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Accurate knowledge of interaction potentials among the alkali-metal atoms and alkaline-earth ions is very useful
in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the
Li, Na, K, and Rb alkali-metal atoms with the Ca+, Ba+, Sr+, and Ra+ alkaline-earth ions systematically, which
are largely motivated by their importance in a number of applications. These interactions are expressed as a power
series in the inverse of the internuclear separation R. Both the dispersion and induction components of these
interactions are determined accurately from the algebraic coefficients corresponding to each power combination
in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities
of the above-mentioned systems, which are calculated using the matrix elements obtained from a relativistic
coupled-cluster method and core contributions to these quantities from the random-phase approximation. We
also compare our estimated polarizabilities with the other available theoretical and experimental results to verify
accuracies in our calculations. In addition, we also evaluate the lifetimes of the first two low-lying states of the
ions using the above matrix elements. Graphical representations of the dispersion coefficients versus R are given
among all the alkaline ions with Rb.
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I. INTRODUCTION

Advancements in the simultaneous trapping and cooling
of both ions and atoms in a hybrid trap [1,2] have resulted
in a significant upsurge in the precise description of the
atom-ion interactions. This new development of using hybrid
traps in which neutral atoms and ions are confined together
leads to the search for many exotic phenomena in the
quantum information science and condensed-matter related
fields [3]. Interaction between these systems can be described
as the special case of the van der Waal long-range forces
caused due to the fluctuating dipole moments of the systems
[4]. These interactions can enable many chemical reactions
like charge-exchange and molecule formations at the single-
particle level; hence better understanding of these interactions
is very useful in a number of studies such as explaining the
underlying reasons for various quantum phase transitions [5],
improvising quantum computing techniques [6], establishing
sustained atom-ion sympathetic cooling mechanisms [7,8],
designing ultracold superchemistry [9], studying the physics
of impurities in the Bose gases [10,11], and interpreting cold
atom collision processes [8].

Cotrapping of atoms and ions has several applications.
Observations of the scattering between the atoms and the
ions at the low-energy scale have been reported by a number
of groups [12–14]. Early studies on the properties of the
mixed atom-ion systems were reported by Côté and his
coworkers in order to investigate the ultracold atom-ion
collision dynamics and charge transportation processes and
to realize possible formation of the combined stable system
[15]. Recently, Härter and Denschlag observed that the elastic-
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scattering cross section of an atom-ion system depends on
the collisional energy in the semiclassical regime and favors
scattering at small angles [3]. Furthermore, the results of
an atom-ion scattering event have been utilized to develop
a novel and effective method to compensate excessive ion
micromotion in a trap [16]. Although there have been attempts
to study the atom-ion interactions in the past, the reported
results were not very accurate. Due to the experimental
advancements in the atom-ion trapping experiments, it is
imperative to provide more accurate description of these
potentials to infer important signatures of new physics. Owing
to the simplified and well-understood structures of the alkali-
metal atoms and alkaline-earth ions, they seem to be the
natural choices and of immense interest for experimental
investigations [17], for which we intend to carry out accurate
theoretical studies of the long-range atom-ion interactions
among these systems. In this work, we particularly undertake
the Li, Na, K, and Rb alkali-metal atoms and the Ca+, Sr+,
Ba+, and Ra+ alkaline-earth ions to estimate their long-range
interactions.

Determination of the van der Waal coefficients of the
atom-ion interactions requires evaluation of the dynamic
dipole, quadrupole, and octupole polarizabilities at imag-
inary frequencies [18]. We evaluate these polarizabilities
by using dominant contributing matrix elements and ex-
perimental energies in a sum-over-states approach. These
transition matrix elements are extracted either from the
measurements of the lifetimes and the static dipole po-
larizabilities of the atomic states or using a relativistic
coupled-cluster (RCC) method. Other contributions such as
from the core and core-valence correlations, which cannot
be estimated using the sum-over-states approach, are es-
timated using other suitable many-body methods. Unless
stated otherwise, we use atomic units (a.u.) throughout this
paper.
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II. EVALUATION OF MULTIPOLAR POLARIZABILITIES

The dynamic dipole (E1) and quadrupole (E2) polarizabil-
ities of the atomic systems with an imaginary frequency ιω are
given by

αk(ιω) = −
∑
I �=n

(En − EI )|〈�n|Ok|�I 〉|2
(En − EI )2 + ω2

, (1)

where n is the principal quantum number of the ground state
of the respective system, I represents all possible allowed
intermediate states, k = 1 and O1 ≡ D = |e|r for the dipole
polarizability (α1), k = 2 and O2 ≡ Q = |e|

2 (3z2 − r2) for
the quadrupole polarizability (α2), and k = 3 and O2 ≡ Q =
|e|(r3) for the octupole polarizability (α3). For the ab initio
evaluation of these quantities, one can express them as

αk(ιω) = 〈�n|Ok|�−
n 〉 + 〈�+

n |Ok|�n〉 (2)

with |�±
n 〉 = ∑

I �=n |�I 〉 〈�I |Ok |�n〉
(EI −En)±iω

, which can be treated as
analogous to the first-order wave function with respect to
the ground-state wave function |�n〉 due to the operator D.
However, it is complicated to obtain these wave functions
using sophisticated many-body methods like RCC owing to
the presence of the imaginary factor in the denominator.
Alternatively, we try to determine the ground- and singly
excited-state wave functions of these systems using the
following procedure. Indeed these states can be treated as a
closed-shell configuration with a respective valence electron in
the outermost orbital. We, therefore, calculate the Dirac-Fock
(DF) wave function (|�0〉) for the closed-shell configuration
first and then define the DF wave function of the ground or
singly excited states of the considered systems by appending
the valence orbital (v) to the DF wave function of the closed
shell as |�v〉 = a†

v|�0〉. The exact atomic wave functions
of these states can now be evaluated by considering the
correlations among the electrons within |�0〉 referred to as core
correlation, correlations seen by the valence and core electrons
of |�v〉 termed valence correlation, and correlations between
the core electrons with the valence electron v named the core-
valence contributions. Using the wave operator formalism,
we can write these wave functions accounting for the above
correlations independently as

|�v〉 = a†
v�c|�0〉 + �cv|�v〉 + �v|�v〉, (3)

where �c, �cv , and �v are known as the wave operators for
the core, core-valence, and valence correlations, respectively.

With the above prescription, the square of the matrix
element of Ok from Eq. (1) can be expressed as

〈�v|Ok|�I 〉2 = 〈�v|Ok|�I 〉〈�I |Ok|�v〉
= 〈�0|�†

cOk[�I�
†
I + �cI�

†
cI ]Ok�c|�0〉

+ 〈�v|�†
vOk[�cI�

†
cI + �I�

†
I ]Ok�v|�v〉

+ 〈�v|�†
vOk�c�

†
cOk�v|�v〉

+ 〈�I |�†
cIOk�c�

†
cOk�cv|�v〉, (4)

where we have used the generalized Wick theorem to assemble
different terms and assumed all the operators are in normal
ordered form so that only the connected terms survive. For
brevity, we categorize the first term as core (c), the next

two terms as valence (v), and the last term as core-valence
(cv) contributions, for which we can now write the total
polarizability as

αk = αc
k + αv

k + αcv
k , (5)

for the notations αc
k , αv

k , and αcv
k corresponding to the above-

mentioned three correlation contributions, respectively.
It is possible to evaluate dominant contributions to αv

k by
calculating many low-lying singly excited states |�I 〉 of the
considered systems by expressing them as

αv
k (ιω) = 2

(2k + 1)(2Jn + 1)

×
(′)∑

I �=n

(En − EI )|〈�n||Ok||�I 〉|2
(En − EI )2 + ω2

, (6)

where 〈�n||Ok||�I 〉 is the reduced matrix element of Ok and
the symbol (′) in the summation implies that only the excited
states are included in the sum. In order to determine the E1 and
E2 matrix elements between the ground-state wave function
|�n〉 and the excited-state wave function |�I 〉, we express
them in a general form as |�v〉 with a common core and for
a valence orbital v representing either n or I , which in the
Fock-space RCC formalism is defined as

|�v〉 = eT {1 + Sv}|�v〉. (7)

Here the operator T and Sv excite core electrons and the
valence electron along with the core electrons due to the
electron correlations. We consider all possible single and
double excitations with the important valence triple excitations
in our calculations [referred to as the CCSD(T) method in
the literature] within a sufficiently large configuration space.
From practical limitation, we calculate as many |�I 〉 states as
possible for the estimation of their contributions to αv

k and refer
to them as the main contribution (αvm). Contributions from the
higher excited states, which are relatively small, are estimated
using the following equation at the DF approximation:

αvt
k (ιω) = 〈�n|Ok|�(1)

n 〉, (8)

where |�(1)
n 〉 is obtained by solving the inhomogeneous

equation for the effective Hamiltonian Heff = (H − En)Ok as

[(H − En)2 + ω2]|�(1)
n 〉 = −Heff|�n〉 (9)

and given as the tail contribution (αvt
k ). We also obtain the αcv

k

contributions using the same procedure as has been described
by the above equation. Nonetheless, the αc

k contributions may
not be small enough to be estimated using the DF method, for
which we employ the random-phase approximation (RPA) to
solve for the core configuration (denoted by subscript zero)
with the similar logic as Eq. (9) by defining

∣∣�(1)
0

〉 =
∞∑
β

∑
p,a

�(β,1)
a→p|�0〉

=
∞∑

β=1

∑
pq,ab

{[〈pb| 1
r12

|aq〉 − 〈pb| 1
r12

|qa〉]�(β−1,1)
b→q

(εp − εa)2 + ω2
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+ �
(β−1,1)†

b→q

[〈pq| 1
r12

|ab〉 − 〈pq| 1
r12

|ba〉]
(εp − εa)2 + ω2

}

× (εp − εa)|�0〉, (10)

where �
(β,1)
a→p is the wave operator that excites an occupied

orbital a of |�0〉 to a virtual orbital p which alternatively refers
to a singly excited state with respect to |�0〉 with �(0,1)

a→p =
〈p|(εp−εa )Ok |a〉

(εp−εa )2+ω2 for the single-particle orbital energies ε and the
superscripts β and 1 representing the number of the Coulomb
( 1
r12

) and Ok operators, respectively.

III. ATOM-ION INTERACTION POTENTIALS

The long-range potential V (R) between an electrically
charged ion and a neutral atom in their ground states, with R

as the internuclear distance, is divided in terms of the induced
and dispersed interactions among the multipole moments as
[19,20]

V (R) = Vind(R) + Vdis(R), (11)

where Vind(R) and Vdis(R) are known as the induced and
dispersion potentials, respectively. It can be noted that a small
contribution coming from the exchange potential [19] has
been neglected in the above expression. The induced part of
this potential occurs due to polarization from the attractive
interaction of the permanent multipole of the ion with the
induced multipole of the atom due to the ion and is expressed
in terms of the induction coefficients (c2n) as [19,20]

Vind(R) = −Q2
∞∑

n=1

c2n/R
2n, (12)

where Q is the charge of the ion and the negative sign indicates
that the force is attractive in nature. In the above equation, the
term R−2, which corresponds to the charge-dipole interaction,
vanishes for the interaction of an ion with a neutral atom. The
second term inside the summation, corresponding to n = 2, is
a spherically symmetric term arising due to the ion-induced
dipole potential and is given as c4/R

4 with c4 = α1/2 for the
static dipole polarizability α1 of the atom. This term originates
due to the electric field created by the ion, which induces
an electric dipole moment in the neutral atom. This part of
the potential is independent of the electronic state of the ion,
but varies with the electronic state of the atom due to the
dependencies on their α1. Once the c4 coefficients are known,
one can also calculate the characteristic length scale (R∗),
the effective range of the polarization potential, by equating
the potential to the kinetic energy as R∗=√

2μc4 [3,21]. The
characteristic energy scale is further expressed in terms of
R∗ as E∗ = 1/2μR∗2. Here μ = (mion)(mat)/(mion + mat) is
the reduced mass of the system for the mass of the ion mion

and mass of the atom mat. The next term with powers of
R−6 in the general expression [Eq. (12)] appears due to the
instantaneous fluctuating dipole moments between the atoms
and can be expressed as c6

R6 with c6 =α2/2 for the quadrupole
polarizability α2 of the atom.

For the atom and ion being in their respective ground states,
the expression for the dispersion interaction potential is given

by [15,22]

Vdis(R) = −C6

R6
− C8

R8
− C10

R10
. . . . (13)

The coefficients C6, C8, C10, . . ., etc., emerge from the instan-
taneous dipole-dipole, dipole-quadrupole, dipole-octupole,
quadrupole-quadrupole, etc., interactions and are known as
the dispersion coefficients.

In Eq. (13), the dispersion coefficients CAB
6 , CAB

8 , and CAB
10

between an atom A and an ion B can be estimated using the
expressions given as [23]

CAB
6 = 3

π

∫ ∞

0
dωαA

1 (ιω)αB
1 (ιω), (14)

CAB
8 = 15

2π

∫ ∞

0
dωαA

1 (ιω)αB
2 (ιω)

+ 15

2π

∫ ∞

0
dωαA

2 (ιω)αB
1 (ιω), (15)

CAB
10 = 14

π

∫ ∞

0
dωαA

1 (ιω)αB
3 (ιω)+14

π

∫ ∞

0
dωαA

3 (ιω)αB
1 (ιω)

+ 35

π

∫ ∞

0
dωαA

2 (ιω)αB
2 (ιω). (16)

Here αA
1 (ιω) and αB

1 (ιω) are the electric dipole, αA
2 (ιω)

and αB
2 (ιω) are the quadrupole, and αA

3 (ιω) and αB
3 (ιω) are

the octupole atomic and ionic dynamic polarizabilities at
imaginary frequencies, respectively. For numerical integration
of the product of these polarizabilities, we use an exponential
grid of the following form:

r(i) = r0[exp(i−1)h − 1]. (17)

Here grid size h is 0.03125, r0 is 0.0005, and the total number
of grids is 500. In our earlier works, we had determined
dynamic dipole polarizabilities of the alkali-metal atoms for
a sufficiently large number of imaginary frequencies very
precisely [32,33]. In the present work, we further determine the
quadrupole and octupole polarizabilities for the alkaline-earth
ions as well as for the alkali-metal atoms in order to determine
the van der Waals coefficients accurately. In order to determine
E1 and E2 polarizabilities in the considered systems which
have one valence electron each outside the closed core, we use
the CCSD method and the calculations for E3 polarizabilities
are carried out by the DHF method, respectively. Moreover,
we also determine the lifetimes of the first excited np states
of the alkaline-earth ions and compare them with the available
experimental and other precise calculations in order to test
the accuracies of the dipole matrix elements of the transitions
that are predominantly contributing in the determination of the
dipole polarizabilities of the considered ions.

IV. RESULTS AND DISCUSSION

A. Calculation of lifetimes of the np states

As a test of accuracy of our calculated principal matrix
elements which are going to contribute predominantly to the
α1 results of the alkaline-earth ions, we estimate the lifetimes
(τ ) of the np states using these matrix elements with n being
the principal quantum number of the ground states of the

012705-3



KAUR, NANDY, ARORA, AND SAHOO PHYSICAL REVIEW A 91, 012705 (2015)

TABLE I. Contributions to the lifetimes of the np1/2 and np3/2 states of the alkaline Ca+, Sr+, Ba+, and Ra+ ions. The transition rates (A)
are given in 106 s−1 and the lifetimes (τ ) are given in ns.

Ca+ Sr+

4p1/2 4p3/2 5p1/2 5p3/2

A(4p1/2 → 4s1/2) 137.24 A(4p3/2 → 4s1/2) 141.12 A(5p1/2 → 5s1/2) 130.1 A(5p3/2 → 5s1/2) 144.12
A(4p1/2 → 3d3/2) 10.81 A(4p3/2 → 3d3/2) 1.14 A(5p1/2 → 4d3/2) 9.22 A(5p3/2 → 4d3/2) 1.17
� A 148.05 A(4p3/2 → 3d5/2) 10.17 � A 139.32 A(4p3/2 → 3d5/2) 9.89

� A 152.37 � A 155.18
τ (4p1/2) τ (4p3/2) τ (5p1/2) τ (5p3/2)
Present 6.75 6.55 Present 7.16 6.44
Others 6.88 [24] 6.69 [24] Others 7.376 [25] 6.653 [25]
Expt. 6.96(35) [26] 6.71(25) [26] Expt. 7.35(30) [27] 6.53(20) [27]

Expt. 7.39(7) [28] 6.63(7) [28]

Ba+ Ra+

6p1/2 6p3/2 7p1/2 7p3/2

A(6p1/2 → 6s1/2) 95.13 A(6p3/2 → 6s1/2) 119.88 A(7p1/2 → 7s1/2) 106.08 A(7p3/2 → 7s1/2) 187.95
A(6p1/2 → 5d3/2) 35.70 A(6p3/2 → 5d3/2) 4.53 A(7p1/2 → 6d3/2) 10.56 A(7p3/2 → 6d3/2) 3.38
� A 130.83 A(6p3/2 → 5d5/2) 35.30 � A 116.64 A(7p3/2 → 6d5/2) 22.89

� A 159.72 � A 214.23
τ (6p1/2) τ (6p3/2) τ (7p1/2) τ (7p3/2)
Present 7.64 6.26 Present 8.57 4.66
Others 7.83 [29] 6.27 [29] Others 8.72 [30] 4.73 [30]
Expt. 7.74(40) [27] 6.27(25) [27]

respective ions and compare them with the experimental and
other high-precision calculations. The contributions to the
lifetimes of the np1/2 and np3/2 states are given in Table I
and are estimated considering only the dominant E1 transition
probabilities (A), which are evaluated (in s−1) using the
formula

AE1
ij = 2.02613 × 1015

λ3

|〈i‖D‖j 〉|2
2ji + 1

, (18)

where λ is the wavelength of the transition in Å and |〈i‖D‖j 〉|2
is the reduced E1 matrix elements in a.u. Since our aim is to
know the accuracies of the E1 matrix elements alone, we
use the experimental λ values in these calculations. As can
be seen from the table, the experimental results have large
error bars [26], however our calculated values are compared
with other high-precision calculations [24] in Ca+. Pulse
laser excitation measurements of the lifetimes for 4p1/2 and
4p3/2 levels are reported by Ansbacher et al. [26]. Safronova
and Safronova presented precision 4p1/2 and 4p3/2 lifetime
measurements in Ref. [24]. Precision measurement of the
lifetime of Sr+ is presented by Jiang et al. in Ref. [25].
Lifetimes of the 5p1/2,3/2 states of Sr+ and the 6p1/2,3/2

states of Ba+ are observed by Gallagher [27] using the
Hanle-effect method with the optical excitations from the
ground states. These values are 7.35(0.3) and 6.53(0.2) ns
for the 5p1/2 and 5p3/2 states of Sr+, respectively, which are
later improved by Pinnington et al. [28]. Our results are close
to these values and the used E1 matrix elements can be used
further to estimate α1 of Sr+ within a reasonably accuracy.
Similarly, the experimental lifetimes of the 6p1/2,3/2 states of
Ba+ are reported as τ (6p1/2) = 7.74(0.4) ns and τ (6p3/2) =
6.27(0.25) ns [27] and other theoretical values are given as
τ (6p1/2) = 7.83 ns and τ (6p3/2) = 6.27 ns [29], which are in

good agreement with our results, suggesting that when the
corresponding E1 matrix elements are used we will be able
to achieve a high-accuracy α1 value in Ba+. There are no
experimental results available for the lifetimes of the 7p1/2,3/2

states of Ra+, however our results are in close agreement with
other calculations by Pal et al. [30]. Therefore, the resulting
α1 values in all the above-discussed ions will be reliable and
hence we expect to attain accurate values of the dispersion
coefficients when α1 values are used from our calculations.

B. Calculation of c4 coefficients

In Table III, we present the static dipole polarizabilities of
the alkali-metal atoms that were reported by us in Ref. [44] and
compare with the earlier theoretical and experimental results.
The details of the calculations are presented in Ref. [44] and
we do not repeat them here again. The reported values of α1 are
slightly different than Ref. [44], since the core contributions
from the DF method are replaced by the RPA values here. From
the comparison between the measured and calculated results,
as shown in the table, it is clear that our static polarizabilities
are in close agreement with the experimental and theoretical
values, which gives us confidence in using these values for
the calculation of the c4 coefficients as 82.1, 81.2, 144.9, and
156.0 a.u. in the Li, Na, K, and Rb atoms, respectively. Using
these c4 values, we further obtain a range of potential R∗ and
compare it with the values obtained by Idziaszek et al. [31]
and Doerk et al. [21], as shown in Table II. These authors have
applied the multichannel quantum defect theory to describe the
range of the atom-ion systems. On comparison, we observe that
our calculated values are close to the values tabulated in these
references. As expected, the effective length scale of the atom-
ion potential is much more long ranged than the interaction
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TABLE II. Calculated values of effective range R∗ of the atom-ion
interaction potentials and energy scale for the given atom-ion system.
The results are compared with other theoretical works wherever
available.

E∗ × 1011 E∗ × 1011

R∗ (in a.u.) (in a.u.) R∗ (in a.u.) (in a.u.)

Li-Ca+ 1336 0.09 K-Ca+ 3231 1.88
Li-Sr+ 1393 0.11 K-Sr+ 3779 3.52
Li-Ba+ 1412 0.12 K-Ba+ 3999 4.41
Li-Ra+ 1423 0.13 K-Ra+ 4193 5.33
Na-Ca+ 2079 0.57 Rb-Ca+ 3991 3.95

2081 [21,31] 3989 [21,31]
Na-Sr+ 2324 0.89 Rb-Sr+ 5042 10.03
Na-Ba+ 2412 1.04 Rb-Ba+ 5545 14.6
Na-Ra+ 2486 1.17 5544 [21,31]

Rb-Ra+ 6042 20.57

between two neutral atoms. In the same table we also present
the characteristic energies for their direct applications in future
experimental studies.

C. Calculation of c6 coefficients

In order to obtain the c6 coefficients, we first carry out
systematic calculations of the quadrupole polarizabilities of
the Li, Na, K, and Rb atoms. As given in Table III, terms αc

2,
αv

2 , and αVC
2 summarize the contributions to the quadrupole

polarizabilities from the core, valence, and valence-core
correlation terms. Here the matrix elements of the first five
ns–n′d5/2 transitions in each alkali-metal atom are included
into the main term αvm

2 calculations, where n is the principal
quantum number of the ground state of the respective atom. For
example, in the Na atom, 3s to (3–7)d5/2 transition E2 matrix
elements are included in the main polarizability calculations.
Moreover, for the Li atom calculation, we have included
two more transitions 2s–8d5/2 and 2s–9d5/2 in the main
polarizability calculations. In the above table, we compare

our results with the predictions by other studies. For the Li
atom, an accurate value of the quadrupole polarizability is
obtained as 1424 a.u. by Porsev and Derevianko [41] using
the relativistic many-body calculations. Our result 1426 a.u.
is in very good agreement with this value. Theoretical values
of the quadrupole polarizability of the Na atom were given by
the group of Spelsberg et al. [42] and the group of Makarov
et al. [22] as 1879 and 1902 a.u., respectively, and are also
in close agreement with our value of 1895 a.u. The group of
Makarov et al. has calculated the quadrupole polarizability of
Na using the Möller Plesset second-order perturbation theory
with an extended Gaussian basis. From the earlier studies, the
results available to compare the polarizability values of the K
and Rb atoms are 5000 and 6459 a.u. [43], calculated using
a model potential method showing only small variations from
our results 4947 and 6491 a.u., respectively. The comparisons,
as given in Table III, reflect that our polarizabilities are reliable
enough for the accurate determination of the c6 results for
the alkali-metal atoms. Our numerical calculations for the c6

coefficients are 713, 947, 2474, and 3245 a.u. for the Li, Na,
K, and Rb atoms, respectively.

D. Calculations of dispersion coefficients

In Tables VI and VII we present the compiled values
of contributions to the total dispersion coefficients between
the alkali-metal atoms interacting with the alkaline ions. For
the determination of the C6 and C8 dispersion coefficients,
we perform the RCC calculations to obtain the dipole and
quadrupole matrix elements for the evaluation of the required
polarizabilities of the Ca+, Sr+, Ba+, and Ra+ ions. Tables IV
and V summarize the contribution to dipole and quadrupole
polarizabilities of alkaline-earth ions from core (αc), valence-
core (αVC), and tail (αtail) terms. The main contributions
are listed separately along with the respective values of the
matrix elements. For the main contributions, we use the
combination of our CCSD(T) values of the matrix elements
with the experimental energies. Several calculations of the
ground-state polarizabilities of the alkaline-earth ions are

TABLE III. Calculated values of the static dipole and quadrupole polarizabilities along with the c4 and c6 coefficients for the Li, Na, K, and
Rb alkali-metal atoms. Polarizability values are compared with the other available theoretical and experimental results. References are given
in the square brackets and uncertainties are given in parentheses.

Polarizabilities Li Na K Rb

αvm
1 162.5 161.9 284.3 309.1

αc
1 0.2 0.9 5.5 9.1

αVC
1 0.0 0.0 −0.1 −0.3

αtail
1 1.2 0.08 0.06 0.11

αtotal
1 (Present) 164.1(6) 162.4(2) 289.8(6) 318.3(6)

αtotal
1 (Other) 164.112(1) [34] 162.9(6) [35] 289.3 [36] 315.7 [37]

αtotal
1 (Expt.) 164.2(1.1) [38] 162.1(8) [39] 290.58(1.42) [40] 318.79(1.42) [40]

c4 coefficients 82.1(6) 81.2(2) 144.8(6) 159.9(6)
αvm

2 1345 1780 4839 6244
αc

2 ∼0 2 16 35
αVC

2 0 0 0 0
αtail

2 81 113 94 211
αtotal

2 (Present) 1426(7) 1895(9) 4947(15) 6491(18)
αtotal

2 (Other) 1424 [41] 1879 [42], 1902 [22] 5000 [43] 6459 [43]
c6 coefficients 713(7) 947(9) 2474(15) 3245(18)
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TABLE IV. Individual contributions to α1 of Ca+, Sr+, Ba+, and Ra+ alkaline-earth ions. Our results are also compared with other
calculations and experimental values. References are given in the square brackets and uncertainties are given in parentheses.

Contributions E1 amplitude α1 Contributions E1 amplitude α1

Ca+ Sr+

4s1/2 −→ 4p1/2 2.913(7) 24.64(3) 5s1/2 −→ 5p1/2 3.109(7) 29.81(4)
4s1/2 −→ 5p1/2 0.068(8) 0.005 5s1/2 −→ 6p1/2 0.022(6) 0.0006
4s1/2 −→ 6p1/2 0.080(8) 0.006 5s1/2 −→ 7p1/2 0.062(5) 0.004
4s1/2 −→ 7p1/2 0.065(7) 0.004 5s1/2 −→ 8p1/2 0.054(5) 0.003
4s1/2 −→ 8p1/2 0.052(6) 0.002 5s1/2 −→ 5p3/2 4.394(6) 57.61(6)
4s1/2 −→ 9p1/2 0.041(6) 0.002 5s1/2 −→ 6p3/2 0.037(4) 0.002
4s1/2 −→ 4p3/2 4.120(1) 48.86(1) 5s1/2 −→ 7p3/2 0.052(5) 0.003
4s1/2 −→ 5p3/2 0.080(8) 0.008 5s1/2 −→ 8p3/2 0.053(4) 0.003
4s1/2 −→ 6p3/2 0.104(5) 0.011
4s1/2 −→ 7p3/2 0.087(4) 0.007
4s1/2 −→ 8p3/2 0.070(4) 0.004
4s1/2 −→ 9p3/2 0.055(4) 0.003
αc 3.25(1) αc 4.98(3)
αtail 5.51×10−2 αtail 1.96 ×10−2

αVC −8.85×10−2 αVC −0.19
αtotal (Present) 76.7(2) αtotal (Present) 92.2(2)
αtotal (Other) 75.88 [45] αtotal (Other) 91.10 [45]
αtotal (Other) 75.49 [20] αtotal (Other) 91.3(9) [25]
αtotal (Other) 75.28 [50] αtotal (Expt.) 93.3(9) [47]
αtotal (Other) 76.1(5) [24]
αtotal (Expt.) 75.3(4) [46]

Ba+ Ra+

6s1/2 −→ 6p1/2 3.36(1) 40.763(8) 7s1/2 −→ 7p1/2 3.28(2) 36.86(1)
6s1/2 −→ 7p1/2 0.10(1) 0.0148 7s1/2 −→ 8p1/2 0.04(4) 0.002
6s1/2 −→ 8p1/2 0.11(5) 0.0157 7s1/2 −→ 9p1/2 0.09(3) 0.009
6s1/2 −→ 6p3/2 4.73(3) 74.56(4) 7s1/2 −→ 7p3/2 4.54(2) 57.53(2)
6s1/2 −→ 7p3/2 0.17(5) 0.04 7s1/2 −→ 8p3/2 0.49(2) 0.335(1)
6s1/2 −→ 8p3/2 0.11(5) 0.02 7s1/2 −→ 9p3/2 0.30(2) 0.10
αc 9.35(5) αc 11.66(5)
αtail 1.66×10−2 αtail 0.15
αVC −0.38 αVC −0.74
αtotal (Present) 124.4(5) αtotal (Present) 105.9(6)
αtotal (Other) 123.07 [45] αtotal (Other) 105.37 [45]
αtotal (Other) 126.2 [48] αtotal (Other) 106.5 [36]
αtotal (Expt.) 123.88(5) [49]

available using different methods. Similarly, a number of
precise measurements of these quantities are also reported
in the literature. We have compared our reported dipole
polarizabilities results with the available theoretical and
experimental values in Table IV. As can be seen from the
table, Lim and Schwerdtfeger [45] listed the static dipole
polarizabilities of all the considered alkaline-earth ions, which
are in very close agreement with our values. Their values are
predicted using the RCC calculations in the finite field gradient
technique together with the optimized Gaussian-type basis set.
However, use of a sum-over-states approach allowed us to use
experimental data wherever available, which we believe can
minimize the uncertainties in the results, and hence they are
more accurate in our case. Experimental spectral analysis of
the dipole polarizability value of the Ca+ ion is observed by
Chang [46] and is in very good agreement with our calculated
value. Another method used by Safronova and Safronova is
the relativistic all-order single double where all the single,
double, and partial triple excitations of the wave function are

included to all orders of the perturbation theory to calculate
the polarizability of Ca+ [24]. As expected, our results of
the calculated electric dipole static polarizability of Ca+ lie
within the error bars of the results quoted by Ref. [24]. As
seen from the given table, the calculated values of these
quantities by Mitroy and Zhang [20], which are evaluated
by diagonalizing the semiempirical Hamiltonian in a large
dimension single electron basis, are also in agreement with our
values. However, we would like to emphasize that our results
are more accurate since in our method core correlations are
accounted for through the all-order RPA. The most recent
dipole polarizability of Ca+ available for the comparison,
calculated through the DFCP method, is 75.28 a.u. [50]. The
estimate of 93.3 a.u. [51] for the ground-state polarizability
of the Sr+ ion, derived by combining the experimental data
given by the group of Barklem and OMara [47] with the
oscillator strength sums, has a considerable discrepancy with
our present results. There have also been calculations using the
Dirac-Fock plus core polarization (DFCP) model. In contrast,
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TABLE V. Individual contributions to α2 of Ca+, Sr+, Ba+, and Ra+ alkaline-earth ions. Our results are also compared with other
calculations and experimental values. References are given in the square brackets and uncertainties are given in parentheses.

Contributions E2 amplitude α2 Contributions E2 amplitude α2

Ca+ Sr+

4s1/2 −→ 3d3/2 8.12(5) 212(3) 5s1/2 −→ 4d3/2 11.25(7) 382(5)
4s1/2 −→ 4d3/2 12.51(8) 121(2) 5s1/2 −→ 5d3/2 12.87(8) 136(2)
4s1/2 −→ 5d3/2 3.89(4) 9.1(2) 5s1/2 −→ 6d3/2 5.00(5) 16.2(3)
4s1/2 −→ 6d3/2 2.44(6) 16.2(4) 5s1/2 −→ 7d3/2 3.11(4) 5.7(1)
4s1/2 −→ 3d5/2 9.97(6) 318(3) 5s1/2 −→ 4d5/2 13.91(8) 572(6)
4s1/2 −→ 4d5/2 15.30(9) 181(2) 5s1/2 −→ 5d5/2 15.64(9) 201(2)
4s1/2 −→ 5d5/2 4.75(5) 13.6(3) 5s1/2 −→ 6d5/2 5.97(6) 23.3(4)
4s1/2 −→ 6d5/2 2.98(6) 24.2(4) 5s1/2 −→ 7d5/2 3.76(4) 8.3(1)
αc 6.77(8) αc 9.34(9)
αtail 5.36(5) αtail 6.35(8)
αVC 0.0 αVC −1.7 × 10−8

αtotal (Present) 906(5) αtotal (Present) 1361(9)
αtotal (Other) 882.43 [50] αtotal (Other) 1346 [51]
αtotal (Other) 875.1 [20]
αtotal (Other) 871(4) [24]

Ba+ Ra+

6s1/2 −→ 5d3/2 12.76(5) 1466(11) 7s1/2 −→ 6d3/2 14.997(30) 816(32)
6s1/2 −→ 6d3/2 16.58(12) 262(4) 7s1/2 −→ 7d3/2 13.977(45) 175(11)
6s1/2 −→ 7d3/2 5.727(7) 24.07(6) 7s1/2 −→ 8d3/2 5.646(15) 22.6(1)
6s1/2 −→ 8d3/2 4.036(5) 10.72(3) 7s1/2 −→ 9d3/2 3.320(12) 7.08(5)
6s1/2 −→ 5d5/2 15.99(8) 1978(20) 7s1/2 −→ 10d3/2 2.234(14) 3.04(3)
6s1/2 −→ 6d5/2 19.99(20) 380(8) 7s1/2 −→ 11d3/2 1.753(12) 1.81(2)
6s1/2 −→ 7d5/2 7.024(9) 36.1(1) 7s1/2 −→ 6d5/2 19.176(30) 1174(36)
6s1/2 −→ 8d5/2 5.022(5) 16.59(3) 7s1/2 −→ 7d5/2 16.175(50) 233.2(14)

7s1/2 −→ 8d5/2 6.787(12) 32.62(2)
7s1/2 −→ 9d5/2 4.050(13) 10.52(6)
7s1/2 −→ 10d5/2 2.749(12) 4.59(4)
7s1/2 −→ 11d5/2 2.195(10) 2.83(2)

αc 46(2) αc 68(1)
αtail 50(10) αtail 39.6(5)
αVC −0.001 αVC −3.46 × 10−4

αtotal (Present) 4270(27) αtotal (Present) 2592(49)
αtotal (Other) 4182(34) [29] αtotal (Other) 2533(26) [30]
αtotal (Expt.) 4420(250) [49]

our values match very well with the calculations of Jiang
et al. [25], who have used the relativistic all-order method
to calculate the polarizabilities of the Sr+ ion. It would be
interesting to see the validity of these results when the new
measurement of the ground-state polarizability for this ion
becomes available. The polarizability value of the Ba+ ion
was calculated by Miadokova et al. [48] using the relativistic
basis set in the Douglas-Kroll no-pair approximation and
has a 2% discrepancy from the high-precision measurements
performed by Snow and Lundeen [49]. This high-precision
measurement was achieved by a novel technique based on the
resonant excitation Stark ionization spectroscopy microwave
technique. We find that our results are also in better agreement
with this experimental value. In addition we have calculated
the quadrupole polarizability for the heaviest alkali-metal ion
Ra+ using the above-mentioned CCSD(T) method. The most
challenging part of this ion is that there is no experimental
result available for the dipole polarizability of Ra+ to compare
with our result. However, Safronova et al. [36] have evaluated
this result using the relativistic all-order method. The group of

Lim and Schwerdtfeger [45] also calculates the polarizability
result of Ra+ based on the CCSD(T) method using the scalar
relativistic Douglas-Kroll operator, which is in agreement with
our result. It can be noticed from Table IV that the polarizability
value for Ra+ is lower by 18% in comparison to Ba+, which
is similar to the trend observed by Ref. [45]. In fact their
value in the case of Ra+ is 17% lower than the value for Ba+.
They attribute this reduction in polarizability of Ra+ to the
dominating contribution of relativistic effects over correlation
effects.

Absolute values of the E2 matrix elements with their
uncertainties are listed in Table V. These matrix elements were
also calculated by us earlier using the same CCSD(T) method
[53,54]. It is evident from Table V that an overwhelmingly
dominant contribution to the total values in the case of
quadrupole polarizability values is due to the terms containing
ns1/2 to (n − 1)d3/2 and (n − 1)d3/2 matrix elements with n

taking the values 4,5,6, and 7 for Ca+, Sr+, Ba+, and Ra+
ions, respectively. The ground-state quadrupole polarizability
in the case of the Ca+ ion is 906 a.u., which is about 1%
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TABLE VI. Total values of the C6 coefficients for the interaction between the 16 combinations of alkali-metal atoms and the alkaline ions.
Their breakdown contributions labeled as Cv

6 , Cc
6 , CVC

6 , and CCT
6 are obtained by using the corresponding polarizability contributions. We have

given the references in square brackets and uncertainties in parentheses.

Individual contributions to the C6 coefficients

Cv
6 Cc

6 CVC
6 × 10−2 CCT

6 Total (C6) Total (C6) [52]

Li-Ca+ 768.4 1.0 0.0 67.35 837(6) 824
Li-Sr+ 898.1 1.5 0.0 108.4 1008(6) 981
Li-Ba+ 1127.1 2.6 0.0 184.8 1315(8) 1275
Li-Ra+ 974.3 3.2 0.0 228.9 1206(8)
Na-Ca+ 826.4 4.6 0.22 69.7 901(3) 889
Na-Sr+ 964.6 7.4 0.43 113.6 1085(3) 1059
Na-Ba+ 1205.7 12.4 0.74 195.6 1414(5) 1373
Na-Ra+ 1046.5 15.1 1.3 244.3 1305(6)
K-Ca+ 1231.4 19.6 1.0 141.0 1392(6) 1372
K-Sr+ 1441.5 31.6 2.0 207.1 1680(6) 1636
K-Ba+ 1816.2 53.0 3.6 328.3 2197(8) 2130
K-Ra+ 1563.4 66.1 6.5 389.9 2019(8)
Rb-Ca+ 1312.9 29.6 1.8 184.8 1527(6) 1506
Rb-Sr+ 1537.3 48.4 3.8 259.5 1845(6) 1798
Rb-Ba+ 1938.1 81.5 6.7 394.5 2414(8) 2340
Rb-Ra+ 1667.2 101.6 0.1 455.5 2224(8)

larger than the value 875.1 a.u. as obtained by Ref. [20].
Also, we find a large discrepancy in the results of calculated
polarizability by us and Safronova and Safronova [24] given
as 871(4) a.u. for Ca+. However, our value is only 3% larger
than the recent calculated value of Ref. [50]. The quadrupole
polarizability value for Sr+ is 1366(9) a.u., which differs
by 2% from the results reported in Ref. [51], in which the
authors have evaluated the polarizability by diagonalizing
a semiempirical Hamiltonian in a large dimension single-
electron basis. Our recommended value for the ground-state
quadrupole polarizability of Ba+ is in agreement within the
corresponding uncertainties with the most recent experimental

work [49]. However, the analysis of Iskrenova-Tchoukova and
Safronova [29] based on the relativistic all-order method also
gives a consistent result. For the heavier alkaline ion Ra+, the
only useful data are the results of Pal et al. The calculations
of Ref. [30] are carried out by using the high-precision
relativistic all-order method, which includes all single and
double excitations of the Dirac-Fock wave functions.

Having compared all our polarizability results, we are
now in a state to justify the fact that since our static
polarizability values are very accurate we anticipate similar
accuracies for the calculated dynamic polarizabilities using
our method and that our method can be used reliably for the

TABLE VII. Total values of the C8 coefficients for the interaction between the 16 combinations of alkali-metal atoms and the alkaline ions.
Their breakdown contributions labeled as Cv

8 , Cc
8 , CVC

8 , and CCT
8 are obtained by using the corresponding polarizability contributions. We have

given the references in square brackets and uncertainties in parentheses.

Individual contributions to the C8 coefficients

Cv
8 × 10+5 Cc

8 CVC
8 × 10−4 CCT

8 × 10+4 Total (C8) Total (C8) [52]

Li-Ca+ 0.68 6.86 0.0 −2.28 51749(9) 5.0478×104

Li-Sr+ 0.95 8.48 0.0 −2.59 69608(11) 6.7264×104

Li-Ba+ 1.59 30.21 0.0 −3.00 110737(28) 1.0540×105

Li-Ra+ 1.44 40.47 0.0 −2.53 103487(50)
Na-Ca+ 0.78 44.31 0.0 −2.95 60720(10) 5.9725×104

Na-Sr+ 1.07 59.03 0.11 −3.37 80819(13) 7.8696×104

Na-Ba+ 1.75 177.76 0.56 −3.95 125566(28) 1.2032×105

Na-Ra+ 1.60 236.0 0.29 −3.35 118138(50)
K-Ca+ 1.43 92.50 0.0 −6.78 116633(16) 1.1700×105

K-Sr+ 1.92 393.43 0.43 −7.76 153827(18) 1.5116×105

K-Ba+ 3.11 1044.87 2.35 −9.33 235841(31) 2.2784×105

K-Ra+ 2.77 1387.67 1.26 −7.94 218106(51)
Rb-Ca+ 1.64 155.36 0.33 −8.17 139356(19) 1.3896×105

Rb-Sr+ 2.19 723.70 1.38 −9.36 183213(20) 1.7840×105

Rb-Ba+ 3.52 1823.03 5.23 −11.3 277748(32) 2.6626×105

Rb-Ra+ 3.12 2412.72 4.06 −9.60 256673(52)
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TABLE VIII. E3 matrix elements of Li, Na, K, and Rb atoms and Ca+, Sr+, Ba+, and Ra+ alkaline-earth ions calculated by using the DHF
method.

Li Na K Rb

Contributions E3 amplitude Contributions E3 amplitude Contributions E3 amplitude Contributions E3 amplitude

2s1/2 → 4f5/2 78.538 3s1/2 → 4f5/2 104.043 4s1/2 → 4f5/2 222.549 5s1/2 → 4f5/2 273.026
2s1/2 → 5f5/2 53.294 3s1/2 → 5f5/2 68.317 4s1/2 → 5f5/2 129.834 5s1/2 → 5f5/2 152.839
2s1/2 → 6f5/2 38.641 3s1/2 → 6f5/2 48.721 4s1/2 → 6f5/2 87.272 5s1/2 → 6f5/2 100.622
2s1/2 → 7f5/2 29.672 3s1/2 → 7f5/2 37.057 4s1/2 → 7f5/2 64.143 5s1/2 → 7f5/2 73.066
2s1/2 → 4f7/2 90.689 3s1/2 → 4f7/2 120.139 4s1/2 → 4f7/2 256.978 5s1/2 → 4f7/2 315.270
2s1/2 → 5f7/2 61.539 3s1/2 → 5f7/2 78.886 4s1/2 → 5f7/2 149.921 5s1/2 → 5f7/2 176.487
2s1/2 → 6f7/2 44.618 3s1/2 → 6f7/2 56.258 4s1/2 → 6f7/2 100.773 5s1/2 → 6f7/2 116.190
2s1/2 → 7f7/2 34.262 3s1/2 → 7f7/2 42.790 4s1/2 → 7f7/2 74.067 5s1/2 → 7f7/2 84.371

Ca+ Sr+ Ba+ Ra+

Contributions E3 amplitude Contributions E3 amplitude Contributions E3 amplitude Contributions E3 amplitude
4s1/2 → 4f5/2 90.926 5s1/2 → 4f5/2 119.888 6s1/2 → 4f5/2 168.517 7s1/2 → 5f5/2 165.834
4s1/2 → 5f5/2 36.939 5s1/2 → 5f5/2 41.240 6s1/2 → 5f5/2 29.028 7s1/2 → 6f5/2 19.939
4s1/2 → 6f5/2 20.554 5s1/2 → 6f5/2 20.712 6s1/2 → 6f5/2 2.200 7s1/2 → 7f5/2 5.845
4s1/2 → 7f5/2 13.485 5s1/2 → 7f5/2 12.668 6s1/2 → 7f5/2 4.941 7s1/2 → 8f5/2 10.916
4s1/2 → 4f7/2 104.994 5s1/2 → 4f7/2 138.446 6s1/2 → 4f7/2 194.625 7s1/2 → 5f7/2 191.567
4s1/2 → 5f7/2 42.654 5s1/2 → 5f7/2 47.607 6s1/2 → 5f7/2 33.443 7s1/2 → 6f7/2 22.487
4s1/2 → 6f7/2 23.734 5s1/2 → 6f7/2 23.902 6s1/2 → 6f7/2 2.575 7s1/2 → 7f7/2 6.848
4s1/2 → 7f7/2 15.570 5s1/2 → 7f7/2 14.614 6s1/2 → 7f7/2 5.601 7s1/2 → 8f7/2 12.476

evaluation of the dispersion coefficients. In practice, a number
of methods have been employed for the calculations of the
dispersion coefficients for the heteronuclear dimers. Dalgarno
and Davison [55] have followed a procedure to reduce the two
central molecular problems to one central atomic problem at
larger separation distances. Bishop and Pipin [56] computed
the CAB

6 coefficients by approximating the integral given by
Eq. (14) using the Gaussian quadrature technique. In this work,
we computed the dispersion coefficients by approximating the
integral by the Gaussian quadrature of the integrand computed
on the exponential grid of discrete imaginary frequencies.
We justify the use of the exponential grid from the fact that
maximum contributions to the integrand given in Eq. (14) arise
from the polarizability values in the vicinity of zero frequency.

The coefficients C6, C8, and C10 of the R−6, R−8, and R−10

terms of the long-range atom-ion interactions are presented
in Tables VI, VII, and IX, respectively. We present details
of the calculated values of the C6 dispersion coefficients for
the interactions between the 16 combinations of alkali-metal
atoms and the alkaline ions along with their breakdown

from the individual contributions such as valence (Cv
6 ), core

(Cc
6), valence-core (CVC

6 ), and cross terms (CCT
6 ), respectively.

From the tables, it can be inferred that the contribution to
the total potential increases as the alkali-metal atoms get
bigger in size (i.e., from the Li to Rb sequence), since the
polarizability values also increase in the same order. The
dominant contribution is from the valence part of the calculated
results. We also observed that the core contribution to the C6

and C8 coefficients increases with the increasing number of
electrons in the atom while the core-valence contribution to the
total for some combinations is approximately zero. However,
we notice that a steady increase in C6 and C8 values does
not occur with respect to the atomic sizes for the ions (i.e.,
from Ca+ to Ra+). This might seem to be counterintuitive but
it is owing to the fact that the polarizability of Ba+ is larger
than that for Ra+, as given in Tables IV and V. So a different
trend is followed with the dispersion coefficients: decreases in
magnitude for the interactions of the alkali-metal atoms with
Ra+ and increases with Ba+. Also we expect the accuracy of
these coefficients to be on the same order as the dipole and

TABLE IX. Values of the C10 coefficients for interaction of the alkali-metal atoms with alkaline-earth ions. References are given in square
brackets.

Total (C10) Total (C10) [52] Total (C10) Total (C10) [52]

Li-Ca+ 4.0216×106 3.6586×106 K-Ca+ 1.5022×107 1.1358×107

Li-Sr+ 5.8214×106 5.0651×106 K-Sr+ 2.0433×107 1.5238×107

Li-Ba+ 9.2651×106 8.0669×106 K-Ba+ 3.0458×107 2.3604×107

Li-Ra+ 8.9619×106 K-Ra+ 2.8900×107

Na-Ca+ 5.4726×106 4.6885×106 Rb-Ca+ 2.0147×107 1.4315×107

Na-Sr+ 7.7573×106 6.4345×106 Rb-Sr+ 2.7107×107 1.9101×107

Na-Ba+ 1.2056×107 1.0148×107 Rb-Ba+ 3.9986×107 2.9494×107

Na-Ra+ 1.1620×107 Rb-Ra+ 3.7746×107
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FIG. 1. (Color online) Dispersion coefficients C6,C8, and C10 (in
a.u.) for different combinations of alkaline ions with the Rb atom as
a function of internuclear distance (R) (in a.u.)

quadrupole polarizabilities of atoms and ions. The E3 matrix
elements used to calculate the C10 coefficients estimated using
the DHF method are given in Table VIII and numerical results
for the coefficients are listed in Table IX. In Table IX we
also compare our C10 coefficients with the recent theoretical
calculations given by Jiang [52], who has used the oscillator
strength sum rule. To our knowledge, no other results are
available to compare the interaction of alkali-metal atoms with
the Ra+ ion.

From Tables VII and IX, it can be inferred that the
magnitude of C10 and C8 coefficients is more than that
of C6 coefficients for each atom-ion interaction. But their
contribution to total interaction potential is much less because
of the divisible factors of R8 for C8 and R10 for C10

as given in Eq. (13). Figure 1 highlights a comparison
between the dispersion coefficients for the undertaken different
combinations of the Rb atom with Ca+, Sr+, Ba+, and Ra+
ions, as a function of internuclear distance R. Interactions of

each alkaline ion (Ca+, Sr+, Ba+, and Ra+) are represented by
the solid red line for the C6R

−6 coefficients, the long dashed
green line for the C8R

−8 coefficients, and the short dashed blue
line for the C10R

−10 coefficients. It should be noted that our
results for these potentials will be valid in the approximation
only when the structures of the colliding atom and ion do not
undergo internal changes.

V. CONCLUSION

In this work, we have deduced the behavior of the
interaction potential for the alkali-metal atoms correlating with
the alkaline-earth ions. The accurate values of the dipole and
quadrupole polarizabilities for the alkali-metal atoms and the
alkaline-earth ions have been investigated using the relativistic
coupled-cluster method while the octupole polarizabilities are
calculated using the DHF method. Evaluation of the dispersion
coefficients has been done by integrating the product of atomic
and ionic dynamic polarizabilities at imaginary frequencies.
The calculated values of the induction coefficients in the form
of a range of potentials are expected to be very useful to set the
actual positions of the bound states and magnetic fields of the
Feshbach resonances for these atom-ion correlated systems.
Due to the lack of experimental data, we were unable to
compare our theoretical values of the dispersion coefficients
with the other measured values. The presented data will also
be of immense interest for designing better atomic clocks,
quantum information processing, and quantifying molecular
potentials for ultracold collision studies.
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[17] C. Sias and M. Köhl, arXiv:1401.3188.
[18] A. Derevianko, S. G. Porsev, and J. F. Babb, At. Data Nucl. Data

Tables 96, 323 (2010).
[19] S. Banerjee, J. A. Montgomery, J. N. Byrd, H. H.
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