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Scattering properties of the 2e−2e+ polyelectronic system
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We study the 2e−2e+ equal-mass charge-neutral four-body system in the adiabatic hyperspherical framework.
The lowest few adiabatic potentials are calculated for zero orbital angular momentum, positive parity, and charge
conjugation symmetries. Propagating the R matrix, the low-energy s-wave scattering lengths of the singlet-singlet
and triplet-triplet spin configurations are calculated. Last, we calculate the S matrix for energies above the ionic
threshold to estimate the transition rates between the single ionic fragmentation channel and the lowest few
dimer-dimer fragmentation channels.
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I. INTRODUCTION

Started by Wheeler’s earlier studies [1], polyelectronic
systems continue to be an active area of research [2–13]. The
particle-antiparticle mixtures in particular [14] are inherently
unstable due to annihilation, but are fundamental, e.g., in
the high rates of Ps annihilation at the galactic bulge [15]
and precision tests of combined charge conjugation, parity
inversion, and time reversal symmetry violation via antihydro-
gen [14,16]. Moreover, there have been many advancements
toward a gamma-ray laser based on the development of a
Bose-Einstein condensate of spin-polarized Ps [17–21] and
the experimental observation of the Ps2 molecule [22].

Using the adiabatic hyperspherical framework, many
charged few-body systems have also been investigated. From
Macek’s pioneering work [23], the three-body Coulomb
problem has been extensively studied [24–30] and reviewed
(see Refs. [27,31] and references within). There have been
notable studies of four-body charged systems as well [32–34],
and even a first look at the equal-mass five-body system [35].

We examine the 2e−2e+ equal-mass charge-neutral four-
body system using the adiabatic hyperspherical framework
[36,37]. The adiabatic Hamiltonian is solved utilizing a basis
of explicitly correlated Gaussians at a fixed hyper-radius
[38–40]. The evaluation of matrix elements is facilitated using
a Fourier-transform technique [35]. The hyper-radial R matrix
is propagated and the low-energy s-wave scattering lengths are
calculated. Also, from the S matrix we estimate the transition
probabilities between the ionic channel and the lowest few Ps2

dimer-dimer channels.
The rest of the paper is organized as follows. Section II

defines the Hamiltonian and the basis set used to solve the adi-
abatic Hamiltonian. Section III analyzes the adiabatic potential
curves, that is, the solutions to the adiabatic Hamiltonian.
Section IV describes how the low-energy elastic scattering
lengths are calculated and compares the results to benchmark
calculations from the literature. In Sec. V, the S matrix is
calculated to estimate the transition probabilities between the
lowest few dimer-dimer fragmentation channels and the single
ionic fragmentation channel. Last, Sec. VI concludes.

II. THEORETICAL BACKGROUND

Consider the system of two electrons and two positrons
in three dimensions interacting via the two-body Coulomb

potential. The Hamiltonian H in atomic units (� = me = 1)
reads

H = − 1

2

4∑
j=1

∇2
rj

+
∑
i<j

qiqj

|r i − rj | , (1)

where rj is the location of particle j . For concreteness,
q1 = q2 = +1 and q3 = q4 = −1. The center of mass HCM

and relative Hrel contributions separate, H = HCM + Hrel. Our
focus is on the relative Hamiltonian,

Hrel = − 1

2μ

3∑
j=1

∇2
ρj

+ VC(ρ1,ρ2,ρ3), (2)

where VC contains the pairwise Coulomb interactions as a
function of the three relative Jacobi vectors ρj , j = 1,2,3. All
Jacobi vectors are scaled such that they are analogous to three
equal-mass “particles” of mass μ. We take μ = 2−2/3 such
that the coordinate transformation is unitary.

The relative Hamiltonian Hrel is recast in hyperspherical
coordinates in terms of eight hyperangles denoted by � and a
single length, the hyper-radius R. The relative Hamiltonian
is then a sum of the hyper-radial kinetic energy TR , the
hyperangular kinetic energy T�, and the interaction potential,

Hrel = TR + T� + Vint(R,�), (3)

where

TR = − 1

2μ

1

R8

∂

∂R
R8 ∂

∂R
. (4)

The exact form of the hyperangular kinetic energy T� depends
on the choices of the Jacobi vectors and of the hyperangles.
The exact form is not needed here, but additional details can
be found in Ref. [37].

The solution �E(R,�) to Eq. (3) is expanded in terms
of the radial functions R−4FEν(R) and the channel functions
�ν(R; �):

�E(R,�) = R−4
∑

ν

FEν(R)�ν(R; �). (5)

The channel functions at a fixed hyper-radius R form a
complete orthonormal set over the hyperangles,∫

d� �∗
ν(R; �)�ν ′(R; �) = δνν ′ , (6)
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and are the solutions to the adiabatic Hamiltonian Had(R,�),

Had(R,�)�ν(R; �) = Uν(R)�ν(R; �), (7)

where

Had =�2 + 12

2μR2
+ C(�)

R
. (8)

Here, �2 is the square of the grand angular momentum operator
and C(�) is the hyperangular part of the Coulomb interaction.

After applying Eq. (3) on the expansion Eq. (5) and
projecting from the left onto the channel functions, the
Schrödinger equation reads(

− 1

2μ

d2

dR2
+ Uν(R) − E

)
FEν(R)

− 1

2μ

∑
ν ′

(
2Pνν ′ (R)

d

dR
+ Qνν ′(R)

)
FEν ′(R) = 0. (9)

The hyperspherical Schrödinger equation Eq. (9) is solved in
a two step procedure. First, Had(R,�) is solved parametrically
in R for the adiabatic potential curves Uν(R). In a second step,
the coupled set of one-dimensional equations in R is solved. In
Eq. (9), Pνν ′ and Qνν ′ represent the coupling between channels,
where

Pνν ′ (R) =
〈
�ν

∣∣∣∣∂�ν ′

∂R

〉
�

(10)

and

Qνν ′(R) =
〈
�ν

∣∣∣∣∂
2�ν ′

∂R2

〉
�

. (11)

The brackets indicate that the integrals are taken only over the
hyperangle � with the hyper-radius R held fixed.

The eigenfunctions �ν(R; �) of Had(R,�) are simulta-
neous eigenstates of the total orbital angular momentum L,
the parity π , and the spin of the identical positrons S+ and
identical electrons S−. Moreover, because of the equal masses
and charges, the eigenfunctions are also eigenstates of the
charge conjugation operator Ĉ. The �ν(R; �) are expanded
using a nonorthogonal basis of correlated Gaussians [38–40],

|�ν〉 =
∑

j

Ĉ±Ŝ|A(j )〉|χ〉, (12)

where Ŝ is a symmetrization operator that permutes the
space and spin labels of identical particles. In particular,
Ŝ = [1 − (12)][1 − (34)], where (ij ) is the two-cycle operator
that exchanges particles i and j . The three-cycle operator
(ijk), for example, denotes the permutation i → j , j → k,
and k → i. In practice, to project out the parts of the functions
that are either even (+) or odd (−) under charge conjugation,
we apply the operator Ĉ±, Ĉ± = 1 ± Ĉ, where Ĉ = (13)(24).

In general, under permutation the spin functions |χ〉 would
transform to a different spin configuration. However, this work
only considers the singlet-singlet (SS) or triplet-triplet (TT)
spin configurations. In this case, the effect of permutations on
the spin functions leaves them unchanged except possibly for
an overall minus sign. The combined operator Ĉ±Ŝ involves
eight permutations. Table I indicates all of the permutations
and their effective signs that are considered in this work.

TABLE I. Permutations used in the basis functions Eq. (12)
labeled by the charge conjugation and spin. SS (TT) means singlet-
singlet (triplet-triplet).

C+SS C+TT C−SS C−TT

1 + + + +
(12) + − + −
(34) + − + −
(12)(34) + + + +
(13)(24) + + − −
(3142) + − − +
(1324) + − − +
(14)(23) + + − −

The first column denotes the permutation while the first row
denotes the system considered.

The functions |A(j )〉 are

|A(j )〉 = exp

(
−1

2
xT A(j )x

)
|uT x|2K. (13)

Here, x is an array of (column) Jacobi vectors, xT =
{x1,x2, . . . ,xN }. All Jacobi vectors exist in three dimensions,
such that the j th Jacobi vector reads xT

j = {xj,1,xj,2,xj,3}. A(j )

is an N × N symmetric positive definite coefficient matrix that
describe the correlations. The matrix A(j ) contains N (N +
1)/2 independent variational parameters. The N -dimensional
global vector u determines the linear combination of Jacobi
vectors, where the integer K is a nodal parameter. These
basis functions describe only positive parity states with zero
orbital angular momentum L, though it is well known how to
extend this basis to include different parity and finite angular
momenta [40].

III. ADIABATIC POTENTIAL CURVES

This paper is concerned with states of L = 0 angular mo-
mentum and positive parity π . Our matrix element calculations
utilize a technique that reduces all matrix element evaluations
to one-dimensional Fourier transforms [35]. Using this basis,
the lowest few adiabatic potentials are calculated for the
2e−2e+ system and shown in Figs. 1 and 2. To put all adiabatic
potentials on the same scale, the curves are plotted as effective
quantum numbers nν(R) [28,30] as functions of the square
root of the hyper-radius R. This scaling is motivated by the fact
that, at low energy, all curves except the asymptotically ionic
channel represent the fragmentation into two Ps dimers at large
hyper-radius. At the low energies considered here, one of these
Ps dimers is always in the ground state in the asymptotic limit.
Thus, based on the asymptotic thresholds energies, we define

nν(R) = [−4Uν(R)/EH − 1]−1/2 . (14)

Figure 1 shows the eigenstates of Ĉ corresponding to
eigenvalue +1 for (a) the SS and (b) the TT spin configurations.
In general, the potentials of the TT case are more repulsive
since the Pauli exclusion principle keeps the identical particles
further apart. Moreover, only in the SS case does the ionic
channel appear. In a diabatic picture, this ionic channel,
with threshold energy −0.262EH [nν(∞) = 4.56], crosses
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FIG. 1. (Color online) Adiabatic potential curves for Lπ = 0+

and charge conjugation eigenvalue +1 shown as effective quan-
tum numbers [see Eq. (14)] vs

√
R. Panels (a) and (b) are for

(S+,S−) = (0,0) and (1,1), respectively. The thin solid lines show the
known asymptotic behavior through order R−3. The asymptotically
ionic channel in (a) is the dash-dash-dotted line. The dimer-dimer
asymptotic thresholds are labeled by the angular momentum of the
excited Ps.
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FIG. 2. (Color online) Adiabatic potential curves for Lπ = 0+

and charge conjugation eigenvalue −1 shown as effective quantum
numbers vs

√
R. Panels (a) and (b) are for (S+,S−) = (0,0) and

(1,1), respectively. The thin solid lines show the known asymptotic
behavior through order R−3. The asymptotically ionic channel in (a)
is the dash-dotted line. The dimer-dimer asymptotic thresholds are
labeled by the angular momentum of the excited Ps.

dimer-dimer channels with nν(∞) � 4, each crossing becom-
ing less sharp (less diabatic) for crossings at lower energy.

Figure 2 shows the eigenstates of Ĉ corresponding to
eigenvalue −1 for (a) the SS and (b) the TT spin configurations.
Again, we observe that the potentials of the TT case are more
repulsive than the potentials of the SS spin configuration. Panel
(a) shows the diabaticlike ionic channel, which is absent in
panel (b). Moreover, the dash-dash-dotted line of panel (a) has
a local minimum around

√
R/a0 ≈ 6.5. Though not visible

on the scale shown, this is due to an avoided crossing with
the next highest channel. Though the curves begin to be less
converged in this region, it is a true feature and not an artifact.
Taking into account the other adiabatic potentials (not shown),
even though unconverged, they hint that this is just the first of
many avoided crossings at large R and appear to map out a
diabatic curve that asymptotically approaches −0.25EH , that
is, the energy where one dimer has completely dissociated.

The asymptotic limits up through order R−3 are shown
as thin solid lines at large R in both Figs. 1 and 2. This
asymptotic behavior can be calculated by asymptotically
expanding the adiabatic Hamiltonian in powers of R−1 [37]
and using degenerate perturbation theory. This yields, for the
dimer-dimer channels shown,

Uν(R → ∞)

≈ −1

4
+ −1

4n2

+ 1

4μR2

[
3l(l + 1) − n2 − 2 − 28n5δl0

(n2 − 1)4

(
n − 1

n + 1

)2n ]

+ 1

3μ3/2R3

211n7δl1

(n2 − 1)5

(
n − 1

n + 1

)2n

, (15)

where the two terms involving Kronecker deltas only con-
tribute if n > 1.

The number of asymptotic channels can be understood by
examining the asymptotic wave functions [37]. For the dimer-
dimer thresholds, ignoring the spin part of the wave function,
the unsymmetrized asymptotic wave function is effectively a
product of two scaled hydrogenic radial wave functions and a
coupled set of spherical harmonics whose angles are defined
by the Jacobi vectors ρj ,

|�(R → ∞)〉 ≈ |n1l1〉1|n2l2〉2|ρ̂1ρ̂2ρ̂3〉, (16)

where |nl〉j represent the hydrogenic wave function along the
j th Jacobi vector and

|ρ̂1ρ̂2ρ̂3〉 = (−1)l3√
2l3 + 1

∑
m

〈l1m1l2m2|l3m3〉

× Yl1m1 (ρ̂1)Yl2m2 (ρ̂2)Y ∗
l3m3

(ρ̂3). (17)

The sum is over all projection quantum numbers, Y are
spherical harmonics, and 〈·〉 is a Clebsch-Gordan coefficient.

The Jacobi vector ρ1 defines the first dimer, ρ2 defines the
second dimer, and ρ3 defines the interdimer distance. Applying
the symmetrization operator Ŝ yields

Ŝ|�(R → ∞)〉 ≈|n1l1〉1|n2l2〉2|ρ̂1ρ̂2ρ̂3〉
+ (−1)l3 |n2l2〉1|n1l1〉2|ρ̂2ρ̂1ρ̂3〉 (18)
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since the terms arising from P12 and P34 are exponentially
negligible. This can be understood since, if expressed in a
single Jacobi basis, these operators cause the Jacobi vectors
to pick up components along ρ3. In the asymptotic limit, ρ3

scales with the hyper-radius R and thus the hydrogenic wave
function causes the exchange term to vanish exponentially. The
functions Eq. (18) are eigenstates of the charge conjugation
projection operator Ĉ±:

Ĉ±Ŝ|�(R → ∞)〉 = [1 ± (−1)l1+l2 ]Ŝ|�(R → ∞)〉. (19)

If one dimer is in the ground state, then the asymptotic wave
function vanishes for Ĉ+ if the other dimer is in an odd
partial wave. On the other hand, the asymptotic wave function
vanishes for Ĉ− if the other dimer is in an even partial wave.

In this way, in a diabatic picture the adiabatic potentials can
be labeled by how they approach the asymptotic thresholds
(shown as thin solid lines at large R). In Fig. 1(b), for example,
solid, dashed, dash-dotted, dash-dash-dotted, dotted, and dash-
dot-dotted lines are for 1s1s, 1s2s, 1s3s, 1s3d, 1s4s, and 1s4d

Ps-Ps channels, respectively. In Fig. 1(a), the labeling is shifted
due to the inclusion of the ionic channel, such that the ionic
channel is the dash-dash-dotted line while solid, dashed, dash-
dotted, dotted, dash-dot-dotted, and solid lines are for 1s1s,
1s2s, 1s3s, 1s3d, 1s4s, and 1s4d Ps-Ps channels, respectively.
In Fig. 2(b), solid, dashed, and dash-dotted lines are for 1s2p,
1s3p, and 1s4p Ps-Ps channels, respectively. In Fig. 2(a), the
labeling is shifted due to the inclusion of the ionic channel,
such that the ionic channel is the dash-dotted line while solid,
dashed, and dash-dash-dotted lines are for 1s2p, 1s3p, and
1s4p Ps-Ps channels, respectively.

Our current scheme suffers from convergence issues in the
asymptotically large R region for states other than s wave.
This is visible in the dotted and upper solid lines of Fig. 1(a),
the dash-dash-dotted and dash-dot-dotted lines of Fig. 1(b),
as well as the dash-dotted line of Fig. 2(b). Even more, the
potentials that asymptotically approach the 1s4f threshold in
Fig. 2 are even less converged, not appearing within the figure
on the scale shown. In practice, the adiabatic potentials are
smoothly matched to the known asymptotic behavior.

IV. LOW-ENERGY ELASTIC SCATTERING

This section describes the low-energy elastic-scattering
properties for those systems shown in Fig. 1, that is, the s-wave
scattering lengths for the TT and SS spin configurations. The
inverse log-derivative R matrix is propagated from a small
hyper-radius out to some matching distance Rm, where it is
matched to the asymptotic form of the hyperspherical wave
functions. For short-range interaction potentials, the couplings
and adiabatic potentials fall off sufficiently fast such that a
sufficiently large matching point Rm leads to converged results.
For the long-range Coulomb interaction, however, we find it
better to match the R matrix at many different points and then
extrapolate to an infinite matching point.

As an example, Fig. 3 shows the tangent of the s-wave
phase shift as a function of the inverse of the matching point
for the SS system. The TT system is qualitatively similar.
Panel (a) is for a scattering energy Escatt = 0.01EH above
the 1s1s threshold, while panel (b) is for a scattering energy
Escatt = 0.001EH . The oscillations in tan δ as a function of Rm
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FIG. 3. (Color online) Tangent of the phase shift δ as a function
of the matching distance Rm for low-energy elastic scattering of the
(S+,S−) = (0,0), Lπ = 0+ system using the four lowest channels.
Panels (a) and (b) are for scattering energies of Escatt = 0.01EH and
0.001EH , respectively. The dashed line of the insets shows a linear
fit over a0/Rm = 0 − 0.003.

begin at R ≈ 25a0, that is, beyond the distance where there is
an appreciable potential well. However, it is the long-range
nonadiabatic coupling, which between s-wave dimer-dimer
states goes as Pνν ′ (R → ∞) ≈ R−1 at large distance, that leads
to the oscillating behavior. This has been verified by artificially
turning off these couplings beyond some large distance and
observing that the oscillations cease.

In addition to the oscillating behavior, tan δ approaches the
infinite matching point linearly when plotted as a function of
R−1

m . In practice, we fit to this linear behavior, making the range
of the fit extend over many wavelengths to average out the
oscillations. The insets of Fig. 3 show such fits. The oscillations
have a smaller wavelength as the scattering energy increases,
such that the fits to the tan δ with the lowest scattering energy
have a larger uncertainty.

Figure 4 shows the energy-dependent s-wave scattering
lengths, a = − tan δ/k, where k is the scattering momentum,
as a function of the scattering energy Escatt, where Escatt is the
energy above the lowest dimer-dimer threshold of −0.5EH .
Circles, squares, diamonds, and triangles show the SS s-wave
scattering length aSS including one, two, three, or four lowest
channels. The crosses are an extrapolation to an infinite number
of channels based on the data for including the lowest two
through four channels. The thin lines show linear and quadratic
fits to the extrapolated data set using the five points of lowest
scattering energy. In Fig. 4(b), a similar analysis is done for the
TT scattering length aTT. The analysis estimates the scattering
lengths to be aSS = 8.7(2)a0 and aTT = 3.2(1)a0.

The scattering estimates provided agree well with others
(see Table II), but are systematically large when compared to
the accurate stochastic variational method [41,42].
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FIG. 4. (Color online) Low-energy s-wave scattering length a vs
scattering energy Escatt for (a) the SS configuration and (b) the TT
configuration. Circles, squares, diamonds, and triangles include the
lowest 1–4 channels, respectively. Crosses represent extrapolating
to an infinite number of channels, based on the data for included
channels 2–4. Upper and lower thin solid lines are quadratic and
linear fits, respectively, of the extrapolated data.

This systematic error at low scattering energy arises from
a number of sources. As already mentioned, the oscillations
in tan δ obscure the underlying linear behavior if the R

matrix is not propagated to sufficiently large distance. The
more probable cause is that at low scattering energy the
scattering data are very sensitive to small changes in the
realistic potentials, that is, the adiabatic potentials Uν(R) with

TABLE II. The s-wave scattering length in atomic units for some
calculations of Ps-Ps scattering.

Method Singlet Triplet

CCA [43]a 7.46 1.56
CCA [44]b 9.32 2.95
HECG (present)c 8.7(2) 3.2(1)
Oda et al. [45]d 8.26 3.02
Platzman and Mills, Jr. [17] ≈5.7 ≈1.9
QMC [46]e 9.148(42) 3.024(58)
QMC [47]f � 9.148(42) 2.900(34)
Superseded SVM [41,42]g 8.443 2.998

aFor basis set Ps(1s)Ps(1s,2s,2p).
bFor basis set Ps(1s,2s,2p̄,3d̄) Ps(1s,2s,2p̄,3d̄); bar denotes
pseudostate.
cSee text for the description of the error estimate.
dModel: long-range van der Waals potential with short-range hard
core, constrained to fit Ps2 binding energy.
ePolynomial fit to phase shift.
fSame data as [46], but fit to effective range theory. Singlet value is
unknown, but deduced to be slightly larger than in [46].
gError bars beyond digits shown.

diagonal Qνν(R) correction. In practice, where possible, an
inverse power-law fit is performed on the large-R tails of the
realistic potentials as this matches the expected behavior at
large distance. However, in some cases a nonadiabatic coupling
occurs in the region where the inverse power-law asymptotics
would be expected, obscuring this behavior. Thus, instead of
a power-law fit, we find a Lorentzian-like tail to be a more
appropriate large R fit to the realistic potential. Nevertheless,
since the realistic potentials are a variational upper bound to the
true potentials, the scattering data at low scattering energy are
systematically higher than expected. A fit of the zero-energy
s-wave scattering lengths using the scattering data at higher
energy would provide an estimate much closer to accepted
values, but is not provided here.

We estimate the error by fitting the N -channel scattering
data to quadratic and linear polynomials, extrapolating to zero
scattering energy. An example is shown in Fig. 4 for the infinite
channel approximation (crosses). This provides error estimates
for each fixed-channel calculation. The difference between the
four-channel calculation and infinite-channel approximation is
used to then estimate an overall error.

The scattering lengths reported in Table II are not the
experimentally relevant scattering lengths. Those reported
are for the singlet-singlet or triplet-triplet symmetries of the
identical electrons and positrons. For experiment, it is the
spin of the Ps atoms that is relevant. It is a straightforward
calculation to switch between the two coupling schemes; see,
e.g. Refs. [47] or [42].

V. CHARGE REDISTRIBUTION

This section describes the charge redistribution, that is,
the probability of transferring from a dimer-dimer channel
to the ionic channel that occurs in only the systems with SS
symmetry. The probabilities are given by the squared absolute
value of the S-matrix elements. The S matrix is calculated
after propagating the R matrix to a large distance. Similar to
the approach shown in Fig. 3, each element of the S matrix
is extrapolated to matching to the asymptotic solutions at
R → ∞.

In the following, for positive charge conjugation symmetry,
only the lowest four channels are included in the calculations
[the solid, dashed, dash-dotted, and dash-dash-dotted lines
of Fig. 1(a)]. The dimer-dimer channels fragment into one
ground-state s-wave Ps and one excited-state s-wave Ps. No
d-wave [dotted and upper solid lines of Fig. 1(a)] or highest
s-wave [dash-dot-dotted line of Fig. 1(a)] fragmentation
channels are included. Beyond the crossing with the third
dimer-dimer channel, the ionic channel is made continuous
up to the ionic threshold of −0.262EH , where all cross-
ings with the neglected dimer-dimer channels are assumed
to be fully diabatic. For the negative charge conjugation
symmetry, only the lowest three channels are included in
the calculations [the solid, dashed, and dash-dotted lines of
Fig. 2(a)]. The asymptotically dimer-dimer channels fragment
into one ground-state s-wave Ps and one excited-state p-wave
Ps. No f -wave [not shown in Fig. 2(a)] or highest p-wave
[dash-dash-dotted line of Fig. 2(a)] fragmentation channels
are included. Beyond the crossing with the second dimer-dimer
channel, the ionic channel is made continuous up to the ionic
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FIG. 5. (Color online) Charge redistribution probabilities as a
function of scattering energy for SS and (a) negative or (b) positive
charge conjugation symmetry. All curves are for dimer-dimer to ionic
transitions and are labeled by the dimer-dimer threshold. The ionic
threshold is −0.262EH .

threshold of −0.262EH , where all crossings with the neglected
dimer-dimer channels are assumed to be fully diabatic.

Figure 5 shows some of the squared absolute values of
the off-diagonal S-matrix elements for the SS system with
(a) positive and (b) negative charge conjugation symmetry.
In panel (b), solid (|S14|2), dashed (|S24|2), and dash-dotted
(|S34|2) lines show the transition probabilities to transition from
the three lowest dimer-dimer channels to the ionic channel.
The charge transfer is most efficient from the ground dimer-
dimer channel and is less efficient as the excited Ps increases
in principle quantum number. This can be understood since
the avoided crossing is largest between the ground and first
excited states. Thus, any flux coming in on the ground state
is efficiently transferred to the higher channels as opposed to
simply exciting one of the Ps atoms, whereas flux coming in
on the first excited state is more efficiently given to the ground
state rather than transferring to the ionic channel. The crossing
of the third dimer-dimer channel is almost fully diabatic, hence
there is no efficient charge transfer from this state to the state
of the Ps ion and a free charge. This trend of the crossings
becoming more diabatic as the energy increases supports our
approach of neglecting the more excited dimer-dimer channels.

In Fig. 5(a), solid (|S13|2) and dashed (|S23|2) lines show
the transition probabilities to transition from the two lowest
dimer-dimer channels to the ionic channel. Overall, the charge
transfer is not as efficient in comparison to the case of positive
charge conjugation symmetry. This can be understood since
there is only one wide avoided crossing, but it is not as
wide as in the case of positive charge conjugation symme-
try. The second curve crossing is already mostly diabatic,
suppressing much of the probability to transfer to the ionic
channel.

VI. CONCLUSION AND OUTLOOK

This paper calculates the lowest adiabatic potential curves
as a function of the hyper-radius R for the 2e+2e− system
for zero orbital angular momentum, positive parity, and
different charge conjugation symmetries. Using these hyper-
radial channels, low-energy elastic-scattering properties are
determined by propagating the R matrix. The long-range
couplings from the Coulomb interactions are overcome by
matching to the asymptotic hyper-radial functions at many
different points. The observed behavior in the tangent of the
phase shift and the calculated S-matrix elements, as a function
of inverse matching point, is linear with damping oscillations.
The resulting s-wave scattering lengths are larger than other
values in the literature, but nevertheless converge well as a
function of the number of included channels and provide
reasonable estimates of the scattering properties. The transition
probabilities are expected to be good estimates, but could be
improved by including more channels.

The ability to treat the ionic and dimer-dimer fragmentation
channels on an equal footing is one of the strengths of the
adiabatic hyperspherical method. Future studies will extend
this system to include inelastic-scattering properties and
different orbital angular momentum states. Moreover, the
masses and charges of the particles are tunable parameters. It
would be interesting to study, e.g., the change in the potential
curves and transition amplitudes as a function of the mass of the
positive charge transitioning from the Ps2 to the H2 system.
Explicitly including hydrogenic wave functions in the basis
could also help the convergence issues at large hyper-radius.
These topics will be the focus of future studies.
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