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In this paper we present results of ab initio calculations for the beryllium dimer with a basis set of Slater-
type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full
configuration interaction calculations combined with high-level coupled-cluster correction for inner-shell effects.
We have developed STO basis sets, ranging in quality from double to sextuple ζ , which are used in these
computations. Principles of their construction are discussed and several atomic benchmarks are presented.
Relativistic effects of order α2 are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found
to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to
be negligible. Finally, the electronic binding energy of the beryllium dimer is determined to be 929.0 ± 1.9 cm−1,
in a very good agreement with the recent experimental value.
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I. INTRODUCTION

State-of-the-art ab initio electronic structure calculations
are very important for the new emerging field at the border
of chemistry and physics: the studies of ultracold molecules.
During the past decades, experimental advances in laser
cooling and trapping of neutral atoms have opened a door
for the formation of ultracold diatomic molecules by pho-
toassociation [1] and magnetoassociation [2] techniques. In
this respect, ab initio calculations of the potential energy
curves and coupling matrix elements between the electronic
states turned out to be crucial to interpret the experimental
observations. See, for instance, Ref. [3] for the theoretical
explanation of the unusual quadratic Zeeman shifts in the Sr2

molecule, or Ref. [4] for interpretation of the observed subradi-
ant states of Sr2. Electronic structure calculations can also be
used to predict new schemes for the formation of ultracold
diatomic molecules [5–9]. Apart from that, state-of-the-art
first-principles calculations are used in metrology, e.g., to de-
termine the pressure standard [10]. Last, but not least, accurate
interatomic interaction potentials are of significant importance
in search for a new physics. See, e.g., Ref. [11] for a theoretical
study of the QED retardation effect of the helium dimer and
the work of Zelevinsky et al. [12] for a joint experimental-
theoretical effort towards determination of the proton-electron
mass ratio time variation. Additionally, one can mention the
work of Schwerdtfeger et al. [13] on the Sr2 molecule where
time variation of the fine structure constant is investigated.

All the aforementioned physical applications require high-
precision theoretical data. Slater-type orbitals (STOs) are
expected to improve the description of many-electron systems,
thus leading to results more accurate than available at present.
In the first two papers of the series we proposed efficient
algorithms for the calculation of two-center integrals over
STOs [14,15]. As the first application of the STO integral
code we performed calculations for the beryllium dimer in its
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ground 1�+
g state. This is a challenging system, from both

the theoretical and the experimental points of view. From
the theory side, it has already been known that in order
to reach accurate results, very advanced quantum chemistry
methods must be used. In fact, probably the first calculations
performed for this system by Fraga and Ransil [16], using the
restricted Hartree-Fock (RHF) method, led to the conclusion
that the potential energy curve is purely repulsive. Further
inclusion of the electron correlation, by using the configuration
interaction (CI) method with single and double substitutions
(CISD), appeared to confirm this observation [17]. However,
more refined calculations with the same method indicated an
existence of a weak bond [18,19], with the interaction energy
of the order of several tens of cm−1 and equilibrium distance of
≈5 Å, which is characteristic for the van der Waals molecules
such as Ne2. A similar conclusion was found in a study [20]
employing the coupled-cluster (CC) methods with double (and
single) excitations (CCD, CCSD).

However, somehow later Harrison and Handy [21] per-
formed frozen-core full configuration interaction (FCI) cal-
culations and found that the interaction energy is at least
several hundreds of cm−1 larger. Even more importantly, they
reported the presence of a deep minimum around 2.5 Å,
which was a rather unexpected result at this time. These
results indicate that the connected triple (and possibly also
quadruple) excitations are responsible for the formation of the
bond. Reasons for such slow convergence of the traditional
CI or CC expansions were analyzed in detail by Liu and
McLean [22]. It was shown that the pathological behavior
of this system encountered during studies performed with the
single reference methods is mostly due to near degeneracy
of the 2s and 2p orbitals of the beryllium atom. It gives the
beryllium dimer a strongly multireference nature. By applying
the multireference configuration interaction (MRCI) method,
Liu and McLean found the interaction energy to be as large
as 810 cm−1 and confirmed the existence of the minimum
around 2.5 Å. These findings were later verified by several
independent MRCI studies [23–30]. Therefore, it is now well
established that Be2 is not a van der Waals molecule.
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Since then, a large number of theoretical works entirely
devoted to study of the beryllium dimer have been published
and a more detailed bibliography is given elsewhere [31,32].
The interaction energy is typically determined to be within
the range of 200–1000 cm−1 and it varies with the level of
theory and quality of the basis sets used. However, it appears
that in the most recent, and probably the most accurate,
studies, the interaction energy fluctuates somewhere around
900 cm−1. For instance, Martin [33] found 944 ± 25 cm−1,
Gdanitz [34], 989 ± 8 cm−1; Pecul et al. [35], 885 cm−1;
Reggen and Veseth [31], 945 ± 15 cm−1; Patkowski et al. [32],
938 ± 15 cm−1; Koput [36], 935 ± 10 cm−1; and Sharma et al.,
931.2 cm−1 [37]. Discrepancies between these results are still
rather large, though, which indicates that the ground state of
the beryllium dimer remains to be a challenge for modern
quantum chemistry methods.

From the experimental point of view, the ground state
of the beryllium dimer is also a demanding system. The
first empirical confirmation of the fact that Be2 is a deeply
bound system, as theoretically predicted, was reported in
the 1980s [38–40]. The most frequently cited experimental
result for the well depth was given by Bondybey et al.,
790 ± 30 cm−1. This result was not accurate and the true
error is much larger than the estimated error bars. However,
the discrepancy was not really due to the experimental error
but mostly due to theoretical assumptions used to extract the
dissociation energy. In fact, in 2006 Spirko [41] combined
the experimental data of Bondybey with the best theoretical
potential energy curve available at the time and refined the
result to 923 cm−1, which is much closer to the recent
theoretical findings. In 2009 a new experiment was performed
by Merritt et al. [42] and the interaction energy was found to
be 929.7 ± 2.0 cm−1. Additionally, 11 vibrational levels were
characterized [43]. Shortly afterwards, Patkowski et al. [44]
suggested the existence of the 12th vibrational level, just 0.44
cm−1 below the dissociation limit, by using the “morphed”
theoretical potential energy curve.

It is clear that the ground state of the beryllium dimer is a
challenging system, with large requirements for the quality of
the basis set and for the theoretical methods. Therefore, it is a
good test case for the STOs combined with the state-of-the-art
quantum chemistry methods. It is well known that STOs are
able to satisfy the electron-nucleus cusp condition, thereby
significantly improving the description of the wave function
in the vicinity of the nuclei. This property makes STOs
more reliable in calculations which depend crucially on the
quality of the trial wave function in this regime, such as
core-core and core-valence correlation effects, one-electron
relativistic corrections of order α2, etc. Other advantages
of STOs are summarized at the end of the present paper.
Notably, calculations with STO basis sets of quality up to
sextuple ζ , aiming at spectroscopic accuracy, have never been
performed thus far. In the case of such calculations special
attention must be paid to technical issues, such as creation and
benchmarking of basis sets, since the strategies adopted in case
of Gaussian-type orbitals (GTOs) may not be straightforwardly
transferable. In this paper we consider these issues in some
detail but restrict ourselves to calculations at the equilibrium
internuclear distance, R, equal to 2.4536 Å, which is the recent
experimental value [42]. The whole potential energy curve will

be reported later, along with a detailed study of the related
spectroscopical issues.

This paper is organized as follows. In Sec. II we describe
in detail the systematic construction of the STO basis sets. In
Sec. III we present benchmarks for the beryllium atom which
verify the reliability of the developed STO basis sets. Issues
connected with extrapolations towards the complete basis set
(CBS) are also investigated. In Sec. IV we present results
for the ground state of the beryllium dimer. We calculate the
valence and core correlations effects separately and estimate
the corresponding errors. Additionally, we compute the values
of the relativistic corrections and estimate the effects of
the leading-order QED contributions. Finally, in Sec. V we
conclude the paper and give a short outlook.

II. BASIS SETS

In the case of GTOs, the contracted functions are typi-
cally used to reproduce the Hartree-Fock energy first. Then,
additional uncontracted functions are used to describe the
electronic correlation; see the works of Dunning et al. [45–53]
as a representative example. We found that GTO basis sets
designed according to this principle somewhat lack flexibility
for the l = 0 partial wave, especially in the molecular environ-
ment, since the number of uncontracted 1s orbitals is typically
small. For ordinary GTO calculations this is not a problem,
however, because correlation energy retrieved by l = 0 angular
momentum functions is small, at least an order of magnitude
below the contribution from l = 1 partial wave. Therefore,
this lack of correlation coming from l = 0 functions is visible
only for very accurate calculations where the contributions
from more important partial waves are already sufficiently
saturated. Since we aim at high-quality results, we do not use
contractions of STOs.

There is also another important choice in the design of STO
basis sets which is entirely absent in the case of GTO. For GTO
calculations one typically uses only 1s, 2p, 3d, etc., functions
(with n = l + 1) since molecular integrals with these kinds of
functions are particularly straightforward. In the case of STO
one can use functions with n > l + 1 as well. For instance, in
the case of l = 0 orbitals the expansion takes the form

ψi = e−ζi r

Ni∑
k

cki r
k, (1)

where the value of ζi is characteristic for a given atomic
shell. The expansion (1) is quite attractive, mainly because
of a small number of nonlinear parameters which need to
be optimized, only one per atomic shell, and very systematic
enlargement towards the completeness through the parameters
Ni . However, in practice we found that there are numerous
problems connected with this expansion in our applications.
The biggest drawback is the fact that basis sets constructed
according to the principle (1) suffer from near-linear dependen-
cies when Ni gets moderate or large. This effectively prohibits
the construction of large basis sets close to completeness when
the standard double precision arithmetic is used. Another
problem is the fact that the expansion (1) is not as flexible
as necessary, especially when transferred from atomic to a
weakly bound molecular system.
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TABLE I. Composition of STO basis sets for the beryllium atom.

Basis set Atomic valence Tight core Diffuse

ATC-ETCC-1 6s1p 1s 1s1p

ATC-ETCC-2 7s2p1d 1s1p 1s1p1d

ATC-ETCC-3 8s3p2d1f 2s2p1d 1s1p1d1f

ATC-ETCC-4 9s4p3d2f 1g 2s3p2d1f 1s1p1d1f 1g

ATC-ETCC-5 9s5p4d3f 2g1h 3s4p3d2f 1g 1s1p1d1f 1g1h

ATC-ETCC-6 9s6p5d4f 3g2h1i 3s5p4d3f 2g1h 1s1p1d1f 1g1h1i

As a result, we found that more flexible and well-behaved
basis sets can be obtained when the orbitals are expanded,
similarly as for GTO, in a set of functions with n = l + 1 and
their respective exponents are varied freely, i.e.,

ψi =
Ni∑
k

cki e
−ζikr . (2)

This choice, however, brings up the problem of optimization of
a large number of independent parameters ζik . In the biggest
basis set created in this work a direct use of Eq. (2) would
require free optimization of several tens of the nonlinear
parameters. This is possible but very time consuming. An
even more daunting problem is the presence of a great number
of local minima. There is no guarantee that a brute-force
optimization would have found the true global minimum, even
with a decent starting point. This fact puts the reliability of the
extrapolation towards the CBS in question.

Aware of all the aforementioned issues, we adopted the
strategy of even tempering so that the nonlinear parameters for
a given angular momentum l are in the following form:

ζlk = αl β
k
l with k = 0,1,2, . . . . (3)

Nowadays, even tempering is routinely applied for construc-
tion of GTO basis sets. However, this technique was originally
proposed by Raffenetti and co-workers [54,55] in the context
of STOs. Even tempering greatly reduces the number of
independent parameters which need to be optimized (only two
for each partial wave).

The first step in the creation of the STO basis sets is
optimization of the atomic valence basis set. In this step the
core 1s orbital of the beryllium atom is kept frozen and the
CISD method, equivalent to FCI for the valence shell, is used.
The optimization is carried out to minimize the total energy
of the two-electron CISD, i.e., sum of the Hartree-Fock and
CISD correlation energy.

Since the seminal work of Dunning and co-workers [45–53]
it has been known that to allow for a reliable extrapolation
towards CBS, basis sets need to be constructed according to the
correlation consistency principle. Roughly speaking, it ensures
that at a given stage all functions which give approximately
the same energy contributions are simultaneously included.
Our atomic valence basis sets are denoted ETCC-L, which
stands for even-tempered correlation consistent and L is the
largest angular momentum included. Therefore, ETCC-1 has
the composition 6s1p, ETCC-2 7s2p1d, and so forth, and
only functions with n = l + 1 are used. The initial number of
six 1s functions was found to be optimal. Compositions of

all basis sets up to L = 6 are presented in Table I. At some
point it becomes unnecessary to include more 1s functions,
and thereafter their number was kept fixed. The even-tempered
expansion (3) is used separately for each partial wave.

The second step in construction of the basis set for beryllium
is addition of the “tight” functions which are necessary for
description of the core-core and core-valence correlations. It
is well known that the core electrons are chemically inert and
their contribution to the total energy cancels out to a large ex-
tent when interaction energies are computed. This observation
is the foundation for the so-called frozen-core approximation.
However, in accurate calculations the frozen-core approxi-
mation cannot be applied, especially for an element such
as beryllium. Obviously, valence basis sets cannot describe
the core-core and core-valence correlations since polarization
functions with large exponents, characteristic for the core, are
absent. We added core polarization functions to the previously
obtained ETCC-L basis sets. Detailed composition of the
extended TC-ETCC-L basis sets (where TC stands for “tight
core”) is given in Table I for each L. In order to optimize the
exponents of the core polarization functions, we minimized the
difference between the total energies of all-electron CISD and
frozen-core CISD for the beryllium atom. Since the number of
independent nonlinear parameters was much smaller than for
the valence basis sets, even tempering of the exponents was
not necessary and all variables were optimized freely. A minor
detail of the optimization procedure is that the derivative of the
target function with respect to the logarithm of the exponent
was used as a gradient, rather than the derivative with respect
to the exponent itself. This stabilizes greatly the numerical
performance of the optimization.

The third, and final, step of the basis sets creation is
the addition of the diffuse functions. These functions are
not necessary for the atomic calculations since tails of the
electron density do not contribute greatly to the total energies
of the atom. However, in a molecular environment tails of
the electron density are responsible for the act of bonding in
weakly interacting systems and accurate reproduction of the
potential energy curve. Basis sets augmented with a set of
diffuse functions are called A-ETCC-L, or ATC-ETCC-L in
the case of the core-valence basis sets. A detailed structure
of the augmented basis sets is given in Table I. Exponents of
the diffuse functions were optimized to maximize the absolute
value of the beryllium dimer interaction energy calculated with
A-ETCC-L basis sets at the four-electron (valence) CCSD(T)
level of theory [56].

Notably, the strategy that the diffuse functions are optimized
to maximize the absolute value of the interaction energy makes
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them formally dependent on the internuclear distance, R. This
is, in fact, exactly in line with our intentions. In this work we
consider only one value of R, corresponding to the minimum
of the potential energy curve, so that there is no ambiguity
in how the calculations are carried out. In a case where a
complete potential energy curve is required, diffuse functions
can be optimized for several values of R and then interpolated
smoothly. The present approach is inspired by the works of
Kołos and co-workers concerning the hydrogen molecule [57–
60]. Basis sets used in these works contained several nonlinear
parameters which were handled in a manner similar to that
described above and no significant difficulties were reported.

All optimizations necessary to construct the basis sets
were carried out by using a pseudo-Newton-Rhapson method
with an approximate update of the Hessian matrix [61].
Our own code, written especially for this purpose, was used
throughout. This program is interfaced with the GAMESS

package [62,63], which carries out the electronic structure
calculations. A gradient with respect to nonlinear parameters
was calculated numerically with the two-point finite difference
formula. Close to a minimum, where more accurate values
of the gradient are necessary, the four-point finite difference
formula was applied. Optimization was stopped when the
energy differences between two consecutive iterations fell
below 1 nH and the largest element of the gradient fell below
10 μH, simultaneously. Typically, several tens of iterations
were necessary to converge to a minimum in the biggest
calculations. To avoid the exponent values of two functions
collapsing, which occasionally happened, a Gaussian-type
penalty function was applied routinely.

STOs constitute a convenient basis set for calculation of
the relativistic corrections because of the cusp at the origin.
Nonetheless, it is obvious that standard STO basis sets used
in calculation of the Born-Oppenheimer potential may not
be fully satisfactory. To overcome this problem we modified
our ATC-ETCC-L basis sets by replacing all 1s orbitals with
a new set, common for each L. The latter consists of 15
functions and was trained to minimize the Hartree-Fock energy
of the beryllium atom. The value obtained, −14.573 023 138 5,
differs at the 10th significant digit from the best estimate
available in the literature, −14.573 023 168 305 [64]. The
s-extended basis sets are abbreviated as ATC-ETCC-L+S.

Composition of the STO basis sets along with detailed
values of the exponents and quantum numbers are given in
the Supplemental Material [65].

III. ATOMIC BENCHMARKS

A. Nonrelativistic energy

The beryllium atom is a convenient system for bench-
marking purposes because accurate reference values of the
total energies and relativistic corrections are available in the
literature. Therefore, before the calculations on the diatomic
system are given, it is useful to check the adequacy of the
strategy and the performance of our basis sets in the atomic
case. We calculated the FCI energies of the beryllium atom by
using ATC-ETCC-L basis sets with L = 2, . . . ,6. A general
FCI program HECTOR [66], written by one of us (M.P.), was
used for this purpose. The starting Hartree-Fock orbitals were

TABLE II. Total energy, Etotal, and the correlation energy, Ec, of
the beryllium atom calculated at the FCI level of theory by using the
STO basis sets ATC-ETCC-L. The limit of the Hartree-Fock energy
is assumed to be -14.573 023 H.

Basis set Ec/mH Etotal/H

ATC-ETCC-2 −85.976 −14.658 998
ATC-ETCC-3 −91.479 −14.664 502
ATC-ETCC-4 −92.994 −14.666 017
ATC-ETCC-5 −93.608 −14.666 631
ATC-ETCC-6 −93.902 −14.666 925
CBS −94.322 −14.667 345
Pachucki and Komasa [71] −94.333 −14.667 356

taken from the GAMESS program package, interfaced with our
STO integral code.

In Table II we present the FCI results for the beryllium atom.
It is important for further developments to extrapolate these
results towards the CBS limit. Many extrapolation methods
were suggested in the literature [67–70], but the following
formula was found to be particularly reliable for the estimation
of the CBS limit of the correlation energy,

E = A + B

L3
+ C

L5
, (4)

where L is the largest angular momentum present in the basis
set. The Hartree-Fock results were not extrapolated but simply
the value in the biggest basis set was taken. Extrapolation of
the results given in Table II leads to the result −14.667 345
for the total energy of the beryllium atom. This can be
compared with the reference value, obtained by Pachucki and
Komasa [71] by using an explicitly correlated four-electron
basis set, −14.667 356, and the error is equal to 11 μH.
Remarkably, the extrapolation reduces the error by an order
of magnitude, compared with the largest basis set available.
In fact, we found that an essential feature of STO basis sets is
that they provide very reliable extrapolation towards the CBS
limit, as compared with GTO basis sets of a similar quality.

B. One-electron relativistic corrections

The leading relativistic corrections (the second order in
the fine structure constant, α) to the energy of light systems
can be computed perturbatively as an expectation value of the
Breit-Pauli Hamiltonian [72]. For a molecule in a singlet state,
this correction is [73,74]

E(2) = 〈P4〉 + 〈D1〉 + 〈D2〉 + 〈B〉, (5)

〈P4〉 = −α2

8

〈∑
i

∇4
i

〉
, (6)

〈D1〉 = π

2
α2

∑
a

Za

〈∑
i

δ(ria)

〉
, (7)

〈D2〉 = πα2

〈∑
i>j

δ(rij )

〉
, (8)

〈B〉 = α2

2

〈∑
i>j

[
∇i · ∇j

rij

+ rij · (rij · ∇j )∇i

r3
ij

]〉
, (9)
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where 〈Ô〉 = 〈	|Ô|	〉. The consecutive terms in the above
expression are the mass-velocity 〈P4〉, one-electron Darwin
〈D1〉, two-electron Darwin 〈D2〉, and Breit 〈B〉 corrections,
respectively. We assume that the value of the fine structure
constant, α, is 1/137.035 999 7, as recommended by CODATA
[75].

Let us consider the values of the one-electron relativistic
corrections, 〈P4〉 and 〈D1〉. They can easily be obtained within
the STO framework, since the corresponding one-electron
integrals are fairly straightforward to compute. Integrals
including the one-electron Dirac δ distribution reduce to the
values of STOs at a given point of space which is elementary.
Integrals including the ∇4 operator reduce to combinations of
the ordinary overlap integrals over STOs. General subroutines
for calculation of the aforementioned integrals are now a part of
our STO integral package. Note that 〈P4〉 and 〈D1〉 corrections
(called also collectively the Cowan-Griffin contribution [76])
are very sensitive to the quality of the wave function in
the vicinity of the nuclei. Therefore, their evaluation by
using the STO basis set is supposed to be particularly
advantageous.

In Table III we present values of the one-electron relativistic
corrections, calculated with s-extended STO basis sets. The
results are compared with the values reported recently [71],
which are considered “exact” in the present context. Remark-
ably, in the biggest basis set, ATC-ETCC-6+S, the relative
error of our values compared with the accurate ones is
only ≈0.03% and ≈0.003% for 〈P4〉 and 〈D1〉, respectively.
Moreover, even in the smallest basis set, ATC-ETCC-2+S,
these errors increase to only about 0.1% and 0.005%. We
found that it is impossible to reach a similar level of
accuracy with the available (decontracted) GTO basis sets, and
typically the resulting error is (at least) an order of magnitude
larger.

It is also interesting to perform extrapolations of the values
of one-electron relativistic corrections towards CBS. We found
empirically that the following formulas provide the best fit:

A + B

(L + 1)2
for P4, (10)

A + B

(L + 1)4
for D1. (11)

Results of the extrapolations from L = 3, 4, 5, 6 are presented
in Table III. The extrapolation reduces the error of the mass-

TABLE III. Mass-velocity, 〈P4〉, and one-electron Darwin, 〈D1〉,
corrections for the beryllium atom at the FCI level of theory. The
factor of α2 is not included. All values are given in atomic units.

Basis set 〈P4〉 〈D1〉
ATC-ETCC-2+S −270.431 854 222.218 606
ATC-ETCC-3+S −270.527 702 222.225 660
ATC-ETCC-4+S −270.568 886 222.232 142
ATC-ETCC-5+S −270.594 238 222.234 514
ATC-ETCC-6+S −270.609 955 222.235 299
CBS −270.648 568 222.236 568
Pachucki and Komasa [71] −270.704 68(25) 222.229 35(13)

velocity correction to 0.02%, but increases it insignificantly
for the one-electron Darwin correction.

IV. BERYLLIUM DIMER

A. Four-electron (valence) contribution

From earlier studies of the beryllium dimer, it is well known
that a major contribution to the interaction energy comes from
the correlations between valence electrons. Freezing both 1s

atomic orbitals makes the dimer effectively a four-electron
system which can be successfully treated with FCI method in
large basis sets. We performed the frozen-core FCI calculations
in basis sets A-ETCC-L with L = 2, . . . ,6. The Abelian
group, D2h, was used in computations. We believe these are
the biggest valence FCI calculations ever performed for this
system in terms of the number of configurations included
in construction of the Hamiltonian matrix. The results of
the calculations are included in Table IV. In all cases the
counterpoise (CP) correction for the basis set superposition
error (BSSE) was applied [77]. It is clear, that the results are
slowly convergent with respect to the quality of the basis set.
This is probably due to the fact that bonding significantly
perturbs the atomic densities. The increment of the interaction
energy between L = 5 and L = 6 basis sets is as large as
11.9 cm−1, suggesting that the CBS value is still significantly
below the L = 6 value.

Because of this observation it is necessary to perform some
kind of extrapolation towards the CBS. The correlation energy
alone was the subject of the extrapolation, separately for the
atom and for the dimer. We used the formula (4) which was
previously used successfully for the atomic calculations. We
also observe that in the largest basis set, the Hartree-Fock (HF)
results are already converged at least to eight significant digits.
It is therefore unnecessary to extrapolate the HF results and
simply the value obtained in L = 6 basis was taken as the CBS
result.

Note that the CBS increment found in the extrapolation of
the correlation energy is quite substantial and crucial for the
final results. It amounts to as much as nearly 20 cm−1 in the
interaction energy. Thus, it is necessary to additionally verify
the reliability of the extrapolation. To do so, we first performed
the extrapolation from L = 2, 3, 4, 5 basis sets in order
to estimate the L = 6 value. The extrapolated L = 6 value
gives the interaction energy equal to 847.4 cm−1, whereas
the corresponding true calculated result is 845.7 cm−1. The
difference, amounting to 1.7 cm−1, is assumed to be also
the error of the CBS extrapolation from L = 2, 3, 4, 5, 6.
The quality of the extrapolation for the dimer is illustrated
at Fig. 1. A quite similar excellent fit was obtained for the
atomic calculations. Finally, our best estimate for the valence
contribution to the interaction energy is 864.9 ± 1.7 cm−1.
Note that this error estimation is a conservative one because
extrapolation from a larger number of points can be expected to
be more reliable. Additionally, the increment in the interaction
energy between L = 4 and L = 5 basis sets is significantly
larger than between L = 5 and L = 6 or between L = 6
and the estimated CBS. Therefore, it is possible that our
extrapolated result is more accurate than we assume here.
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TABLE IV. Results of the four-electron valence FCI calculations for the beryllium dimer at the internuclear distance 2.4536 Å. Nb denotes
the number of basis set functions, NSD is the dimension of the Hamiltonian matrix in Ag symmetry, EHF is the Hartree-Fock energy, Ec is
the correlation energy at FCI level, CP is the CP correction (for BSSE) to the interaction energy, and De is the calculated CP-corrected FCI
interaction energy. The values in the last row are the extrapolated CBS values (see the main text for the discussion). All values are given in the
atomic units unless stated otherwise.

Basis set Nb NSD EHF Ec CP (cm−1) De (cm−1)

A-ETCC-2 54 237 548 −29.133 941 8 −0.104 687 3 12.5 273.8
A-ETCC-3 100 2 895 037 −29.134 162 1 −0.107 057 4 8.3 710.6
A-ETCC-4 168 23 685 257 −29.134 174 5 −0.107 639 2 4.1 802.9
A-ETCC-5 260 138 002 229 −29.134 175 1 −0.107 850 5 2.6 833.8
A-ETCC-6 384 663 593 429 −29.134 175 4 −0.107 942 3 1.8 845.7
CBS ∞ ∞ −29.134 175 4 −0.108 069 5 0.0 864.9 ± 1.7

Our final result, namely 864.9 ± 1.7 cm−1, is in line with
recent findings of other authors. Patkowski et al. [32] found
857 ± 12 cm−1, if we follow their method of error estimation,
and Martin [33] gives 872 ± 15 cm−1. The present result
lies well within the error bounds obtained in these works.
A slight discrepancy is found between our result and the value
recently reported by Evangelisti and co-workers [78], who
give 850.4 cm−1 without any error estimation. We believe that
this result is inaccurate, mainly because lack of the diffuse
functions in their GTO basis set. Notably, our error bounds,
which are conservative anyway, are an order of magnitude
smaller than those obtained in the aforementioned works.

B. Core-core and core-valence contributions

The second step in our calculations is a reliable determi-
nation of the core-core and core-valence contribution to the
interaction energy. This task, however, is far from being trivial.
A brief inspection of values available in the literature reveals
that estimations from 65 cm−1 [78] to as large as 89 cm−1 [31]
were obtained. Because of the fulfillment of the nuclear cusp
condition, the STO basis used in the present work can be
expected to be more suitable for the description of core region
than the GTOs used thus far.

FIG. 1. (Color online) Quality of the extrapolation towards the
CBS for the beryllium dimer using results from basis sets A-ETCC-L
with L = 2, . . . ,6 based on the theoretical expression (4). The dashed
line denotes the estimated limit.

Our preliminary study suggests that the CCSDT model is a
particularly good method for the estimation of the inner-shell
contribution. The effect of connected quadruple excitations
was found to be very small in this case. In fact, the effect
of quadruples can be highly overestimated in small basis sets
but quickly diminishes when the basis set is enlarged. We
found this particular behavior in virtually any approximate
quadruples method that was available to us. Therefore, we can
conclude that the CCSDT method in the CBS limit would
probably give the core-core and core-valence contribution
accurate to within a few tenth of cm−1. A similar observation
was also made implicitly by Martin [33].

Unfortunately, we are able to perform all-electron CCSDT
calculation only in ATC-ETCC-L basis sets with L = 2, 3,
4. The results are 31.5, 56.7, and 63.9 cm−1, respectively.
CBS extrapolation from these values can be performed by
using formula (4), giving 69.6 cm−1. However, this three-
point extrapolation is not particularly trustworthy since the
CBS increment is rather large and no reliable error estimation
can be given. Thus, we must seek some approximate method,
with smaller computational costs, giving results comparable
to CCSDT in the CBS limit.

In Table V we show inner-shell contributions to the
interaction energy computed at various levels of theory. CCSD,
CCSD(T), and MP2 calculations were performed with the
GAMESS package, while CCSDT and MP4 energies were
evaluated with the help of the ACESII program [79]. All values
in this table were obtained by subtracting the interaction
energy obtained with the frozen-core approximation from the
corresponding all-electron values. Let us compare the results of
MP4 and CCSD(T) with the complete CCSDT model. One sees
that the MP4 method slightly underestimates the inner-shell

TABLE V. Core-core and core-valence contributions to the
interaction energy computed at various levels of theory. All values are
given in cm−1. Extrapolations are performed according to formula (4),
for the atom and dimer separately, using the CP-corrected data.

Basis set Nb CCSD CCSDT CCSD(T) MP2 MP4

ATC-ETCC-2 62 28.2 31.5 39.0 −34.0 28.9
ATC-ETCC-3 126 50.4 56.7 61.2 57.2 56.4
ATC-ETCC-4 224 55.7 63.9 66.4 63.6 63.5
ATC-ETCC-5 364 57.4 67.7 65.7 65.7
CBS ∞ 59.3 69.6 69.5 67.8 68.4
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FIG. 2. (Color online) Contribution of the inner-shell effects to
the interaction energy, denoted shortly Dcore

e , calculated by using
ATC-ETCC-L basis sets. Black dots are the CCSD(T) results and the
black line is the CCSD(T)/CBS extrapolation curve. Analogously,
red dots are the MP4 results and the red line is the corresponding
CBS extrapolation. Blue squares are the available CCSDT results,
for L = 2, 3, 4.

contribution compared to CCSDT while the CCSD(T) model
overestimates it significantly, especially in smaller basis sets.
Note additionally that MP4 and CCSD(T) results strictly
bracket the CCSDT values, as illustrated in Fig. 2. If we
assume that this behavior holds further, then the CBS limit
of the CCSDT method should lie between the corresponding
limits of MP4 and CCSD(T). Fortunately, the CBS limit is
68.4 and 69.5 cm−1 for MP4 and CCSD(T), respectively. The
exact result probably lies between these values so as the final
result we take the average of the two and estimate the error
as a half of the difference between them. This gives the final
value of the core-core and core-valence contributions to the
interaction energy equal to 69.0 ± 0.6 cm−1. The small effect
of the connected quadruples contribution is probably already
incorporated in the error estimation.

Note that the final value determined by us is significantly
smaller than some of the estimations given in the literature.
For instance, Martin gives 76.2 cm−1 [33], while Patkowski
et al. [32] reports as much as 85 ± 5 cm−1. We believe that
these discrepancies are mainly due to defects in the GTO
basis sets used by authors. In fact, when GTO basis sets
are not designed very carefully in the core region, the inner-
shell correlation effects can be significantly overestimated.

Naturally, STOs are much more appropriate in this respect,
which is one of their noteworthy advantages.

C. Relativistic, QED, and adiabatic corrections

One-electron relativistic corrections were evaluated by
using the s-extended basis sets, described in Sec. II. The
results are presented in Table VI. Calculations of the one-
electron expectation values, at the all-electron and frozen-
core CCSD level of theory, were performed by using a 


operator technique [80–83] implemented by default in the
GAMESS package. Relaxation of the HF orbitals is neglected
in CCSD calculations. FCI calculations were done using our
own program and the expectation values are straightforward
to evaluate by using the FCI wave functions.

Extrapolations are carried out by using the empirical for-
mula (10) for both 〈D1〉 and 〈P4〉. Our strategy for evaluation
of the contribution to the interaction energy from the Cowan-
Griffin approximation [76] is as follows. We use the valence
FCI values corrected for the core-core and core-valence effects
as a difference between all-electron and frozen-core CCSD
results. It was found previously that CCSD method behaves
reasonably for the inner-shell correlations (see Table V) and
this accuracy is sufficient for the present purposes. In Table VII
we present contributions to the interaction energy from 〈D1〉
and 〈P4〉 corrections, calculated at this level of theory. The
core-core and core-valence CCSD effect is estimated to
be −0.4 cm−1, while the pure valence FCI contribution
is −4.4 cm−1. By summing both corrections we obtain
−4.8 ± 0.2 cm−1 for the final contribution to the interaction
energy coming from the one-electron relativistic corrections.
The error is simply taken as the (rounded up) value of the corre-
sponding CBS increment. The obtained value is in a moderate
agreement with the values given by Patkowski et al. [32],
−4.1 cm−1, Martin [33], −4.0 cm−1, and Gdanitz [34], −5.2
cm−1. However, as far as we can tell, these values are not
extrapolated and the authors report no respective error bars
of their result. We believe that our final values are much
more accurate due to the fact that STO basis sets were used
throughout.

Let us now focus on the two-electron relativistic correc-
tions: two-electron Darwin, 〈D2〉, and Breit, 〈B〉, contribu-
tions. Evaluation of the latter correction within the STO basis
set is not feasible at present. This is mostly due to the fact
the matrix elements of the Breit term, Eq. (5), are extremely
difficult to compute with the exponential functions. As far as
we know, the only accurate molecular calculations of the Breit

TABLE VI. Mass-velocity, 〈P4〉, and one-electron Darwin, 〈D1〉, corrections for the beryllium dimer calculated at the CCSD and FCI levels
of theory. The factor of α2 is not included. All values are given in the atomic units.

All-electron CCSD Frozen-core CCSD Frozen-core FCI

Basis set 〈P4〉 〈D1〉 〈P4〉 〈D1〉 〈P4〉 〈D1〉
ATC-ETCC2+S −539.847 891 443.692 152 −537.394 631 443.278 203 −537.133 303 443.083 762
ATC-ETCC3+S −539.971 064 443.675 656 −537.333 536 443.241 928 −537.036 087 443.021 849
ATC-ETCC4+S −540.030 590 443.664 899 −537.317 658 443.233 044 −537.014 183 443.008 427
ATC-ETCC5+S −540.073 538 443.665 227 −537.310 464 443.229 426 −537.004 508 443.003 144
CBS −540.141 465 443.655 919 −537.305 424 443.226 021 −536.995 150 442.996 653
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TABLE VII. Contributions to the interaction energy of the beryllium dimer from the mass-velocity, 〈P4〉, and one-electron Darwin, 〈D1〉,
corrections calculated at the CCSD and FCI levels of theory. All results are given in cm−1.

All-electron CCSD Frozen-core CCSD Frozen-core FCI

Basis set De(P4) De(D1) �De De(P4) De(D1) �De De(P4) De(D1) �De

ATC-ETCC2+S −12.40 9.28 −3.12 −11.87 8.87 −3.00 −14.93 11.14 −3.78
ATC-ETCC3+S −13.35 9.79 −3.57 −12.71 9.41 −3.30 −16.19 11.98 −4.21
ATC-ETCC4+S −13.63 10.08 −3.54 −12.94 9.56 −3.38 −16.49 12.18 −4.30
ATC-ETCC5+S −13.72 10.14 −3.58 −13.03 9.61 −3.42 −16.60 12.25 −4.35
CBS −14.26 10.44 −3.81 −13.10 9.67 −3.44 −16.73 12.34 −4.39

term within the exponential basis set were performed by Kołos
and Wolniewicz [59,84] for various electronic states of H2.

Because of these difficulties, we calculated 〈D2〉 and 〈B〉 in
GTO basis sets. It will be shown that contributions of the two-
electron relativistic corrections are small and GTO basis sets
are sufficient to meet the prescribed accuracy requirements.

For calculations of the two-electron relativistic correc-
tions we used modified aug-cc-pCVXZ series of GTO basis
sets [45–53]. To improve the quality of the wave function
the standard set of 1s GTO orbitals was replaced with a
new one comprising 23 1s functions. This set was obtained
by minimizing the HF energy of the beryllium atom. Apart
from that, the original 1s diffuse functions from the initial
aug-cc-pCVXZ basis sets were kept. We also decontracted the
2p polarization functions and removed the redundant orbitals.
Higher angular momentum shells were neither modified nor
decontracted.

The DALTON program package [85] was used for CCSD(T)
calculations and our own program for the valence FCI calcu-
lations. In Table VIII we show contributions of 〈D2〉 and 〈B〉
to the interaction energy computed at three different levels of
theory: all-electron and frozen-core CCSD(T) and frozen-core
FCI. It is not necessary to perform CBS extrapolations since
the contributions to the interaction energy are converged to
about 0.01–0.02 cm−1 already in the biggest basis set. We take
the frozen-core FCI contribution as our result and additionally
correct it for the inner-shell effects as a difference between
the all-electron and frozen-core CCSD(T) values. In this way,
we obtain the contribution to the interaction energy from
the two-electron relativistic correction equal to −0.5 cm−1.
The error can be estimated to be much below 0.1 cm−1 by
observing the convergence pattern in the available basis sets.
Unfortunately, we are not aware of any available literature
values that we could compare with.

By summing the computed one- and two-electron rela-
tivistic contributions, we find that α2 effects decrease the

interaction energy by 5.3 ± 0.2 cm−1. This contribution is
quite sizable and definitely needs to be included to obtain
a spectroscopically accurate potential energy curve for the
beryllium dimer.

Let us now pass to the leading-order QED contribution.
Theoretically, this effect should be by a factor α smaller
than the Breit-Pauli contribution and thus entirely negligible
within the present accuracy requirements. However, it turns
out that among the relativistic contributions to the interaction
energy there is a significant cancellation between 〈P4〉 and
〈D1〉 terms, so that the result is an order of magnitude
smaller than the net values of separate terms. Therefore, the
leading QED corrections may still contribute to the interaction
energy significantly. In fact, this situation was previously
encountered in calculations for the dihydrogen [86] and
the helium dimer [87]. This suggests that whenever the α2

relativistic corrections are included in accurate calculations
for light systems, the leading-order QED contributions should
also be at least estimated.

The leading QED correction (of the order α3 and α3 ln α)
to the electronic energy of a molecular singlet state takes the
form [88,89]

E(3) = 8α

3π

(
19

30
− 2 ln α − ln k0

)
〈D1〉

+ α

π

(
164

15
+ 14

3
ln α

)
〈D2〉 + 〈HAS〉, (12)

where ln k0 is the so-called Bethe logarithm [72,90] and 〈D1〉
and 〈D2〉 are the values of the one- and two-electron Darwin
corrections (including the factor of α2). The term 〈HAS〉 is the
Araki-Sucher contribution, given by the expectation value

〈HAS〉 = −7α3

6π

〈∑
i>j

P̂
(
r−3
ij

)〉
, (13)

TABLE VIII. Contributions to the interaction energy of the beryllium dimer from the two-electron Darwin, 〈D2〉, and Breit, 〈B〉, corrections
calculated at the CCSD(T) and FCI levels of theory within GTO basis sets. All results are given in cm−1.

All-electron CCSD(T) Frozen-core CCSD(T) Frozen-core FCI

Basis set De(D2) De(B) �De De(D2) De(B) �De De(D2) De(B) �De

aug-cc-pCVDZ 0.38 −0.82 −0.44 0.41 −0.73 −0.32 0.42 −0.76 −0.34
aug-cc-pCVTZ 0.42 −0.89 −0.47 0.46 −0.77 −0.32 0.46 −0.80 −0.34
aug-cc-pCVQZ 0.43 −0.90 −0.47 0.47 −0.79 −0.31 0.48 −0.82 −0.34
aug-cc-pCV5Z 0.44 −0.91 −0.47 0.48 −0.79 −0.31 0.48 −0.82 −0.34
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and P̂ (r−3
ij ) denotes the regularized r−3

ij distribution〈
P̂

(
r−3
ij

)〉 = lim
a→0

〈
θ (rij − a)r−3

ij + 4π (γE + ln a)δ(rij )
〉
, (14)

where γE is the Euler-Mascheroni constant. It is well known
that computation of the Bethe logarithm and Araki-Sucher
terms is extremely difficult and has never been attempted for
any molecular system apart from the dihydrogen [86] and
the helium dimer [87]. Therefore, we have to adopt some
approximate strategy for determination of E(3). Fortunately,
except at very large R, the Araki-Sucher term is small
compared to the overall leading-order QED correction and
thus can be neglected. The Bethe logarithm, on the other
hand, was found to vary insignificantly as the function of
R, when R is moderate (or large), for the helium dimer and
dihydrogen. Therefore, the asymptotic (atomic) value of the
Bethe logarithm can be adopted.

A very accurate value of ln k0 for the beryllium atom has
been given recently by Pachucki and Komasa [71], ln k0 =
5.750 34. We use the extrapolated values of 〈D1〉 and 〈D2〉,
equal to 0.023 613 and 0.000 522 for the dimer and 0.011 836
and 0.000 262 for the monomer, respectively. With these
assumptions, contribution of the lowest-order QED effects to
the interaction energy of the beryllium dimer is calculated to
be 0.37 cm−1. This value is an order of magnitude smaller than
the relativistic corrections, as expected. However, its omission
would significantly increase the total error of our theoretical
predictions. It is difficult to estimate strictly what is the effect of
the adopted approximations on the value of QED contribution
to the interaction energy. For the dihydrogen molecule, exactly
the same approximations introduce an error slightly less than
10%, based on the results presented in Ref. [86]. Therefore,
we can assume very conservatively that error of the present
calculations is at most 20%. This finally gives us estimation of
the leading-order QED contribution to the interaction energy
equal to 0.4 ± 0.1 cm−1.

We also check the next higher-order QED contribution. It is
well known from the calculations on the helium atom [91,92],
that the α4 effects are dominated by the one-loop term [93]
given by

E
(4)
one−loop = 16α2

(
427

192
− ln 2

)
〈D1〉, (15)

in the case of the beryllium atom (or dimer). The above quantity
is a scaled one-electron Darwin correction and thus can be
easily computed. We found the contribution to the interaction
energy of the one-loop term to be approximately 0.017 cm−1,
which is well below 0.1 cm−1. Therefore, as anticipated, the
higher-order QED contributions can safely be neglected within
the present accuracy requirements. This additionally gives a
verification that the QED perturbative series converges rapidly
for the beryllium dimer.

The remaining missing part of the theory that has to be
investigated is the finite nuclear mass, i.e., the adiabatic
correction. We calculated this correction with help of the
CFOUR [94] and MRCC [95,96] program packages at both
all-electron and frozen-core CCSD and CCSDT levels of
theory [97]. The GTO basis sets which were previously used
for computation of the two-electron relativistic corrections
were utilized. In all cases we found that the contribution

TABLE IX. Final error budget of the calculations for the ground
state (1�+

g ) of the beryllium dimer obtained in this work. All values
are given in cm−1.

Contribution to De

Valence correlations +864.9 ± 1.7
Inner-shell correlations +69.0 ± 0.6
Relativistic (α2) effects −5.3 ± 0.2
Leading-order (α3) QED effects +0.4 ± 0.1
Adiabatic correction +0.0 ± 0.1
Total +929.0 ± 1.9
Experiment +929.7 ± 2.0

to the interaction energy from the adiabatic correction was
significantly below 0.1 cm−1. In fact, the net values of the
adiabatic correction for both atom and dimer were large,
but they canceled out almost to zero. This is probably due
to the fact that the adiabatic correction contribution to the
interaction energy as a function of the internuclear distance,
R, crossed zero near the value of R adopted by us (close to
the minimum). A similar situation was found in the case of
the helium dimer [87]. Our observation is additionally verified
by calculations of Koput [36], who found that contribution of
the adiabatic correction to the interaction energy varies by only
2 cm−1 along the whole potential energy curve. As a result, we
assume that the contribution to the interaction energy coming
from the adiabatic effects is equal to zero. We estimate that the
error of this result is at most 0.1 cm−1.

D. Total interaction energy

All contributions to the interaction energy of the beryllium
dimer computed in this work are listed in Table IX. By
summing all contributions we obtain the value 929.0 cm−1,
which is the main result of our study. The overall error of the
calculations is estimated by summing squares of all fractional
errors (1.7, 0.6, 0.2, 0.1, 0.1 cm−1) and taking the square root,
which gives 1.9 cm−1 (rounded up) or 0.2%. The total result,
929.0 ± 1.9 cm−1, is in very good agreement with the latest
experimental value, 929.7 ± 2.0 cm−1, reported by Merritt
et al. [42]. In fact, the present result lies within the error bars
of the empirical value and vice versa.

Let us also comment on the timings of the present calcula-
tions. It is true that any gain connected with the use of STOs
can easily diminish if computation of the STO two-electron
integral files becomes overwhelmingly time consuming, up
to a point when it is more expensive than evaluation of the
correlation energy. There is such a risk, because STO integral
algorithms are inherently more complicated and demanding
than their GTO counterparts. In fact, we found that calculation
of the STO integrals is one or two orders of magnitude more
expensive than in the case of GTOs, with the same size of
the basis set. This sounds daunting but the actual situation is
more complex. For instance, in the largest basis sets used in
this work, the calculation of the GTO two-electron integrals is
a matter of several minutes, while in STOs it takes up to few
hours. However, full CI or high-level CC calculations typically
take several days to converge. Therefore, calculation of the
integral files constitutes a small fraction of the total timing
and does not pose any practical bottleneck. This is clearly a
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TABLE X. Results of the selected theoretical predictions for the ground state of the beryllium dimer published since the late 1990s. All
values are given in cm−1 and error bars are shown if estimated originally. Relativistic corrections are included if calculated. AE and FC denote
all-electron and frozen-core, respectively. A majority of the acronyms appearing below is explained in the main text, apart from the following:
ACPF, averaged coupled-pair functional; CC3, CC model with an approximate treatment of triple excitations; CAS, complete active space;
MR-CISD+Q, MRCI with single and double excitations; Q denotes a specific Davidson-type correction for lack of size extensivity.

Year Method De Reference

1999 FC CCSD(T)+FCI/CBS and AE CAS-ACPF 944 ± 25 Martin [33]
1999 CAS r12-MR-ACPF/GTO(19s11p6d4f 3g2h) 898 ± 8 Gdanitz [34]
2000 CC3+FCI/d-aug-cc-pVQZ 885 Pecul et al. [35]
2005 EXRHF/GTO(23s10p8d6f 3g2h) 945 ± 15 Røggen and Veseth [31]
2007 AE CCSD(T)/CBS and FC FCI/CBS 938 ± 15 Patkowski et al. [32]
2007 Variational Monte Carlo and fixed-node diffusion Monte Carlo 829 ± 64 Harkless and Irikura [98]
2010 FC FCI/CBS and AE MR-CISD+Q 912 Schmidt et al. [27]
2010 AE MRCI/CBS 818 Mitin [28]
2011 AE CCSD(T)/CBS and FC FCI/CBS 935 ± 10 Koput [36]
2013 FC FCI/CBS and AE CCSD(T)/cc-pV6Z 927.4 ± 12 Evangelisti et al. [78]
2014 Density matrix renormalization group (DMRG) 931.2 Sharma et al. [37]
Present FC FCI/CBS and AE CCSD(T)/MP4/CBS 929.0 ± 1.9

consequence of relatively low scaling (N4) of the calculations
of the integral files, as compared with high-level CC of FCI
methods.

It is also worth comparing our results with the latest
theoretical values predicted by other authors. In Table X
we collected most of the theoretical results published in
the late 1990s and since then. An extensive bibliography
of calculations published prior to this date can be found in
Refs. [31] and [32]. Probably the most reliable calculations
given thus far for the beryllium dimer are those of Patkowski
et al. [32], giving 938 ± 15 cm−1, and Koput [36], 935 ± 10
cm−1. Our result is slightly lower but it lies within the error
bars estimated by authors. Remarkably, the error predicted by
us is by an order of magnitude smaller than in the previous
works, despite that our estimations were rather conservative.
Therefore, it seems that the theoretical values published thus
far converge towards a value around 930 cm−1, very close to
the recent experimental result.

Apart from that, it is worth quoting three semiempirical
results obtained by “morphing” the theoretical potential energy
curve in order to reproduce the experimentally measured
vibrational levels [44]. These values are 933.0, 933.2, and
934.6 cm−1. It is difficult to estimate the error of these values
but we feel that these semiempirical results are also consistent
with our final value, 929.0 ± 1.9 cm−1.

V. CONCLUSIONS AND OUTLOOK

We have obtained a reliable value of the interaction energy
for the beryllium dimer by using STO basis sets combined
with high-level quantum chemistry methods. The total error
estimated by us, 1.9 cm−1, is an order of magnitude smaller
than in the previous theoretical works. The most striking ad-
vantages of STOs, as compared with GTOs, are the reliability
in estimation of the core-core and core-valence correlation
effects, very solid quality of extrapolations towards CBS,
and improved performance in calculation of the one-electron
relativistic effects. It is clear that all of these features are
essential for a spectroscopically accurate determination of
the potential energy curves for diatomic systems. We have

not found a situation when STOs perform worse than GTO
basis sets of the same size, at least among those available to
us. Despite the fact that the evaluation of the two-electron
integrals in the STO basis is much more computationally
intensive than in the case of GTOs, we have never found it
to be a practical bottleneck. An obvious disadvantage of STOs
is the fact that two-electron, two-center integrals which are
required for calculation of the Breit α2 relativistic correction
are very difficult to compute and we needed to resort to GTOs
to compute them.

It is also worth considering the direction of further
advancements which can be taken. Let us recall the fact
that the ground state of the beryllium dimer is a very
pathological and difficult system, e.g., the triple excitations
are responsible for the bonding effects. In many different
spectroscopically interesting diatomic systems the situation
is not that difficult and the doubly excited determinants give
the dominant contribution to the interaction energy. In such
situations the explicitly correlated calculations [99,100] are
an option, allowing for a much better saturation at the MP2,
CCD, or CCSD levels of theory. The F12 theory of explicitly
correlated calculations is now well established [101] but to
apply STOs in such computations several issues of both
technical and theoretical nature need to be resolved. For
instance, for GTO calculations the exponential correlation
factor of Ten-no [102,103] is nowadays routinely used. In the
case of STO basis sets this choice is not feasible at present, due
to an extremely complicated theory of evaluation of the result-
ing molecular two-electron integrals [104,105]. Therefore, a
different correlation factor has to be adapted. Other problems
such as quality and design of the auxiliary basis sets [106,107]
for the resolution of identity approximation also need to be
addressed. Nonetheless, the work on combining STO basis
sets with explicitly correlated theories is in progress in our
laboratory.

Let us suppose that the accuracy of calculation of the
Born-Oppenheimer potential energy curves can be further
improved by an order of magnitude, say, due to use of
the explicitly correlated methods and other theoretical ad-
vancements. The dominant error would then come from
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inaccuracies in calculation of the relativistic effects, especially
for heavier systems. If a perturbation theory, using the Breit-
Pauli Hamiltonian, can be still applied then it is natural that
two-electron relativistic effects should be calculated within
the STO basis sets. Therefore, sooner or later we shall
face the problem of evaluation of the matrix elements of
the orbit-orbit and spin-orbit operators with the exponential
functions. For heavy atoms, where the perturbation theory
breaks down, different approaches need to be considered,
such as Douglas-Kroll-Hess transformations [108–111] or use
of effective core potentials [112,113]. Neither of the above
methods can straightforwardly be combined with the STO
basis sets. Nonetheless, our preliminary studies showed that
extensions in these directions are feasible.

We can conclude by noting that the present series of papers
opens up a possibility for a significant increase of accuracy
which can be routinely reached for the diatomic systems with
ab initio methods.
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[23] L. Füsti-Molnár and P. G. Szalay, Chem. Phys. Lett. 258, 400

(1996).

[24] L. Füsti-Molnár and P. G. Szalay, J. Phys. Chem. 100, 6288
(1996).

[25] J. Stärck and W. Meyer, Chem. Phys. Lett. 258, 421 (1996).
[26] L. A. Kaledin, A. L. Kaledin, M. C. Heaven, and V. E.

Bondybey, J. Mol. Struct.: THEOCHEM 461–462, 177 (1999).
[27] M. W. Schmidt, J. Ivanic, and K. Ruedenberg, J. Phys. Chem.

A 114, 8687 (2010).
[28] A. V. Mitin, Int. J. Quantum Chem. 111, 2560 (2011).
[29] C. W. Bauschlicher Jr., S. R. Langhoff, and H. Partridge,

J. Chem. Phys. 96, 1240 (1992).
[30] M. El Khatib, G. L. Bendazzoli, S. Evangelisti, W. Helal, T.

Leininger, L. Tenti, and C. Angeli, J. Phys. Chem. A 118, 6664
(2014).

[31] I. Reggen and L. Veseth, Int. J. Quantum Chem. 101, 201
(2005).

[32] K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem.
A 111, 12822 (2007).

[33] J. M. L. Martin, Chem. Phys. Lett. 303, 399 (1999).
[34] R. J. Gdanitz, Chem. Phys. Lett. 312, 578 (1999).
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