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Bound and resonance states of the dipolar anion of hydrogen cyanide: Competition between
threshold effects and rotation in an open quantum system
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Bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN− are studied using a
nonadiabatic pseudopotential method and the Berggren expansion technique involving bound states, decaying
resonant states, and nonresonant scattering continuum. We devise an algorithm to identify the resonant states in
the complex energy plane. To characterize spatial distributions of electronic wave functions, we introduce the
body-fixed density and use it to assign families of resonant states into collective rotational bands. We find that the
nonadiabatic coupling of electronic motion to molecular rotation results in a transition from the strong-coupling
to weak-coupling regime. In the strong-coupling limit, the electron moving in a subthreshold, spatially extended
halo state follows the rotational motion of the molecule. Above the ionization threshold, the electron’s motion in
a resonance state becomes largely decoupled from molecular rotation. The widths of resonance-band members
depend primarily on the electron orbital angular momentum.
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I. INTRODUCTION

Dipolar anions are one of the most spectacular examples of
marginally bound quantum systems [1–11]. Wave functions
of electrons coupled to neutral dipole molecules [12,13]
are extremely extended; they form the extreme quantum
halo states [14–19]. Resonance energies of dipolar anions,
including those associated with rotational threshold states, can
been determined in high-resolution electron photodetachment
experiments [20–25]. Theoretically, however, the literature on
the unbound part of the spectrum of dipole potentials, and
multipolar anions in particular, is fairly limited [26–34].

The breakdown of the adiabatic approximation in dipolar
molecules possessing a supercritical moment [35–39] caused
by the coupling of an electron’s motion to the rotational
motion of the molecule, is expected to profoundly impact the
properties of rotational bands in such systems [25,30,31,36],
such as the the number of rotationally excited bound anion
states.

In this study, we address the nature of the unbound
part of the spectrum of dipolar anions. In particular, we
are interested in elucidating the transition from the rota-
tional motion of weakly bound subthreshold states to the
rotational-like behavior exhibited by unbound resonances. The
competition between continuum effects, collective rotation,
and nonadiabatic aspects of the problem makes the description
of threshold states in dipole-bound molecules both interesting
and challenging.

Our theoretical framework is based on the Berggren ex-
pansion method (BEM), a complex-energy resonant-state ex-
pansion [40–42] based on a completeness relation introduced
by Berggren [43] that involves bound, decaying, and scattering
states. In the context of the coupled-channel method, BEM was
successfully applied to molecules [39] and nuclei [44–49]. The
advantage of this method, which is of particular importance

to the problem of dipole-bound anions when the rotational
motion of the molecule is considered [39,50], is that the BEM is
largely independent of the precise implementation of boundary
conditions at infinity.

This is not the case for other techniques such as, for
instance, the direct method of integrating coupled-channel
equations. Notable exceptions are basis-expansion methods
relying on complex scaling [51–57]. By rotating radial
coordinates in the complex plane by an given angle θ,r →
reiθ , the initial Hermitian Hamiltonian is transformed into
a non-Hermitian one, whose bound eigenstates correspond
to bound and resonant states of the system, the second of
these bearing complex energies. As complex-scaled wave
functions all vanish for r → +∞, their asymptotic behavior
does not have to be imposed explicitly and they can be
obtained through a diagonalization of the rotated Hamiltonian
in a set of square-integrable states [55,57–60]. In particular,
BEM has been benchmarked against complex rotation when
both methods apply [59,60]. However, rotation by an angle
θ of the Hamiltonian is possible only if the potential is
dilatation-analytic [61,62]. This is obviously the case for the
exact molecular Hamiltonian, but not necessarily the case for
effective pseudopotentials. In fact, pseudopotentials can be
nonanalytical or diverge in the complex plane for small values
of θ , as is the case for the pseudopotential studied in this
paper. Complex rotation of the Hamiltonian is thus precluded.
The BEM, on the other hand, can be conveniently applied.
An alternative treatment, similar in spirit, is the complex
eigenvalue Schrödinger equation (CESE) method [63,64].

The calculations have been carried out for the rotational
spectrum of dipole-bound anions of hydrogen cyanide HCN−,
which has long served as a prototype of a dipole-bound
anion [4,65] and was a subject of experimental and theoretical
studies [25,66,67]. Here, we extend our previous studies [39]
of bound states of dipolar molecules to the unbound part of the
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spectrum. To integrate coupled-channel equations, we use the
Berggren expansion method as it offers superior accuracy as
compared to the direct integration approach for weakly bound
states and, contrary to the direct integration approach, allows
to describe unbound resonant states. Moreover, the knowledge
of the asymptotic form of eigenfunctions is not necessary in
our approach.

This paper is organized as follows. The model Hamiltonian
is discussed in Sec. II. The coupled-channel formulation of
the Schrödinger equation for dipole-bound anions is outlined
in Sec. III. The Berggren expansion method is introduced
in Sec. IV. The parameters of our calculation are given in
Sec. V. Section VI presents the technique adopted to identify
the decaying Gamow states (resonances). To visualize the
valence electron distributions, in Sec. VII we introduce the
intrinsic one-body density. The predictions for bound states
and resonances of HCN− are collected in Sec. VIII. Finally,
Sec. IX contains the conclusions and outlook.

II. HAMILTONIAN

The dipolar anions are composed of a neutral polar
molecule with a dipole moment μ that is large enough to
bind an additional electron. Since the energy of the valence
electron in an anion is very small as compared to the energies
of well-bound HCN electrons, this scale separation justifies
the use of an effective potential treatment of the halo [68–70].
In the present study, the HCN− dipolar anion is described in
the Born-Oppenheimer approximation, and the intrinsic spin
of an external electron is neglected [35], largely simplifying
the equations [36]. Within the pseudopotential method, the
Hamiltonian of a dipolar anion can be written as

H = p2
e

2me

+ j2

2I
+ V, (1)

where I is the moment of inertia of the molecule, pe is the
linear momentum of the valence electron, and me its mass.
The electron-molecule interaction V is approximated by a
one-body pseudopotential [35,71,72]

V (r,θ ) = Vdip(r,θ ) + Vα(r,θ ) + VQzz
(r,θ ) + VSR(r), (2)

where θ is the angle between the dipolar charge separation s
and electron coordinate;

Vdip(r,θ ) = −μe
∑

λ=1,3,...,

(
r<

r>

)λ 1

sr>

Pλ(cos θ ) (3)

is the electric dipole potential of the molecule;

Vα(r,θ ) = − e2

2r4
[α0 + α2P2(cos θ )]f (r) (4)

is the induced dipole potential, where α0 and α2 are the spher-
ical and quadrupole polarizabilities of the linear molecule;

VQzz
(r,θ ) = − e

r3
QzzP2(cos θ )f (r) (5)

is the potential due to the permanent quadrupole moment of
the molecule; and

VSR(r) = V0 exp[−(r/rc)6] (6)

is the short-range potential, where rc is a radius range. The
short-range potential accounts for the exchange effects and
compensates for spurious effects induced by the regularization
function

f (r) = 1 − exp[−(r/r0)6] (7)

introduced in Eqs. (4) and (5) to avoid a singularity at r → 0.
The parameter r0 in Eq. (7) defines an effective short range for
the regularization.

The dipolar potential Vdip(r,θ ) is discontinuous at r = s. To
remove this discontinuity, in Eq. (3) we replace

r>

r<

−→
{

r

s
fa(r) + s

r
[1 − fa(r)]

}
erf(ar), (8)

r> −→ sfa(r) + r[1 − fa(r)], (9)

with fa(r) = (1 + exp[(r − s)/a])−1.

III. COUPLED-CHANNEL EQUATIONS

In the description of dipolar anions with the Hamilto-
nian (1), the coupled-channel formalism is well adapted
to express the wave function of the system [1, 35,72–74].
The eigenfunction of H corresponding to the total angular
momentum J can be written as

�J =
∑

c

uJ
c (r)�J

�cjc
, (10)

where the index c labels the channel (�,j ),uJ
c (r) is the radial

wave function of the valence electron, �J
�cjc

is the channel
function, and j + � = J . Since the Hamiltonian is rotationally
invariant, its eigenvalues are independent of the magnetic
quantum number MJ , which will be omitted in the following.

To write the Schrödinger equation as a set of coupled-
channel equations, the potential V (r,θ ) in Eqs. (2) to (6) is
expanded in multipoles

V (r,θ ) =
∑

λ

Vλ(r)Pλ(cos θ ), (11)

where Vλ(r) is the radial form factor and

Pλ(cos θ ) = 4π

2λ + 1
Y

(mol)
λ (ŝ) · Y

(e)
λ (r̂). (12)

The matrix elements 〈�J
�c′ jc′

|Pλ(cos θ )|�J
�cjc

〉 are obtained
by means of the standard angular momentum algebra [39].
The resulting coupled-channel equations for the radial wave
functions uJ

c (r) can be written as[
d2

dr2
− �c(�c + 1)

r2
− jc(jc + 1)

I
+ EJ

]
uJ

c (r)

=
∑
c′

V J
cc′ (r)uJ

c′(r), (13)

where EJ is the energy of the system and

V J
cc′ (r) =

∑
λ

〈
�J

�c′ jc′

∣∣Pλ(cos θ )
∣∣�J

�cjc

〉
Vλ(r) (14)

is the coupling potential. Due to an r6 dependence of exponents
in Eqs. (6) and (7), the resulting pseudopotential is non-
dilatation-analytic.
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IV. BERGGREN EXPANSION METHOD

The Berggren expansion method for studies of the bound
states of dipolar anions has been introduced in Ref. [39]. In
this method, the Hamiltonian is diagonalized in a complete
basis of single-particle (s.p.) states, the so-called Berggren
ensemble [41–43], which is generated by a finite-depth
spherical one-body potential. The Berggren ensemble contains
bound (b), decaying (d), and scattering (s) single-particle
states along the contour L+

�,j for each considered partial wave
(�,j ). For that reason, the Berggren ensemble is ideally suited
to deal with weakly bound and unbound structures having large
spatial extensions, such as halos, Rydberg states, or decaying
resonances. For more details and recent applications of BEM
in the many-body context see Ref. [75] and references cited
therein.

While the finite-depth potential generating the Berggren
ensemble can be chosen arbitrarily, to improve the convergence
we take the diagonal part of the channel coupling potential
Vcc′ (r). Indeed, since all basis states of a channel c have the
same values of �c and jc, changing their generating potential
only amounts to applying a unitary transformation. Hence,
the most optimal potential is that for which all couplings
between states of a given channel c vanish, which is the case for
Vcc(r). The basis states 	k,c(r) are eigenstates of the spherical
potential Vcc(r), which are regular at origin and meet outgoing
(b,d) and scattering (s) boundary conditions. Note that the
wave number k characterizing eigenstates 	k,c(r) is in general
complex. The normalization of the bound states is standard,
while that for the decaying states involves the exterior complex
scaling [39,75–78]. The scattering states are normalized to the
Dirac delta function.

To determine the Berggren ensemble, one calculates first the
s.p. bound and resonance states of the generating s.p. potential
for all chosen partial waves (�,j ). Then, for each channel (�,j ),
one selects the contourL+

�,j in a fourth quadrant of the complex
k plane. All (�,j ) scattering states in this ensemble belong to
L+

�,j . The precise form of L+
�,j is unimportant providing that

all selected s.p. resonances for a given (�,j ) lie between this
contour and the real k axis for Re(k) > 0. For each channel, the
set of all resonant states and scattering states on L+

�c,jc
forms a

complete s.p. basis.
In the present study, each contour L+

�,j is composed of
three segments: the first one from the origin to kpeak in the
fourth quadrant of the complex k plane, the second one
from kpeak to kmiddle on the real k axis (Re(k) > 0), and the
third one from kmiddle to kmax also on the real k axis. In
all practical applications of the BEM, each contour L+

�j is
discretized and the Gauss-Legendre quadrature is applied.
The cutoff momentum k = kmax should be sufficiently large
to guarantee the completeness to a desired precision. The
discretized scattering states |	n,c〉 are renormalized using
the Gauss-Legendre weights. In this way, the Dirac delta
normalization of the scattering states is replaced by the usual
Kronecker delta normalization. In this way, all |	i,c〉 states
can be treated on the same footing in the discretized Berggren
completeness relation

N∑
i=1

|	i,c〉 〈	i,c| � 1, (15)

where the N basis states include bound, resonance, and
discretized scattering states for each considered channel c.

The Hamiltonian matrix can be computed straightforwardly
in the discretized Berggren basis [39]. The diagonal matrix
elements are

〈	i,c|H |	i,c〉 =
(

k2
i + jc(jc + 1)

I

)
. (16)

To compute off-diagonal matrix elements, we apply the
exterior complex scaling [53,76,78,79]

〈	i ′,c′ |H |	i,c〉 = 〈	i ′,c′ |V |	i,c〉

=
∫ R

0
	i ′,c′ (r)Vcc′(r) 	i,c(r) dr

+
∑

ss ′=±

∫ +∞

0
	

(s ′)
i ′,c′ [z(x)]Vcc′ (z(x))

×	
(s)
i,c[z(x)] eiθ dx, (17)

where z(x) = R + xeiθ ,	
(±)
i,c (r) is the outgoing or incoming

part of 	i,c(r),θ is a complex rotation angle chosen according
to the asymptotic behavior of 	

(±)
i,c (r). The radius R is chosen

sufficiently large so that the exponentials of Eqs. (6) and (7)
can be suppressed in the real asymptotic region. Since the
coupling potential Vcc′ (r) in Eq. (17) decreases at least as fast
as r−2 in the complex plane, no singularities occur. Due to the
completeness of the Berggren ensemble, the representation of
the Hamiltonian by the matrix (16) and (17) is exact, up to
contour discretization and momentum truncation.

V. PARAMETERS OF THE BEM CALCULATION

The parameters of the pseudopotential for the HCN− anion
are taken from Ref. [36]. These are

α0 = 15.27 a3
0,

α2 = 1.08 a3
0,

Qzz = 3.28 ea2
0,

I = 7.42 × 104 mea
2
0,

r0 = 4.4 a0,

rc = 3.071622666 a0,

V0 = 4.0 Ry,

s = 2.04 a0,

and a = a0. The value of rc has been adjusted to reproduce the
experimental ground-state (Jπ = 0+) energy [25]: Eexp(0+

1 ) =
−1.1465789 × 10−4 Ry. For the dipolar moment of the
molecule, we take the experimental value μ = 1.174 ea0.
In the following, we express r in units of the Bohr radius
a0,I in units of mea

2
0 , and energy in Ry. The Jπ = 1−

band-head energy is also known experimentally, Eexp(1−
1 ) =

−8.8198377 × 10−5 Ry, but no adjustment of the model
parameters has been attempted to fit the experimental value.

To achieve stability of bound-state energies, the BEM
calculations were carried out by including all partial waves
with � � �max = 9 and taking the optimized number of points
(NC = 165) on the complex contour with kmax = 6 a−1

0 for
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each Jπ . For all (�,j ) channels and all Jπ values, the
complex contour L+

�,j is taken close to the real axis (kpeak =
0.15 − i10−7,kmiddle = 1.0, and kmax = 6.0; all in a−1

0 ). Its
precise form has been adjusted by looking at the convergence
of bound-state energies when changing the imaginary part of
kpeak. Each segment of any contour L+

�,j is discretized with the
same number of points (NC/3 = 55).

VI. IDENTIFICATION OF THE RESONANCES

The diagonalization of a complex-symmetric Hamiltonian
matrix in BEM yields a set of eigenenergies which are the
physical states (poles of the resolvent of the Hamiltonian)
and a large number of complex-energy scattering states. The
resonances are thus embedded in a discretized continuum of
scattering states and their identification is not trivial [80,81].

The eigenstates associated with resonances should be stable
with respect to changes of the contour [80,81]. Moreover,
their dominant channel wave functions should exhaust a large
fraction of the real part of the norm. The norm of an eigenstate
of the Hamiltonian is given by

∑
c

∑
i

〈	k,c|uc〉2 =
∑

c

nc = 1, (18)

where nc the norm of the channel wave function. In general,
the norms of individual channel wave functions for resonances
are complex numbers and their real parts are not necessarily
positive-definite. It may happen that if a large number of
weak channels {ci} with small negative norms Re(nci

) < 0
contribute to the resonance wave function, then the dominant
channel c can have a norm nc > 1. This does not come as
a surprise as the channel wave functions have no obvious
probabilistic interpretation.

To check the stability of BEM eigenstates, we varied the
imaginary part of kpeak from 0 to −0.0001a−1

0 in all partial-
wave contours. Resulting contour variations change both the
real 
Re(E) � Re(E) and imaginary 
Im(E) parts of the
eigenenergies. The precision of the resonance-identification
method is assessed by looking at the ratio 
Im(E)/Im(E),
which is in the range [0.001,0.3] for the resonance states.
As an example, the eigenvalues of Jπ = 2+ resonant states
are listed in Table I. It is seen that the relative variations
of Re(E) are always smaller than 1%, while the relative
variations of Im(E) can reach ∼15%. Moreover, values of

Im(E)/Im(E) for different resonant states can differ by three
orders of magnitude. In general, a better stability of the BEM
eigenstates and, i.e., smaller values of 
Im(E)/Im(E), are
found for those eigenstates, which have several channel wave
functions contributing significantly to the total norm. A typical
accumulation of eigenenergies when changing the contour is
shown in Fig. 1. One can see that the nonresonant states do not
exhibit the degree of stability that is typical of resonant states.
It is interesting to notice that several resonant states are found
fairly away from the region of nonresonant eigenstates. The
stability of resonant eigenstates persists if the real part of kpeak

is varied from 0.14 a−1
0 to 0.16 a−1

0 . In this case, the relative
variations of the real part of the eigenstate energies dominate
as can be seen in Fig. 2 for the two near-threshold resonances
labeled 2 and 3 in Table I.

TABLE I. Relative variation of the real part δRe(E) =

Re(E)/Re(E) (in percent) and imaginary part δIm(E) =

Im(E)/Im(E) (in percent) of energies of twenty J π = 2+ reso-
nances with the change of kpeak. All energies are in Ry. The numbers
in parentheses denote powers of 10.

resonance Re(E) δRe(E) Im(E) δIm(E)

1 2.51(−5) 2.47(−1) − 9.68(−6) 2.09(−1)
2 2.69(−4) 1.29(−4) − 3.45(−10) 1.32(+1)
3 2.77(−4) 1.37(−5) − 3.58(−9) 1.56(+1)
4 3.55(−4) 5.61(−4) − 7.20(−7) 1.60
5 3.67(−4) 3.70(−4) − 1.21(−6) 1.78
6 3.96(−4) 3.52(−3) − 2.34(−6) 4.55(−1)
7 3.98(−4) 2.07(−2) − 5.05(−5) 6.19(−2)
8 4.25(−4) 6.02(−3) − 1.04(−4) 3.02(−2)
9 6.48(−4) 9.70(−5) − 6.72(−7) 1.42
10 6.60(−4) 6.86(−4) − 8.32(−7) 2.52
11 6.81(−4) 6.77(−3) − 1.19(−5) 7.41(−1)
12 6.86(−4) 9.86(−4) − 1.60(−6) 1.55
13 7.40(−4) 5.05(−3) − 6.68(−5) 3.85(−2)
14 9.80(−4) 7.89(−4) − 7.86(−7) 1.45(+1)
15 1.05(−3) 4.80(−5) − 6.22(−7) 1.39
16 1.06(−3) 1.87(−4) − 8.54(−7) 2.66
17 1.07(−3) 1.82(−3) − 5.60(−6) 1.10
18 1.09(−3) 4.00(−4) − 4.89(−7) 7.67
19 1.11(−3) 8.05(−4) − 1.66(−6) 9.61
20 1.14(−3) 2.28(−3) − 2.71(−5) 1.31(−1)

To demonstrate that the identified resonances are stable with
respect to �max, in Fig. 3 we show the energy convergence for
states 1 to 3 of Table I. In general, Im(E) is significantly more
sensitive than Re(E) with respect to the addition of channels
with higher � and j values. It is seen that Im(E) for resonances
with the dominant channels (� = 4,j = 4) and (� = 3,j = 1)

0.0

− 1.2

− 1.0

− 0.8

− 0.6

− 0.4

− 0.2

0.0

HCN−

0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 1. (Color online) Illustration of the stability of the energies
of the J π = 2+ resonant states of HCN− listed in Table I (large
dots) when the nonresonant scattering contour is shifted. Here, the
imaginary part of kpeak was varied from 0 to −0.0001a−1

0 . As a
comparison, nonresonant eigenenergies are marked with tiny dots
and exhibit significant shifts.
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−5

−4

−3

−2

−1

0

2.5 2.6 2.7 2.8 2.9

FIG. 2. (Color online) Similar as in Fig. 1 but zoomed in on the
two threshold resonances (states 2 and 3 in Table I). Here, the real
part of kpeak is also varied from 0.14 a−1

0 to 0.16 a−1
0 .

are converged already for �max � 6. The convergence for the
narrow resonance with the dominant channel (� = 2,j = 4)
shown in Fig. 3(a) is also excellent, considering that in this
case Im(E) is of the order of 10−10 Ry, which is close to the
limit of a numerical precision of our BEM calculations.

VII. INTRINSIC DENSITY

It is instructive to present the density of the valence electron
in the body-fixed frame. This can easily be done in the strong
coupling scheme of the particle-plus-rotor model [82–84],
which is usually formulated in the K representation associated
with the intrinsic frame. Here, KJ = K� + Kj is the projection
of the total angular momentum on the symmetry axis of
the molecule. Of particular interest is the adiabatic limit of
I → ∞, where all Jπ members of a rotational band collapse at
the band head, i.e., they all can be associated with one intrinsic

−3.47

−3.45

−3.43

−3.56

−3.48

3 4 5 6 7 8−9.68

−9.66

−9.64

(a)

(b)

(c)

FIG. 3. (Color online) The convergence of Im(E) for J π = 2+

resonances (a) 2, (b) 3, and (c) 1 of Table I as a function of �max. The
quantum numbers (�,j ) of the dominant channel are indicated.

configuration. The K representation is useful to visualize
wave functions, group states with different J values into
rotational bands, and interpret the results in terms of Coriolis
mixing [47,50,85–88].

In the body-fixed frame, the density of the valence electron
in the state Jπ is axially symmetric and can be decomposed as

ρJ (r,θ ) =
∑
KJ

ρJKJ
(r,θ ), (19)

where (r,θ ) stand for the polar coordinates of the electron in
the intrinsic frame, and the KJ components of the density are

ρJKJ
(r,θ ) =

∑
�,�′

∑
j

2j + 1

2J + 1
〈�KJ j0|JKJ 〉 〈�′KJ j0|JKJ 〉

× uJ
�j (r)∗

r

uJ
�′j (r)

r
Y

KJ ∗
� (θ,0) Y

KJ

�′ (θ,0). (20)

If all KJ components except one vanish in Eq. (19), the
adiabatic strong-coupling limit is reached and KJ becomes a
good quantum number. In this particular case, ρJKJ

can be
identified as the intrinsic electronic density in the dipole-fixed
reference frame. To quantify the degree of KJ mixing, it is
convenient to introduce the normalization amplitudes

nJKJ
=

∑
�,j

2j + 1

2J + 1
〈�KJ j0|JKJ 〉2

∫ ∣∣uJ
�j (r)

∣∣2
dr. (21)

Due to Eq. (18), nJKJ
fullfil the normalization condition∑

KJ

nJKJ
= 1. (22)

VIII. RESULTS OF BEM CALCULATIONS

Predicted energy spectra of HCN− with Jπ =
0+,1−,2+,3−,4+, and 5− are shown in Table II. One may
notice that the calculated energy of the 1− band head
E(1−

1 ) = −8.96 × 10−5 Ry is close to the experimental value
Eexp(1−

1 ) = −8.82 × 10−5 Ry. Moreover, consistently with
earlier Refs. [25,36], we do not find a Jπ = 3− bound state.

The states listed in Table II are plotted in Fig. 4 in
the complex energy plane. These states can be assembled
according to their decay widths into five groups labeled g0

to g4. The group 4 contains bound states and very narrow
threshold resonances of the dipolar anion. Narrow resonances
are contained in groups 3 and 2 while broader states form
groups 1 and 0. The characterization of the resonance spectra
of HCN− in terms of groups g0 to g4 will be provided below.

A. Adiabatic limit

To check the numerical accuracy of the adiabatic approxi-
mation, we computed the energies of the lowest states of HCN−
in the adiabatic limit of I → ∞ (in practice, I = 1016 mea

2
0).

In this limit, which can be associated with the extreme strong
coupling regime, KJ becomes a good quantum number and
energies of all band members J = KJ ,KJ + 1,KJ + 2, . . . ,

collapse at the band head EJ=KJ
. In our calculations, the max-

imum energy difference between the members of the ground-
state band (Jπ = 0+

1 ,1−
1 ,2+

1 ,3−
1 ,4+

1 ,5−
1 ) is 1.5 × 10−7 Ry,

which is better than 0.1% of the energy of the 0+ state
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0 32 54

FIG. 4. (Color online) Predicted energies of the HCN− dipolar
anion for J π = 0+,1−,2+,3−,4+, and 5− states in the complex-energy
plane. Based on their complex energies, these states can be organized
into five groups labeled g0 to g4. Bound states and near-threshold
resonances belonging to g4 and narrow resonances of g3 are shown
in the inset.

(E = −1.2308 × 10−4 Ry). We can conclude, therefore, that
the members of the ground-state rotational band are practically
degenerate in the adiabatic limit.

Figure 5 illustrates the intrinsic density for the ground-state
band in the adiabatic limit (I → ∞; KJ = 0). The intrinsic
densities for all band members are numerically identical
even though the associated wave functions in the laboratory
system are different, see Fig. 6. The strongly asymmetric
shape of electron’s distribution reflects the attraction (or
repulsion) between the electron and positive (or negative)
charge of the dipole (for other illustrative examples, see
Refs. [5,7,11,25,89]).

We found that the density representation given by Eq. (19)
can also be useful in the nonadiabatic case, with finite moment
of inertia, to assign members of rotational bands. This is

-50

0

50

0

10-5

ground-state band

HCN-

500

FIG. 5. (Color online) The intrinsic density of the valence
electron in HCN− in the ground-state rotational band J π =
0+

1 ,1−
1 ,2+

1 ,3−
1 , . . . (All densities are in a−1

0 .)

-0.04

0

0.04

0.08

(a)

(b)

-0.04

0

0.04

0.08

0 500

(0,4)

(1,3)
(2,2)
(2,4)

(1,5)

(0,0)

(2,2)
(4,4) (3,3)

(1,
1)

FIG. 6. (Color online) Channel wave functions (�,j ) of the (a)
J π = 0+

1 and (b) 4+
1 members of the ground-state rotational band in

HCN− in the adiabatic limit.

illustrated in Fig. 7 which shows the density (19) for the bound
states Jπ = 0+

1 ,1−
1 , and 2+

1 of HCN−. Despite the fact that
the strong coupling limit does not strictly apply in this case,
distributions are practically identical and close to the intrinsic
density displayed in Fig. 5.

B. Rotational bands

Excitation energies of the lowest-energy resonant (i.e.,
bound and resonance) states are plotted in Fig. 8 as a function
of J (J + 1). The Jπ = 0+,1−,2+ bound states form a KJ = 0
rotational band as evidenced by their intrinsic densities shown
in Fig. 7. Another KJ = 0 rotational band is built upon the
0+

2 resonance. According to Table II, a 1−
2 member of this

band has a decay width that is reduced by over three orders
of magnitude as compared to that of the 0+

2 band head. We
predict other very narrow resonances as well. Among them,
the 2+

4 state has KJ = 2 while 1−
4 and 2+

3 resonances have a
mixed character.

As can be judged by results displayed in Fig. 8, except
for few states with well-defined KJ values, the majority
of resonances are strongly KJ mixed. Consequently, an
identification of other rotational bands in the continuum, based
on the concept of intrinsic density, is not straightforward.
This is true, in particular for the supposed higher-J members
of the ground-state band. Figure 9 shows ρJKJ =0 for Jπ =
3−

1 ,4+
1 ,5−

1 resonances, which are expected (based on energy
considerations) to form a continuation of the ground-state
rotational band. One can see that these densities are not only
drastically different from those of 0+

1 ,1−
1 , and 2+

1 states, but
also change from one state to another. It is also worth noting
that the densities of 3−

1 ,4+
1 , and 5−

1 resonances have spatial
extensions that are dramatically larger as compared to the
three bound members of the ground-state band.
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FIG. 7. (Color online) Density (19) of the valence electron in the
bound states (a) J π = 0+

1 , (b) 1−
1 , and (c) 2+

1 of HCN−. (All densities
are in a−1

0 .)

As seen in Fig. 4, there appear clusters of resonances having
the same total angular momentum J within one group gi . In
each cluster, the dominant channel wave functions have the
same orbital angular momentum of the valence electron �,
but different rotational angular momenta of the molecule j .
Excitation energies of resonances are plotted as a function of
the molecular angular momentum j in Fig. 10 for different

0

1

2

10 15 20 25 300 5

HCN-

threshold

0
1
2
3

mix

FIG. 8. (Color online) Energy spectrum of the HCN− anion for
J π = 0+,1−,2+,3−, 4+, and 5− shown as a function of J (J + 1). The
dominant KJ component (21) is indicated. If several components are
present, the state is marked as “mix.”

5-

0

2

4+

9

0

18

3-

0

20

-1

1

0

-1

1

0

-1

1

(a)

(b)

(c)

0-1 1

FIG. 9. (Color online) Similar as in Fig. 7 but for ρJKJ =0(r,θ ) (in
10−15 a0) in (a) 3−

1 , (b) 4+
1 , and (c) 5−

1 .

groups of resonances of Fig. 4. It is seen that these states form
very regular rotational band sequences in j rather than in J .
Different members of such bands lie close in the complex
energy plane and have similar densities ρJKJ

(r,θ ). This is
illustrated in Fig. 11, which shows ρJKJ

(r,θ ) for the two Jπ =
5− resonances marked by arrows in Fig. 10(c); namely 5−

3 ,
having the dominant parentage (�,j ) = (6,1), and 5−

23, having
the dominant parentage (6,11).

The results of Fig. 10 suggest that the rotational resonance
structures are governed by a weak �-j coupling, whereby
the orbital motion of a valence electron is decoupled from
the rotational motion of a dipolar neutral molecule. To
illustrate the weak coupling better, in Fig. 12 we display
the rotational bands of Fig. 10 with respect to the rigid rotor
reference j (j + 1)/2I . In the case of a perfect �-j decoupling,
the rescaled energy in Fig. 12 should be equal to 1. One can
see that this limit is reached in most cases, with deviations
from unity being less than 10%. Larger deviations are found
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FIG. 10. (Color online) Excitation energies of resonances of the
HCN− dipolar anion for various J π as a function of j (j + 1), where
j is the rotational angular momentum of the molecule in the dominant
channel wave function for each considered state. Colors are related
to groups of states in the complex-energy plane identified in Fig. 4.
The symbols �, • ,� and + denote states with J π = 2+,3−,4+, and
5−, respectively.

0

0

2

4

6

8

-1

1

KJ=0

0

-1

1
KJ=1

0

-1

1

0 11-

KJ=2
0

2

4

6

0

2

53
− 523

−

(a) (b)

(c) (d)

(e) (f)
0 11-

FIG. 11. (Color online) Intrinsic densities ρJKJ
(r,θ ) (in 10−10 a0)

with KJ = 0,1,2, for the two resonances 5−
3 and 5−

23 belonging to the
group g2, marked by arrows in Fig. 10(c). For both states, the dominant
channel has � = 6.

1.0
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1.0
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50 100 1500 50 100 1500
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FIG. 12. (Color online) Similar as in Fig. 10 but for (EJ −
Ebh) 2I

j (j+1) , where Ebh is a band-head energy at j = 0.

for few low-j states in bands with J = 2 in g2 and J = 5 in
g4. Consequently, intrinsic densities for resonances in these
two bands exhibit certain differences, whereas they are almost
identical for bands close to the weak-coupling limit.

The variations seen in Fig. 12 can be traced back to
the leading-channel components along a j band. Table III
displays the leading channel wave functions to the resonances
in different groups gi . Not surprisingly, the resonances forming
j -band structures are associated with high-orbital angular
momentum components � = 6–9 for which the centrifugal
force induces a strong decoupling of the electron and the rotor.
For regular bands in Fig. 12, the � content is almost constant as
a function of j . For instance, for the four J = 5 states in g1, the
(�,j ) parentages of the two largest (6,j )/(7,j + 1) components
are 0.64/0.37 (j = 5), 0.67/0.36 (j = 7), 0.69/0.35 (j = 9),
and 0.70/0.34 (j = 11). On the other hand, for bands that
exhibit stronger j dependence in Fig. 12 the � compositions
change.

Interesting complementary information about the arrange-
ment of resonances in the continuum of HCN− can be seen
in Fig. 13 which shows the decay width for various j bands
in different groups gi and different total angular momenta J

within a given group. One can see that the bands that exhibit
largest deviations from the weak-coupling limit in Fig. 12, also
show strong in-band variations of the decay width. In regular

TABLE III. Contributions of the two leading-channel wave
functions to the norm of resonances in different groups of states
in Fig. 4. Only states with dominant channel � = 6 for g1,g2, annd
g4, and � = 8 for g0, and g3 are included.

� of dominant channels

Group 6 7 8 9

g0 − − 60% 40%
g3 1% − 99% −
g1 70% 30% − −
g2 90% 10% − −
g4 100% − − −
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FIG. 13. (Color online) Similar as in Fig. 10 but for the resonance
widths.

bands belonging to g0,g1, and g3, the width stays constant
or slightly increases with j . On the other hand, the irregular
bands in g2 and g4 exhibit a decrease of J with j . Such a
behavior of lifetimes can be traced back to variations of the
(�,j ) content of the resonance wave function with rotation.

IX. CONCLUSION

In this work, we studied bound and resonance states of
the dipole-bound anion of hydrogen cyanide HCN− using
an open-system quantum-mechanical approach: the Berggren
expansion method. To identify the decaying resonant states and
separate them from the scattering background, we adopted the
algorithm based on contour shift in the complex energy plane.
To characterize spatial distributions of valence electrons, we
introduced the intrinsic density of the valence electron. This
quantity is useful when assigning resonant states into rotational
bands.

Dipole molecules contain large numbers of electrons and
this makes ab initio treatments difficult. However, since we
are interested in a description of a near-threshold spectrum of
an anion rather than the whole molecular spectrum, we use a
phenomenological approach based on a pseudopotential, with
few parameters adjusted to experiment. This guarantees that
all important reaction thresholds are described correctly, and
this is essential for the description of one-electron continuum.
The use of a pseudopotential is well justified by a scale
separation between the slow s.p. motion of the attached
electron (comparable to rotational excitations of the molecule)
and fast s.p. motion of HCN electrons. Such a mismatch of
scales, well known in the field of quantum halos, guarantees the
validity of an effective interaction treatment [68–70]. The low
ionization energy implies that the familiar Born-Oppenheimer
approximation breaks down so the motion of the valence
electron is highly nonadiabatic.

Since the pseudopotential used is non-dilatation-analytic,
it cannot be treated by a complex-coordinate method. Hence,
available methods to treat this type of problems reduce to two

classes of models. The first class of models can be associated
with CESE [63,64], where the Hamiltonian coordinates are
not complex-rotated and its eigenfunctions are split in two
parts, an inner localized part and an outer part of outgoing
character. Exterior complex scaling can thus be applied to the
wave function to make it normalizable. The second class of
models concerns BEM, where Hamiltonian coordinates remain
real and the exterior complex scaling is utilized, but which
is based on a diagonalization procedure using nonlocalized
basis; this implies that the asymptotic form of eigenfunctions
is not predefined and comes naturally from the configuration
mixing. While both methods are theoretically equivalent, the
imposition of the outgoing asymptotics would be difficult
in the studied case of the HCN− anion. Indeed, due to the
slowly decaying dipole potential, the exponential asymptotic
is attained only at distances of tens of thousands of a0.

Nonadiabatic coupled-channel calculations with a pseu-
dopotential adjusted to ground-state properties of HCN−

predict only three bound states of the dipole-bound anion:
0+,1−, and 2+. Those states are members of the ground-state
rotational band. The lowest 3−

1 state is a threshold resonance;
its intrinsic structure is very different from that of 0+

1 ,1−
1 , and

2+
1 states, and the lowest-energy resonances 4+

1 and 5−
1 .

The dissociation threshold in the HCN− dipolar anion
defines two distinct regimes of rotational motion. Below the
threshold, rotational bands in J can be associated with bound
states. Here, the valence electron follows the collective rotation
of the molecule. This is not the case above the threshold
where the motion of a valence electron in a resonance state
is largely decoupled from the molecular rotation with the
families of resonances forming regular band sequences in j .
Widths of resonances forming j bands depend primarily on the
electron’s orbital angular momentum in the dominant channel
and remain fairly constant within each band for regular bands.
Small irregularities in moments of inertia and decay width are
predicted for very narrow resonances in the vicinity of the
dissociation threshold.

In summary, this work demonstrates the feasibility of
accurate calculations of weakly bound and unbound states
of the dipolar anions using a nonadiabatic pseudopotential
method and the Berggren expansion approach. Our prediction
of two distinct modes of rotation in this open quantum system
awaits experimental confirmation. It is interesting to note
a similarity between the problem of a dipolar anion and a
coupling of electrons in high molecular Rydberg states to
molecular rotations [90,91]. Namely, in both cases one deals
with the nonadiabatic coupling of a slow electron to the
fast rotational motion of the core, with no separation in the
single-particle and collective time scales.

ACKNOWLEDGMENTS

Discussions with R. N. Compton and W. R. Garrett
are gratefully acknowledged. This material is based upon
work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under Award No.
DEFG02-96ER40963 (University of Tennessee). This work
was supported partially through FUSTIPEN (French-U.S.
Theory Institute for Physics with Exotic Nuclei) under DOE
Grant No. DE-FG02-10ER41700.

012503-10



BOUND AND RESONANCE STATES OF THE DIPOLAR . . . PHYSICAL REVIEW A 91, 012503 (2015)

[1] W. R. Garrett, Chem. Phys. Lett. 5, 393 (1970); ,Phys. Rev. A 3,
961 (1971).

[2] S. F. Wong and G. J. Schulz, Phys. Rev. Lett. 33, 134 (1974).
[3] K. D. Jordan, J. Chem. Phys. 66, 3305 (1977).
[4] K. D. Jordan and F. Wang, Annu. Rev. Phys. Chem. 54, 367

(2003).
[5] C. Desfrançois, H. Abdoul-Carime, and J. P. Schermann, Int.

J. Mol. Phys. B 10, 1339 (1996); H. Abdoul-Carime and C.
Desfrançois, Eur. Phys. J. D 2, 149 (1998).

[6] R. N. Compton and N. I. Hammer, Advances in Gas Phase Ion
Chemistry, Vol. 4 (Elsevier, New York, 2001).

[7] C. Desfrançois, Y. Bouteiller, J. P. Schermann, D. Radisic, S. T.
Stokes, K. H. Bowen, N. I. Hammer, and R. N. Compton, Phys.
Rev. Lett. 92, 083003 (2004).

[8] L. Adamowicz and R. J. Bartlett, J. Chem. Phys. 83, 6268
(1985).

[9] G. L. Gutsev, M. Nooijen, and R. J. Bartlett, Chem. Phys. Lett.
276, 13 (1997).

[10] G. L. Gutsev, M. Nooijen, and R. J. Bartlett, Phys. Rev. A 57,
1646 (1998).

[11] J. Simons, J. Phys. Chem. 112, 6401 (2008).
[12] E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).
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