correct for the
normalization defect of Nee and should be able to stand on
its own without renormalization. We have tested this for He
at impact energies of 1 and 2 eV, for which we have absolute
points from the coplanar measurements from [21]. We find that
here unrenormalized Mee gives cross sections that are too small
by a factor of 2, while the “pure” DWBA gives agreement.

Clearly, Mee, although giving a much better representation of
normalization than Nee, is not to be trusted on normalization.
A better approach for including pci is needed

Ar presents an interesting case. Like all the other inert
gases, agreement between the experiment of [3] and DWBA
generally improves above 15 eV impact energy, except that
there is a sudden discrepancy at 25 eV. Here normalization
of the experiment to DWBA at η = 90◦ would seem to imply
that there is something seriously wrong either with experiment
or theory. But normalization at η = 60◦ is suggestive of an
approaching zero, or near zero, in the TDCS as a result of
strong interference effects, with theory and experiment not
quite agreeing on how rapidly the approach occurs for such a
delicate effect. This needs to be examined more carefully both
experimentally and theoretically.
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J. Röder, K. Jung, and H. Ehrhardt, Phys. Rev. A 50, 4394
(1994).

[20] We are using the notation A(nl) to mean the ionization of the
n,l electron from atom A. For example, Ne(2p) represents the
processes:

e− + Ne(1s2,2s2,2p6) → e− + e− + Ne(1s2,2s2,2p5),

while Ar(3p) is the process

e− + Ar(1s2,2s2,2p6,3s2,3p6)

→ e− + e− + Ar(1s2,2s2,2p6,3s2,3p5).
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