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Discrepancy between theory and experiment in double ionization of helium by fast electrons
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We compute fully differential cross sections for double ionization of helium by electrons, within the high-
impact-energy and low-momentum transfer regimes, using the generalized Sturmian functions approach. Our
results are converged relative to the total angular momentum and variable domain size. The method shows very
good agreement with convergent close coupling calculations performed by Kheifets et al. [J. Phys. B 32, 5047
(1999)] for all ejection angles for the two electron emission energies considered in the experiments reported in that
contribution. Both theoretical methods provide fully differential cross sections that require the same upscaling
factors to compare with experimental data and are based on a first-order Born model for the projectile-target
interaction. Since that reference was published, there were several theoretical efforts to account for the absolute
scale of the experimental results, but agreement in the cross-section magnitude was not achieved even between
theories. With the present contribution we conclude that the first-order Born model is now adequately solved,
shifting the magnitude controversy towards either the experimental data and/or the addition of higher degrees of
projectile-target interaction to the calculation.
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Ionization of atoms by electron impact is one of the key
experiments in physics to explore the role of correlation and
to analyze the features of the few-body quantum continuum.
On one hand, ionization of hydrogen atoms has been the
subject of many experimental studies, together with several
very important theoretical developments along the years, for
different impact energies and collision geometries, from basic
models [1,2] to comprehensive fully numerically accurate cal-
culations [3,4]. Pure single ionization of many electron atoms,
however, still remains an important topic of research, due to
the experimental difficulties of isolating this particular process
from other emission channels, and an adequate theoretical
description of the interaction between the ejected electron and
the remaining bound partners in the residual target [5,6].

On the other hand, double ionization of helium by electron
impact—usually noted as the (e,3e) problem—has challenged
both experimental and theoretical physicists in recent years [5].
The high-energy-impact regime used in the experiments results
in sets of fully differential cross sections (FDCS) in the
angles of the emitted electrons. There are experiments with
conventional spectrometers in a coplanar geometry [7], with
projectiles impinging at 5599 or 5587 eV, and ejection energies
of 10 or 4 eV, respectively, for each electron. In this case, the
momentum transfer q from the projectile to the nucleus is
small, respectively, 0.24 and 0.22 a.u.. Also, there are kine-
matically complete experiments using the COLTRIMS (Cold
Target Recoil Ion Momentum Spectroscopy) apparatus [8,9],
where the recoil momentum of the ion is also measured. Both
methods complement each other in the understanding of the
dynamics of the process.

There are many theoretical approaches applied to this
process that can be divided into two different lines of work. The
first ones are based on perturbation theory, where approximate
initial and/or final wave functions of the collision are employed
in the transition matrix calculation (see Refs. [10,11]). These

methods usually make use of a Born series up to first or
second order and are easier to compute from a numerical
point of view. However, the FDCS obtained with them are
remarkably different among themselves (both in shape and
magnitude) and with the experimental data. Such differences
have been puzzling, because these theories tend to agree with
each other in simpler problems, such as the atomic single
ionization by electron impact or the double photoionization
of He [12,13]. This could indicate that second-order effects
should be considered [14,15].

The other type of theoretical approach aims to solve the
problem from first principles, making use of different basis
sets to expand the solution accurately. Under this category one
can find convergent close coupling (CCC) [7,16] and the J

matrix [17–21]. The CCC approach gives good agreement in
shape for all FDCS, but the magnitude is consistently lower
than the experimental results by factors of 2.2 and 14 (10 and
4 eV cases, respectively). The J matrix approach gives overall
agreement in shape with the experimental data, except for some
ejection angles. Besides, it reproduces neither the absolute
measurements nor the CCC theoretical results. One common
ground of all these theoretical models is that they treat the
description of the four-body problem as a three-body one.
If these three-body theories were in agreement among them-
selves and all together in disagreement with the experimental
data, one would conclude that the experimental data has
flaws or that higher orders are required. Since even theories
themselves do not agree with each other, it could be possible
that some assumptions and/or numerical implementations are
not adequate for all of them. If a new theory agrees any of the
pre-existent calculations, one would be able to rule out the rest
and perhaps question the experimental results.

The aim of this work is to shed some light into this long-
standing controversy. Therefore, we propose a completely
different theoretical approach based on generalized Sturmian
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functions (GSF) [22,23], and compute the FDCS for (e,3e)
within this model.

The (e,3e) problem formally involves four bodies, three
electrons and the nucleus. Since the center of mass of the
system lies on the nucleus, the problem can be described by
three coordinates {r1,r2,r3} of the electrons relative to the
helium core, totaling nine real variables. We consider that
electron 1 is the projectile with initial momentum ki that
leaves the collision region with final momentum kf , while
electrons 2 and 3 are bound in the initial state and ejected by
the collision with electron 1. The total energy of the system is
E = E0 + |ki|2/2 = Ea + |kf |2/2. The bound energy of the
He atom is represented by E0, while Ea is the energy of the
ejected electrons. The accurate solution of the corresponding
four-body Schrödinger equation remains a formidable task
from a numerical point of view. However, in the high-energy
regime it is possible to reduce this problem to a three-body one,
by keeping the first order of a series expansion of the exact
solution. In a recent work, we have shown that the three-body
equivalent problem for the (e,3e) ionization can be described
by the time-independent Schrödinger equation [24–26]:

[Ea − hHe]�+
sc(r2,r3)

= 4π

q2

1

(2π )3
(−2 + eiq·r2 + eiq·r3 )�i(r2,r3). (1)

Here the wave function �+
sc(r2,r3) dictates the ionized electron

dynamics, while �i(r2,r3) is the 1s2 state of He, with
Hamiltonian hHe.

The GSF method makes use of orthogonal one-electron
radial basis sets. Each element of this basis is the solution of
the Sturmian equation[

−1

2

d2

dr2
+ l(l + 1)

2r2
+ U(r) − Es

]
S±

nl(r)

= −βnlV(r)S±
nl(r), (2)

where U(r) and V(r) are real functions of the variable r ,
called generating and auxiliary potentials, respectively. The
main difference between this equation and the traditional
Schrödinger one is that the energy Es is a fixed parameter
and one searches the eigenvalues βnl [27]. The magnitude l is
the single-particle angular momentum. An important feature
of the GSF method is that the solutions of Eq. (2) are chosen
with outgoing (+) or incoming (−) asymptotic condition, if
one is interested in a continuum state [28], or as exponentially
decaying functions if one is looking for bound states [29].
Therefore, one can expand the scattering wave as

�+
sc(r2,r3) =

∑
L,M

∑
l2,l3

∑
n2,n3

φν�ν(r2,r3), (3)

with

�ν(r2,r3) = YLM
l2l3

(̂r2 ,̂r3)
S+

n2l2
(r2)

r2

S+
n3l3

(r3)

r3
, (4)

where the YLM
l2l3

(̂r2 ,̂r3) are coupled spherical harmonics, while
the GSFs S+

ni li
(ri) (i = 2,3) have purely outgoing asymptotic

behavior. The initial state �i(r2,r3) in Eq. (1) can be computed
in terms of bound GSFs, as shown in Ref. [30]. Projection onto
the final-state basis �ν ′ (r2,r3) leads to a large, dense linear

FIG. 1. (Color online) Example of convergence of FDCS for
different values of the numerical asymptotic limit. FDCS is computed
for the 10 + 10 eV energy sharing and an ejection angle of θ2 = 41◦

in arbitrary units, without renormalization factors. The solid black
line was computed at 28 a.u., dashed red (gray) line at 48 a.u., and
the dotted blue (gray) line at 68 a.u.

system on the unknowns φν . The label ν denotes the set of
indices {L,M,l2,l3,n2,n3}.

In the present work, we apply the GSF strategy to the
(e,3e) collisional configuration of Ref. [7], where absolute
FDCSs in the coplanar geometry have been obtained for equal
emission energies, of 4 and 10 eV. The energy parameter Es

for each Sturmian was set equal to the total available energy
for the ejected electrons. For each total angular momentum
L wave, five sets of values (l2,l3) were considered. To test
the convergence respect to total angular momentum L, we
took the mean value of each partial wave’s coefficients φν to
compare the contribution to the cross section. We choose to
compute five partial waves with L = 0,1,2,3, and 4. The |φν |
mean value peaks at L = 1, drops one order of magnitude
for L = 2, and drops two additional orders of magnitude for
L = 3 and 4. Hence, the waves with L beyond 2 contribute
negligibly to the FDCS, at least within this (Ea,q) regime. This
is further supported by the results of Knyr et al. [21], where
they required only up to L = 2.

The transition matrix Tk̃2,k̃3
in terms of the momenta of

the ionized electrons is computed from the asymptotic part of
the wave function [24]. For practical purposes, the transition
matrix is obtained at different fixed hyperradii ρ2 = r2

2 + r2
3 ,

until convergence is achieved. The differential cross section is
computed as

d5σ

d�2d�3d�f dE2dE3
= (2π )4 kf k2k3

ki

|Tk̃2,k̃3
|2. (5)

In Fig. 1 we show the FDCS for θ2 =41◦ computed for three
different domains. It is clear that convergence is achieved for
≈50 a.u., since that FDCS varies little from the one obtained at
≈70 a.u. This behavior replicates for all ejection geometries.

In the next figures we show our calculated fully differential
cross sections with the GSF theory for two ejection angles:
θ2 = 135◦ and θ2 = 315◦ for 4 + 4 eV configuration (Fig. 2),
and θ2 = 55◦ and θ2 = 291◦ for 10 + 10 eV emission (Fig. 3).
We compare the GSF results with those of the CCC and J

matrix theories. Our calculations present a remarkable agree-
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FIG. 2. (Color online) Two examples of FDCS compared with
the experimental and theoretical data for 4 + 4 eV ejected energies.
Emission angles are θ2 = 135◦ (top) and θ2 = 315◦ (bottom). Solid
black line, present GSF model; dashed red (gray) line, CCC; and
circular blue (gray) symbols and bars, experimental data from
Ref. [7].

ment with the CCC approach, in both shape and magnitude,
for 4 + 4 eV electrons. A good agreement is obtained for the
10 + 10 eV emission, although the interelectronic correlation
described by the separation of the main peaks is somewhat
different. We also note that the J matrix predicts a peak at
θ2,θ3 = 291◦ (collinear emission), that does not show up in
our calculations or in the CCC’s (see Fig. 2). Disagreement
in magnitude with the absolute experimental data available is
observed for all geometries. Factors of 2.2 and 14 were used
to scale up the theoretical GSF and CCC results, while the
J matrix required factors of 1.2 and 7 [6]. Another striking
difference with experimental result can be seen in the sharp
zero of the theoretical cross section for θ2 = 55◦ and θ3 = 220◦
at 10 + 10 eV, where the experiment exhibits a null value. This
behavior can also found in other geometries.

Although differences in magnitude still remain when theory
is compared with the experiment, we can state that now there
are two completely different theoretical approaches agreeing
well with each other, for a wide range of ejection angles. The
agreement between the theories is the best reported up to this
moment, and it applies to the two emission energies of the
Orsay experiment. One possible solution to the puzzle is that
the assumption that the process can be modeled as a three-body
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FIG. 3. (Color online) Same as Fig. 2, for 10 + 10 eV ejected
energies. Emission angles are θ2 = 55◦ (top) and θ2 = 291◦ (bottom).
Solid black line, present GSF model; dashed red (gray) line, CCC;
green (gray) solid line with symbols, J matrix ([31], based on the
methods from Ref. [21]); and circular blue (gray) symbols and bars,
experimental data from Ref. [7].

system within a first-order Born style expansion is not valid,
and some of the features of the real four-body collision are
left out. There is evidence that including second-order Born
terms in the calculations does not lead the theoretical results
to agree with experimental data magnitude [32]. Therefore, it
is possible that the experimental data present some systematic
error that results in the uniform overestimation of the cross
sections along all geometries. However, for that suggestion
to be verified, good agreement in second-order calculations
should be attained by at least two independent schemes, as
we have now presented for the first order. We believe that our
work has helped to advance the controversy away from the
first-order stage.
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