
PHYSICAL REVIEW A 91, 012501 (2015)

Edge corrections to electromagnetic Casimir energies from general-purpose
Mathieu-function routines
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Scattering theory methods make it possible to calculate the Casimir energy of a perfectly conducting elliptic
cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the limit of zero radius, the elliptic
cylinder becomes a finite-width strip, which allows for the study of edge effects. However, existing packages for
computing Mathieu functions are insufficient for this calculation because none can compute Mathieu functions
of both the first and second kind for complex arguments. To address this shortcoming, we have written a
general-purpose Mathieu-function package, based on algorithms developed by Alhargan. We use these routines
to find edge corrections to the proximity force approximation for the Casimir energy of a perfectly conducting
strip opposite a perfectly conducting plane.
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I. INTRODUCTION

Scattering theory methods have made it possible to cal-
culate Casimir energies, arising from quantum-mechanical
fluctuations of charges and fields in quantum electrodynamics,
for any objects for which one can obtain the T matrices
for light scattering. In this approach, one expresses the
Casimir energy in “TGTG” form [1], generalizing scattering
results for planar geometries [2] and for scalar fields in
spherical geometries [3] to any geometry that is tractable
for electromagnetic scattering [4,5]. The resulting calculation
combines the scattering T matrix, which captures the reflection
of quantum fluctuations from each object individually, with the
free Green’s function, which propagates fluctuations from one
object to the other.

One geometry of particular interest is the electromagnetic
cylinder, which in the limit of zero radius becomes a finite-
width strip [6], allowing for the study of edge effects [6–13].
These effects can be modeled as corrections to the proximity
force approximation (for a situation where the derivative
expansion [14–16] does not apply). However, numerical cal-
culations of the Casimir energy in elliptic cylinder geometries
require Mathieu functions [17–20], in cases for which existing
packages are not well suited. As a result, we have created a
general-purpose package to compute odd and even, angular
and radial, first-kind and second-kind, and ordinary and
modified Mathieu functions of integer order, for complex
parameter and argument and integer index. Our approach
is based on the routines developed by Alhargan [21,22],
extended to the case of complex inputs and implemented in
MATHEMATICA.

At short distances, we can expand the Casimir interaction
energy per unit length of a perfectly conducting strip oriented
parallel to a perfectly conducting plane as

E
�cL

= − π2

720

2d

H 3
+ 2β

H 2
+ γ

2dH
+ · · · , (1)

where 2d is the width of the strip, H is the distance between the
plane and the strip, and β and γ are dimensionless constants.
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The leading term in this expansion gives the proximity force
approximation; the second term gives the interaction of the
two edges with the infinite plane; and the third term gives
the interaction between the two edges, mediated by the plane.
From an exact numerical calculation, we find good agreement
with this form, with β = 0.00092 and γ = −0.0040. The
former quantity agrees with results obtained at lower precision
in Refs. [7–9,23]; its small magnitude can be explained
by the cancellation of the effects of the first reflection for
electromagnetism [7,23,24].

In the following sections, we assemble the various com-
ponents needed to obtain this result. In Sec. II, we review
scattering theory in elliptic cylinder coordinates and establish
conventions for the Mathieu functions that arise as solutions
to the Helmholtz equation. Then, in Sec. III, we describe
the numerical package we have developed to calculate these
functions in the generality required for Casimir calculations.
Finally, we discuss the results of the Casimir calculation in
Sec. IV.

II. SCATTERING THEORY IN ELLIPTIC CYLINDER
COORDINATES

We begin by formulating scattering theory in elliptic
cylinder coordinates,

x = d cosh μ cos θ, y = d sinh μ sin θ, z = z, (2)

where 2d is the interfocal separation, −π < θ � π is the
analog of the angle in ordinary cylindrical coordinates, and
0 � μ < ∞ is the analog of the ordinary cylindrical radius R,
with

R=
√

x2 + y2 = d

√
cosh 2μ+ cos 2θ

2
→ d

2
eμ as μ → ∞.

(3)
The Helmholtz equation in elliptic cylinder coordinates is

given by

1

d2(cosh2 μ − cos2 θ )

(
∂2�

∂μ2
+ ∂2�

∂θ2

)
+ ∂2�

∂z2
+ k2� = 0.

(4)
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Using separation of variables with � = M(μ)�(θ )Z(z) gives

d2�

dθ2
+ (α − 2q cos 2θ ) �(θ ) = 0,

d2M

dμ2
− (α − 2q cosh μ) M(μ) = 0, (5)

d2Z

dz2
+ k2

zZ(z) = 0,

where the parameter q is given by q = d2

4 (k2 − k2
z ) and

the separation constant α is known as the characteristic
value. For Z(z), we have the standard complex exponential
solutions Z(z) = eikzz. Because the problem still has reflection
symmetry, we have angular solutions �(θ ) that are either even
or odd functions of the argument θ , the analogs of cos and
sin in the ordinary cylinder case. We are interested only in
characteristic values for which the resulting angular functions
are periodic, which we label by the integer index r , where
r runs from 0 to ∞ for even solutions and from 1 to ∞ for
odd solutions. For q = 0 and r �= 0, the even and odd angular
functions then reduce to cos rθ and sin rθ , respectively, and the
characteristic value becomes r2 in both cases. For the special
case of r = 0, in the limit as q goes to zero, the even angular
function goes not to cos 0 = 1, but instead to the constant
function 1√

2
, with characteristic value zero (and there is no

odd angular function for r = 0).
The radial solutions M(μ) are the analogs of Bessel

functions in ordinary cylindrical coordinates. We note that
the radial functions obey the same differential equation as
the angular functions with imaginary argument, a relationship
we will make use of in our computational algorithm. Unlike
the case of ordinary cylindrical functions, the radial functions
corresponding to even and odd angular functions for the same
index r differ because they have different characteristic values.

Because the Mathieu equations are second order, they each
have two independent solutions: solutions of the first kind obey
appropriate regularity conditions at the origin, while solutions
of the second kind do not. Furthermore, since q = d2

4 (k2 − k2
z ),

positive values of q correspond to propagating waves, while
negative values of q correspond to evanescent waves; it will be
convenient to define modified versions of all of our functions,
which are related to the ordinary functions with q → −q.
These choices—even and odd, angular and radial, ordinary
and modified, and first kind and second kind—therefore yield
a total of 16 Mathieu functions. The four modified angular
functions typically are not assigned their own names; the
remaining 12 are summarized in Table I.

We normalize our functions following the conventions
of of Abramowitz and Stegun [18], but name them using
a modified notation that is more closely analogous to the
ordinary cylinder case. The even and odd angular functions
cer (q,θ ) and ser (q,θ ) are normalized such that∫ 2π

0
cer (q,θ )2dθ =

∫ 2π

0
ser (q,θ )2dθ = π, (6)

which is analogous to the normalization of the ordinary
trigonometric functions cos rθ and sin rθ (except for r = 0,
as described above). The radial functions are all normalized
so that they approach the analogous Bessel functions at large
distances. These conventions are convenient for creating a
standard expansion of free quantum fields in terms of Mathieu
functions [25]. Also in analogy with Bessel functions, we
define the modified functions by

Ier (−q,μ) = i−rJ er (q,μ), Ior (−q,μ) = i−rJ or (q,μ),
(7)

and

Ker (−q,μ) = ir+1 π

2
Her (q,μ),

(8)
Kor (−q,μ) = ir+1 π

2
Hor (q,μ),

for q < 0, where the radial functions of the third kind are given
by Her (q,μ) = Jer (q,μ) + iY er (q,μ) and Hor (q,μ) =
Jor (q,μ) + iY or (q,μ). As in the ordinary cylinder case, the
definitions of Ke and Ko in terms of third-kind functions yield
the exponentially decaying evanescent solutions, avoiding the
cancellation of large numbers that would be required to extract
these solutions from the direct continuation to negative q of
the solutions’ first and second kind.

III. COMPUTATION OF MATHIEU FUNCTIONS

We have developed a package written in MATHEMATICA

for computing Mathieu functions. The built-in functionality
of MATHEMATICA supports only angular, first-kind functions
(similar functionality is available in MAPLE). Since complex
arguments are allowed, one can in principle obtain the radial
first-kind functions as well. However, as described below, the
standard calculation of angular functions is of limited utility
for arguments with nonzero imaginary part; as a result, in that
case we will need to use routines designed explicitly for the
calculation of radial functions. We will also need second-kind
functions to describe irregular scattering waves.

TABLE I. Table of Mathieu functions. Modified angular functions are not assigned separate names; they are simply given by sending
q → −q in the ordinary functions. Note that the modified functions Ke and Ko are referred to as “third kind” because they are related not to
Ye and Yo, but instead to the combinations He = Je + iY e and Ho = Jo + iYo, as described below.

Angular Radial

Ordinary Ordinary Modified

First kind Second kind First kind Second kind First kind Third kind

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

cer (q,θ ) ser (q,θ ) Fer (q,θ ) For (q,θ ) Jer (q,μ) Jor (q,μ) Yer (q,μ) Yor (q,μ) Ier (q,μ) Ior (q,μ) Ker (q,μ) Kor (q,μ)
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Our approach is based on methods developed by Alhar-
gan [21,22]. While these routines, written in the C program-
ming language, support all 16 Mathieu functions and work
reliably for all the inputs we have tested, they accept only pos-
itive q and real arguments. We will therefore generalize these
routines to complex argument and parameter, motivated by
the Casimir calculation, which involves both angular functions
of the first kind with complex argument and modified radial

functions of the first and third kinds. Our code is available at
http://community.middlebury.edu/˜ngraham.

A. Angular functions for real argument

The standard calculation of angular Mathieu functions uses
a Fourier series expansion,

cer (q,θ ) = δ√∑∞
m=0 A2m+p (r,q)2 + (1 − p)

∞∑
m=0

A2m+p (r,q) cos [(2m + p) θ ] ,

(9)

with p =
{

1 odd r

0 even r
, and δ =

{
(−1)(r−p)/2 for Re(q) < 0
1 otherwise

,

and

ser (q,θ ) = δ√∑∞
m=0 B2m+p (r,q)2

∞∑
m=0

B2m+p (r,q) sin [(2m + p) θ ] ,

(10)

with p =
{

1 odd r

0 even r
, and δ =

{
(−1)(r−2+p)/2 for Re(q) < 0
1 otherwise

.

Here the prefactors implement our L2 normalization convention for the angular functions (which differs from that used by
Alhargan). To obtain the coefficients A2m+p (r,q) and B2m+p (r,q), we follow Alhargan and use both upward and downward
recurrence relations for the ratios of adjacent coefficients. These recurrences start from zero and infinity, respectively, and then
meet at m = r . The forms are slightly different for the even and odd functions and for odd and even order r .

For the even-function coefficients, denoting the even characteristic values as ar , we have the following recursions:

Even order Odd order
Am (r,q) = Aem = Aem−2V em−2, Am (r,q) = Aom = Aom−2V om−2, (11)

for m > 1, with the base cases

Ae0 = 1, Ao1 = 1, V e0 = ar

q
, V o1 = −1 + ar − 1

q
, V e2 = ar − 4

q
− 2

V e0
, V e∞ = 0, V o∞ = 0, (12)

and the recursion relations for m > 2,

V em =
⎧⎨
⎩

ar−m2

q
− 1

V em−2
, m � r

−q

(m+2)2−ar+qV em+2
, m > r

, V om =
⎧⎨
⎩

ar−m2

q
− 1

V om−2
, m � r

−q

(m+2)2−ar+qV om+2
, m > r

. (13)

For the odd-function coefficients, denoting the odd characteristic values as br , we have

Even order Odd order
Bm (r,q) = Bem = Bem−2Wem−2, Bm (r,q) = Bom = Bom−2Wom−2, (14)

for m > 2, with the base cases

Be0 = We0 = 0, Be2 = 1, Bo1 = 1, We2 = −4 + br

2
, Wo1 = 1 + br − 1

q
, Be∞ = 0, Bo∞ = 0, (15)

and the recursion relations for m > 2,

Wem =
⎧⎨
⎩

br−m2

q
+ −1

Wem−2
, m � r

−q

(m+2)2−br+qWem+2
, m > r

, Wom =
⎧⎨
⎩

br−m2

q
− 1

Wom−2
, m � r

−q

(m+2)2−br+qWom+2
, m > r

. (16)
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B. Radial functions

Again following Alhargan [21,22], we find the radial functions as expansions in products of Bessel functions, in terms of the
same coefficients as we found in the angular case. These expansions take the form

Jer (q,μ) = σr (−1)
r−p

2

Ar (r,q)

∞∑
m=0

(−1)mA2m+p(r,q)
[
Jm− r−p

2
(e−μ√

q)Jm+ r+p

2
(eμ√

q) + Jm+ r+p

2
(e−μ√

q)Jm− r−p

2
(eμ√

q)
]
,

J or (q,μ) = (−1)
r−p

2

Br (r,q)

∞∑
m=0

(−1)mB2m+p(r,q)
[
Jm− r−p

2
(e−μ√

q)Jm+ r+p

2
(eμ√

q) − Jm+ r+p

2
(e−μ√

q)Jm− r−p

2
(eμ√

q)
]
,

Y er (q,μ) = σr (−1)
r−p

2

Ar (r,q)

∞∑
m=0

(−1)mA2m+p(r,q)
[
Jm− r−p

2
(e−μ√

q)Ym+ r+p

2
(eμ√

q) + Jm+ r+p

2
(e−μ√

q)Ym− r−p

2
(eμ√

q)
]
,

Yor (q,μ) = (−1)
r−p

2

Br (r,q)

∞∑
m=0

(−1)mB2m+p(r,q)
[
Jm− r−p

2
(e−μ√

q)Ym+ r+p

2
(eμ√

q) − Jm+ r+p

2
(e−μ√

q)Ym− r−p

2
(eμ√

q)
]
,

(17)

Ier (q,μ) = σr

Ar (r,q)

∞∑
m=0

A2m+p(r,q)
[
Im− r−p

2
(e−μ√

q)Im+ r+p

2
(eμ√

q) + Im+ r+p

2
(e−μ√

q)Im− r−p

2
(eμ√

q)
]
,

Ior (q,μ) = 1

Br (r,q)

∞∑
m=0

B2m+p(r,q)
[
Im− r−p

2
(e−μ√

q)Im+ r+p

2
(eμ√

q) − Im+ r+p

2
(e−μ√

q)Im− r−p

2
(eμ√

q)
]
,

Ker (q,μ) = σr (−1)
r−p

2

Ar (r,q)

∞∑
m=0

(−1)mA2m+p(r,q)
[
Im− r−p

2
(e−μ√

q)Km+ r+p

2
(eμ√

q) + (−1)pIm+ r+p

2
(e−μ√

q)Km+ r−p

2
(eμ√

q)
]
,

Kor (q,μ) = (−1)
r−p

2

Br (r,q)

∞∑
m=0

(−1)mB2m+p(r,q)
[
Im− r−p

2
(e−μ√

q)Km+ r+p

2
(eμ√

q) − (−1)pIm+ r+p

2
(e−μ√

q)Km+ r−p

2
(eμ√

q)
]
,

with

p =
{

1 odd r

0 even r
, and σr =

{
1
2 , r = 0
1, r �= 0

. (18)

C. Angular functions for complex argument

For complex arguments, the Fourier series in Eqs. (9) and (10) become numerically ill behaved. This problem does not, however,
affect the Bessel function series used to compute the radial functions. Since the radial functions obey the same differential equation
as the angular functions of imaginary argument (and vice versa), these functions differ only by a normalization factor. We take
advantage of this relationship to write

cer (q,θ ) = cer (q,0)

Jer (q,0)
Jer (q, − iθ ) , ser (q,θ ) = se′

r (q,0)

Jo′
r (q,0)

Jor (q, − iθ ) , (19)

where prime denotes a derivative with respect to the argument. The prefactor ratios in both expressions, which are independent
of argument, serve as “joining factors” to convert the normalizations of the two functions. We therefore use these relationships,
along with our routines for radial functions, to compute the angular functions of complex argument. We also use this approach
any time the magnitude of q is very small, again to avoid numerical instabilities. While we use Eqs. (9) and (10) for the case of
real argument, the corresponding radial function expansions would also work perfectly well, but they are slower to compute.

D. Second-kind angular functions

Although they are not needed in the Casimir calculation, for completeness our code also implements angular functions of the
second kind, again using the approach of Alhargan [21,22]. These functions can be written as

Fer (q,θ ) =
2δ

√
α2+1−p

π(1+α1)

α1
[
1 + ∑∞

m=0
(2m+p)G2m+p(r,q)

α1

]
{

θ
√

α2cer (q,θ ) +
∞∑

m=0

G2m+p (r,q) sin [(2m + p) θ ]

}
, (20)

with

αi =
∞∑

m=0

A2m+p (r,q)i , p =
{

1 odd r

0 even r
, and δ =

{
(−1)(r−p)/2 for Re(q) < 0
1 otherwise

(21)
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for the even functions and

For (q,θ ) =
2δ

√
α2,0

π(2−p+α1,1)

(2 − p + α1,1) + ∑∞
m=0

H2m+p(r,q)
α1,1

{
θ
√

α2,0ser (q,θ ) +
∞∑

m=0

H2m+p (r,q) cos [(2m + p) θ ]

}
, (22)

with

αi,j =
∞∑

m=0

(2m + p)j B2m+p (r,q)i , p =
{

1 odd r

0 even r
, and δ =

{
(−1)(r−2+p)/2 for Re(q) < 0
1 otherwise

(23)

for the odd functions. Similarly to the first-kind case, we compute the even coefficients via

Even order recursion Odd order recursion

Gen (r,q) = Gen = Qen − ρqeAen, Gon (r,q) = Gon = Qon − ρqoAon,
(24)

ρqe = 1

2Ae0

[
(ar − 4) Qe2

q
− Qe4

]
− 2ar

q2
, ρqo = 1

2Ao1

[
(ar − 1 + q) Qo1

q
− Qo3

]
− 1

q
,

with base cases

Qe2nmax = 0, Qo2nmax+1 = 0,
(25)

Qe2nmax−2 = −4nmaxAe2nmax

q
, Qo2nmax−1 = −2 (2nmax + 1) Ao2nmax+1

q
,

and recursion relations

Qen−2 = (ar − n2)Qen − 2nAen

q
− Qen+2, Qon−2 = (ar − n2)Qon − 2nAon

q
− Qon+2. (26)

For the odd coefficients, we have

Even order recursion Odd order recursion

Hen(r,q) = Hen = T en − ρteBen, Hon(r,q) = Hon = T on − ρtoBon,
(27)

ρte = 1

Be2

[
T e2 − brT e0

q

]
, ρto = 1

2Bo1

[
T o3 − (br − 1 − q) T o1

q

]
− 1

q
,

with base cases

T e2nmax = 0, T o2nmax+1 = 0,
(28)

T e2nmax−2 = −4nmaxBe2nmax

q
, T o2nmax−1 = 2 (2nmax + 1) Bo2nmax+1

q
,

and recursion relations

T en−2 = (br − n2)T en + 2nBen

q
− T en+2, T on−2 = (br − n2)T on + 2nBon

q
− T on+2. (29)

E. Implementation details

We note a number of design elements of our code, which serve to enhance its efficiency, convenience, and reliability.
(a) Characteristic values are computed using the built-in functions in MATHEMATICA.
(b) Since the Mathieu functions solve second-order differential equations, it is helpful to have expressions for their first

derivatives with respect to their arguments. We implement these by differentiating the corresponding series expansions term by
term, which we can then simplify using known properties of derivatives of trigonometric and Bessel functions.

(c) The Wronskian relations for the first- and second-kind functions and their first derivatives provide valuable checks on the
numerical calculation.

(d) Quantities that are likely to be needed repeatedly, such as joining factors and coefficients in recurrence relations, are
cached.

(e) For the case of radial functions with real arguments, stable recurrence relations are used to efficiently compute Bessel
functions for the entire range of orders needed.
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IV. CASIMIR CALCULATION AND DISCUSSION

As shown in Ref. [6], the energy per unit length of a perfectly reflecting strip opposite a perfectly reflecting plane is given in
terms of the angular Mathieu functions cer and ser by

E
�cL

= 1

4π

∫ ∞

0
pdp ln det

[
1χχ ′

rr ′ − T χ
r T P

∫ ∞

−∞
du e−2pH cosh u

(
cer

ser

)(
q,

π

2
+ iu + ϕ

)(
cer ′

ser ′

)(
q,

π

2
− iu + ϕ

)]
, (30)

where χ and χ ′ denote the odd and even scattering channels, corresponding to cer and ser , respectively, H is the height of the
center of strip above the plane, q = − d2p2

4 , ϕ is the angle of the strip relative to the plane, and the determinant runs over the r

and r ′ indices and both parity channels. The scattering T matrix for the plane is given by T P = ±1 for Neumann and Dirichlet
boundary conditions, respectively, while for an elliptic cylinder of radius μ0, we have T e,o

rkzr ′k′
z
= 2πδ(kz − k′

z)δrr ′T e,o
r , with

T e
r = − Ier (−q,μ0)

Ker (−q,μ0)
, T o

r = − Ior (−q,μ0)

Kor (−q,μ0)
(Dirichlet)

(31)

T e
r = − Ie′

r (−q,μ0)

Ke′
r (−q,μ0)

, T o
r = − Io′

r (−q,μ0)

Ko′
r (−q,μ0)

(Neumann)

for our two boundary conditions, where prime indicates a derivative with respect to μ. To obtain the Casimir energy for
electromagnetism with perfect conductors, we take the sum of this result for Dirichlet and Neumann boundary conditions (with
the same boundary condition on both surfaces). The case of the strip is then given by taking μ0 = 0 in these results. We will
consider ϕ = 0, so that the strip is parallel to the plane. In that case, we can simplify Eq. (30) via the identities

cer (q,θ ) =
{

(−1)
r
2 cer

(−q,π
2 − θ

)
for r even

(−1)
r−1

2 ser

(−q,π
2 − θ

)
for r odd

,

(32)

ser (q,θ ) =
{

(−1)
r
2 −1ser

(−q,π
2 − θ

)
for r even

(−1)
r−1

2 cer

(−q,π
2 − θ

)
for r odd

,

so that for ϕ = 0, we require the angular Mathieu functions
at purely imaginary argument. For ϕ = 0, the integrand in
Eq. (30) is also a symmetric or antisymmetric function of
u, and the determinant decomposes into two independent
sectors, with one consisting of the modes for which the
parity of the elliptic functions matches the parity of r and
the other consisting of the modes for which the parities are
opposite.

Results of the calculation for a strip parallel to a plane are
shown in Fig. 1. We show the ratio of the full energy to the
proximity force approximation, where the latter is given by

Epfa

�cL
= − π2

720

2d

H 3
. (33)

We also show a polynomial fit to this quantity, which shows
good agreement with the expansion of Eq. (1),

E
Epfa

= 1 − 2βH

π2

720 2d
− γH 2

π2

720 (2d)2
+ · · · , (34)

from which we obtain β = 0.00092 and γ = −0.0040. These
dimensionless quantities give edge corrections to the proximity
force result: β captures the effect of each of the two edges
individually, while γ gives an interaction energy due to the
combined effect of the two edges. The result for β agrees
with results obtained at lower precision in the case of a half
plane parallel to a plane [7–9,23]. The strip allows for better
numerical precision than the half plane because the leading
proximity force term is an energy per unit length rather than
an energy per unit area. (Of course, the subleading correction

γ is not present in the half-plane case, since it has only a single
edge.)

We can gain some qualitative insight into these corrections
by considering the effects of edges on the fluctuation modes
that contribute to the Casimir energy. The positive sign of
β indicates that the edge boundary condition suppresses
fluctuations that would otherwise contribute to the attractive
Casimir interaction (though this effect arises only from terms
beyond the first reflection [7,23,24]), while the negative sign

0.5 1.0 1.5 2.0

H

d
1.00

1.02

1.04

1.06

1.08

PFA

FIG. 1. (Color online) Ratio of the exact Casimir energy to the
proximity force approximation for a perfectly conducting strip of
width 2d parallel to a perfectly conducting plane, as a function of
separation H . The line represents a polynomial fit, from which we
extract the coefficients in Eq. (1).
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of γ indicates an enhancement of the Casimir energy due to
the effect of one edge on the other: Some of the modes whose
contribution would be suppressed by one edge have already
been suppressed by the other edge, and so the combined effect
of two edges reduces the Casimir energy by less than the
sum of their individual contributions. We note that Eq. (30)
is meromorphic around H = 0, so we cannot have a term
proportional to 1/ ln(H/d) in Eq. (1). In contrast, for an
expansion at large H , the essential singularity in the integrand
of Eq. (30) makes it possible for such inverse logarithms

to appear, and indeed the leading term at large distances is
proportional to 1/[H 2 ln(H/d)] in that case [26].

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (NSF) through Grant No. PHY-1213456. N.G.
thanks G. Bimonte, T. Emig, R. L. Jaffe, M. Kardar, and M.
Krüger for helpful conversations.

[1] O. Kenneth and I. Klich, Phys. Rev. Lett. 97, 160401
(2006).

[2] A. Lambrecht, P. A. Maia Neto, and S. Reynaud, New J. Phys.
8, 243 (2006).

[3] A. Bulgac, P. Magierski, and A. Wirzba, Phys. Rev. D 73, 025007
(2006).

[4] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett.
99, 170403 (2007).

[5] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar,
Phys. Rev. D 80, 085021 (2009).

[6] N. Graham, Phys. Rev. D 87, 105004 (2013).
[7] M. F. Maghrebi, S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe,

and M. Kardar, Proc. Nat. Acad. Sci. 108, 6867 (2011).
[8] N. Graham, A. Shpunt, T. Emig, S. J. Rahi, R. L. Jaffe, and

M. Kardar, Phys. Rev. D 81, 061701 (2010).
[9] N. Graham, A. Shpunt, T. Emig, S. J. Rahi, R. L. Jaffe, and

M. Kardar, Phys. Rev. D 83, 125007 (2011).
[10] H. Gies and K. Klingmuller, Phys. Rev. Lett. 97, 220405

(2006).
[11] A. Weber and H. Gies, Phys. Rev. D 80, 065033 (2009).
[12] D. Kabat, D. Karabali, and V. P. Nair, Phys. Rev. D 81, 125013

(2010).
[13] D. Kabat, D. Karabali, and V. P. Nair, Phys. Rev. D 82, 025014

(2010).

[14] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys. Rev.
D 84, 105031 (2011).

[15] G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar, Europhys.
Lett. 97, 50001 (2012).

[16] L. P. Teo, Phys. Rev. D 88, 045019 (2013).
[17] N. W. McLachlan, Theory and Application of Mathieu Functions

(Clarendon, Oxford, 1951).
[18] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions With Formulas, Graphs, and Mathematical Tables
(U.S. GPO, Washington, D.C., 1972).

[19] P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953).

[20] W. Magnus, F. Oberhettinger, and F. G. Tricomi, Bateman
Manuscript Project, Higher Transcendental Functions, Vol. 1,
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