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Universal entanglement decay of photonic-orbital-angular-momentum
qubit states in atmospheric turbulence
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We consider the propagation of two photonic qubits, initially maximally entangled in their orbital angular
momenta (OAM), across a weakly turbulent atmosphere. By introducing the phase correlation length of an OAM
beam, we show that the photonic entanglement exhibits a universal exponential decay.
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I. INTRODUCTION

The ability of photons carrying orbital angular momentum
(OAM) to encode quantum states in a high-dimensional
Hilbert space makes them potentially very useful for quan-
tum information purposes [1–8], among which free space
quantum communication is one of the most promising future
applications. Proof-of-principle experiments have shown a
significant increase of the classical channel capacity using
OAM multiplexing [9]. However, before the realization of
(quantum) OAM multiplexing in free space, reliable transport
of OAM photons through atmospheric turbulence has to be
accomplished [10].

The transmission of photons carrying OAM across tur-
bulence is challenging because the intrinsic refractive index
fluctuations associated with turbulence distort the photons’
wave fronts [11] that encode quantum information, resulting
in a deterioration thereof. The first successful quantum key dis-
tribution protocol with OAM photons was demonstrated [12]
over a distance of only 210 m—much shorter than over
100-km-long free space links which were attained for quantum
information transmission with polarized photons [13,14]. In
recent years, experimental [15–19] and theoretical [20–25]
efforts have been dedicated to clarifying and to partially
mitigating [18,19,25] the impact of turbulence on single and
entangled OAM photons. Despite some progress, there are
still fundamental open issues concerning the behavior of OAM
photons in turbulence, one of them being the description of the
OAM photons’ entanglement evolution.

A crucial difficulty for the quantitative description of the lat-
ter stems from the fact that optical inhomogeneities induced by
turbulence induce coupling of the initially excited, finite num-
ber of OAM modes to all modes of the infinite-dimensional
OAM space. Therefore, theoretical methods to treat the open
system entanglement evolution of finite-dimensional quantum
systems [26,27] are not directly applicable. Indeed, to deal with
a necessarily finite-dimensional output state upon detection,
we need to truncate the Hilbert space, which unavoidably leads
to a loss of norm. Therefore, it is more appropriate to use the
tools for entanglement characterization of decaying states [28].

In this contribution we report on some insights on the
entanglement evolution in weak turbulence, whose impact on
the propagating beam is reduced to phase aberrations. Thereby

*Present address: Fraunhofer Institute for Applied Optics and Pre-
cision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany.

we neglect the turbulence-caused intensity scintillations as
well as the beam’s diffraction [29]. Note that diffraction does
not influence the OAM of a beam, but leads to a change of the
beam width along the propagation path. Since the single phase
screen model used here assumes a constant beam width it can
only be used if diffraction effects are small. In the optical
domain and for w0 � 0.1 m diffraction can be ignored for
distances L of about 1 km [29]. As it turns out, a model of
weakly turbulent atmosphere is valid within the same range
of distances L (see Sec. II). Specifically we consider the
example of the simplest decaying OAM state—a maximally
entangled OAM qubit, that is, a twin-photon state (in short,
“biphoton”) whose wave front represents a superposition of
two spatial Laguerre-Gaussian (LG) modes. We introduce the
phase correlation length ξ (l)—an inherent property of an
LG beam with angular momentum l, reflecting its complex
spatial structure—and show that the entanglement exhibits a
universal exponential decay as a function of ξ (l)/r0, vanishing
at ξ (l)/r0 ≈ 1, where r0 is the turbulence’s correlation length
defining the characteristic scale of the turbulent “granularity”
over a given propagation distance L, also called the Fried
parameter. If ξ (l) � r0, the turbulent atmosphere appears as a
homogeneous medium to the OAM biphoton, and its spatial
entanglement remains high. As r0 approaches ξ (l), the phase
errors become sufficiently large to destroy the wave front
structure, and the entanglement vanishes.

We now proceed as follows. The next section introduces
our model and defines the turbulence map which acts on
the initial photonic OAM state. Using the properties of this
transformation, in Sec. III we derive an analytical expression
for the evolution of the concurrence of the initially maximally
entangled OAM qubit state under weak turbulence. Section IV
concludes the article.

II. MODEL

The setup we have in mind is illustrated in Fig. 1. The
source produces pairs of photons that are maximally entangled
in their OAM, there encoded by LG modes with the opposite
azimuthal quantum number l [8]. We assume that the input LG
modes have a waist w0 (which coincides with the waist of the
Gaussian TEM00 mode [30]), a radial quantum number p0 = 0,
and azimuthal quantum numbers l0 and −l0. The generated
Bell state thus reads

|�0〉 = 1√
2

(|l0,−l0〉 + eiγ |−l0,l0〉), (1)

where γ is a relative phase.
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FIG. 1. (Color online) Sketch of the setup. A source produces
pairs of OAM-entangled qubits whose wave fronts get deteriorated
as they propagate along the (horizontal) z axis, through independent
layers of a weakly turbulent atmosphere, modeled as random phase
screens. The characteristic scale of the screens’ phase patterns is
defined by the Fried parameter r0, which in turn depends on the
distance L from the source to the detector [see Eq. (4)].

The entangled OAM photons are then sent along the (hori-
zontal) z axis through independent weak turbulences modeled
as phase screens [11,20,21]. We note that the validity of the
phase screen model to describe entanglement transport through
turbulence was experimentally tested in Ref. [15], where a
turbulence cell was used as a realistic emulation of an about
2-km-thick atmospheric layer seen by one of the entangled
photons. For free space links exceeding a few kilometers,
a single phase screen model becomes invalid because it
ignores important wave propagation and turbulence-induced
effects, such as diffraction and intensity scintillations [31]. The
assumption of independent turbulence experienced by both
photons [20–22] is a corollary of the Markov approximation
with respect to the refractive index spatial correlation function
along the z direction, which can be rigorously justified for the
optical wave propagation in the atmosphere [31].

Each phase screen introduces random phase errors into
the beam’s transverse profile which lead to the entanglement
decay of the output quantum state. Our fundamental quantity
of interest is the output density operator ρ of the biphoton
state upon transmission through the weakly turbulent media of
thickness z = |L| (for each photon).

It is useful to recall the properties of the linear map � that
represents the action of an ensemble-averaged phase screen
on a single photon density operator [25]. � relates the input
and the output density matrices of a single photon in the OAM
basis, σ (0) and σ , respectively, through the equation

σpl,p′l′ =
∑

p0l0,p
′
0l

′
0

�
p0l0,p

′
0l

′
0

pl,p′l′ σ
(0)
p0l0,p

′
0l

′
0

(2)

and includes the propagation distance implicitly, through its
dependence on the Fried parameter [see Eqs. (4) and (5)

below]. The matrix elements �
p0l0,p

′
0l

′
0

pl,p′l′ have the following
meaning: The ones with coinciding indices p = p0, l = l0,
p′ = p′

0, and l′ = l′0 describe the mapping of the initially popu-
lated OAM modes onto themselves (the “survival amplitude”);
all other matrix elements control the crosstalk to distinct modes
(at least one of the indices changes its value).

By generalizing the above description to biphotons, it is
easy to show that the two-photon output state ρ is related to

the input state ρ(0) = |�0〉〈�0| by the formula

ρ = (�1 ⊗ �2)ρ(0), (3)

where �i (i = 1,2) is a linear transformation representing
the phase screens seen by either photon, respectively. In the
following, we assume that the phase screens are characterized
by the same statistical properties, which allows us to write
�1 = �2 = �. This corresponds to the setup where two
photons traverse horizontally equal distances across a uniform
turbulence, which leads to the same transverse correlation
length of turbulence (Fried parameter) [30]

r0 = (
0.423 C2

nk
2L

)−3/5
, (4)

where C2
n is the index-of-refraction structure constant, L is the

propagation distance, and k is the optical wave number.
It should be mentioned that our model can easily be adapted

to an alternative communication protocol—the so-called one-
sided noisy channel—wherein only one of the twin photons is
sent through the atmosphere to a distant party, whereas another
photon is detected locally. Then the output state is obtained
from the input state via the map (1 ⊗ �), where 1 is the identity
operator acting in the Hilbert space of the locally detected
photon. In this scenario entanglement evolution of an arbitrary
bipartite qubit state is determined by that of the maximally
entangled state [32]. Recently, this law has been used to verify
a numerical simulation method of the entanglement decay in
strong turbulence [33].

We now proceed to describe the entanglement evolution un-
der the influence of turbulence, keeping track of the azimuthal
quantum number which encodes quantum information. The
radial quantum number of the output state remains thereby
unobserved and is traced over. The elements of the resulting

transformation, �
l0,l

′
0

l,l′ ≡ ∑
p �

0l0,0l′0
pl,pl′ , read

�
l0,l

′
0

l,±l = δl0−l′0,l∓l

2π

∫ ∞

0
drR0l0 (r)R∗

0l′0
(r)r

∫ 2π

0
dϑ

× e−iϑ[l±l−(l0+l′0)]/2e−0.5Dφ (2r| sin(ϑ/2)|), (5)

where R0l0 (r) is the radial part of the input LG beam at
z = 0, with radial and azimuthal quantum numbers 0 and l0,
respectively [34]. Dφ(r) = 6.88(r/r0)5/3 is the phase structure
function of the Kolmogorov model of turbulence [30].

III. ENTANGLEMENT EVOLUTION IN TURBULENCE

Due to the crosstalk as described by Eq. (2), the ma-
trix elements of the output state spread over the entire—
infinite-dimensional—OAM basis. To deal with a finite-
dimensional Hilbert space, the transmitted state is post-
selected [17,20] in the basis of the injected qubit state,
{|−l0,−l0〉,|−l0,l0〉,|l0,−l0〉,|l0,l0〉}. Since such postselection
entails the decay of the output state, it needs to be renor-
malized by its trace [28] before we can quantify the output
entanglement—here in terms of concurrence [35].

To evaluate the output entanglement in the truncated Hilbert
space, we make use of the inversion symmetry,

�
l0,l

′
0

l,l′ = �
−l0,−l′0
−l,−l′ , (6)
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of the linear map (5), which stems from the isotropy of
turbulence along horizontal paths [30,36]. Consequently, there
are only two distinct nonzero matrix elements which fully
determine the map �:

a = �
l0,l0
l0,l0

= �
−l0,−l0
−l0,−l0

= �
−l0,l0
−l0,l0

= �
l0,−l0
l0,−l0

, (7)

b = �
−l0,−l0
l0,l0

= �
l0,l0
−l0,−l0

, (8)

and which we recognize as the survival (a) and crosstalk (b)
amplitudes, respectively [see our discussion following Eq. (2)].
By virtue of Eqs. (3)–(8), the biphoton output state can now be
analytically parametrized in terms of a and b, and evaluated
numerically, for arbitrary l0.

Wootters’ formula for the concurrence of a mixed bipartite
qubit state [35] then immediately yields an analytical expres-
sion for the output entanglement:

C(ρ) = max

[
0,

(1 − 2ã)

(1 + ã)2

]
, (9)

where ã ≡ b/a. It follows that C(ρ) = 1 for ã = 0, and
C(ρ) = 0 for ã � 1/2. Moreover, from the definitions (7)
and (8), ã = 0 implies b = 0 and a = 1, which corresponds to
r0 → ∞, that is, to the absence of turbulence. For finite values
of the Fried parameter r0, there emerges a nonzero crosstalk
(b > 0), which is accompanied by a decrease of the survival
amplitude (a < 1) and results in a monotonic growth of ã until
ã = 1/2 (i.e., a steady decrease of C(ρ) to zero).

We now want to gain some insight into the physical
mechanism governing the entanglement evolution of OAM
biphotons in turbulence. Entangled qubits become more robust
with increasing l0 [20] because their spatial phase structure gets
finer—as the OAM beam widens, its phase front oscillates
more rapidly with increasing l0 [see Fig. 2 (bottom row of
the left panel)]. As a result, for fixed turbulence correlation
length r0, OAM-entangled qubits whose wave fronts have
a shorter characteristic length than r0 “see” turbulence as a
homogeneous medium which does not affect their quantum
entanglement. When we plot C(ρ) against the ratio w0/r0, this
property of the wave fronts of OAM beams does implicitly

come into play as the increased longevity of the concurrence
for larger l0, since w0 is l0 independent [20–22]. However, this
effect can be made strikingly obvious by a proper rescaling.

To this end, we introduce [38] the phase correlation
length ξ (l0) which we define as the average distance between
the points in the LG beam cross-section that have a phase
difference of π/2. The idea comes from the basic fact that two
monochromatic waves having a phase difference �π/2 are
“in phase” and interfere constructively. From the azimuthal
phase dependence of OAM beams, proportional to eil0ϑ , it is
easy to see that the angle between two such points is equal
to α = π/2|l0| [see Fig. 2(right panel)]. Now, choose a point
at a distance r from the origin. Then the distance s(r) from
this point to the line along which the phase differs by π/2
from the phase of the departure point coincides with the leg of
the right triangle shown in Fig. 2 (right panel) and is given by
s(r) = r sin α = r sin(π/2|l0|). Also note that such a triangle
cannot be constructed for |l0| = 1, which will manifest in a
specific concurrence evolution for this case (see below).

Finally, ξ (l0) is defined as the average of s, or ξ (l0) =
〈r〉 sin(π/2|l0|), with the intensity distribution of the initial
beam as the weighting function:

ξ (l0) =
∫ ∞

0
|R0l0 (r)|2s(r)rdr. (10)

The integral in Eq. (10) can be evaluated exactly [39], yielding
our final expression for the phase correlation length:

ξ (l0) = sin

(
π

2|l0|
)

w0√
2

�(|l0| + 3/2)

�(|l0| + 1)
, (11)

where �(x) is the Gamma function. For |l0| > 2, the function
ξ (l0) is monotonically decreasing with |l0|, which is consistent
with the faster phase oscillations of LG beams for larger |l0|.

In Fig. 3 we plot our numerical results for the concurrence
C(ρ) [Eq. (9)] as a function of the ratio x ≡ ξ (l0)/r0 and for
different values of l0: Apart from a finite-size effect for |l0| = 1,
the output state entanglement for all variable-l0 initial states
collapses onto one universal curve, C(ρ) ≈ exp(−4.16x3.24),
where the exponential fit is obtained from the x dependence
of C(ρ) for l0 � 50, when all curves become indistinguishable

FIG. 2. (Color online) Illustration of the complex spatial structure of LG (or vortex) beams carrying nonvanishing OAM. Top left panel
(from left to right): Inhomogeneous intensity profile of LG beams for l0 = 1,2,3. Note the widening of the beam with increasing l0. Bottom left
panel (from left to right): Augmented phase oscillations with increasing l0, for l0 = 1,2,3, respectively. Right panel: Sketch for the calculation
of the phase correlation length ξ (l). The phase variation of a LG beam with l0 = 4 is encoded in color with a step width of π/4. The length
s(r) is defined as the shortest distance from a point (here, chosen on the x axis), located at a distance r from the origin, to the line of points
with a phase difference of π/2.
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FIG. 3. (Color online) Output state concurrence (3) as a function
of the ratio ξ (l0)/r0 for different l0. Concurrences for l0 > 1
essentially collapse onto a universal, exponential decay law which
is best fitted by g(x) = exp(−4.16x3.24).

for different l0 values. It can furthermore be shown that in
the case of the one-sided channel the concurrence is given
by the formula max[0,(1 − ã)/(1 + ã)] and also exhibits a
universal decay (fitted by an exponential function which differs
from the one in Fig. 3). The thus demonstrated universality of
OAM entanglement decay in turbulence is the key result of our
present contribution. It shows that the entanglement evolution
of OAM qubit states in turbulence is governed by the sole
parameter ξ (l0)/r0. It should be mentioned that a different

rescaling was done in Ref. [11], where only the broadening,
but not the phase oscillations, of the LG beam with increasing
l0 was taken into account. Therefore, such rescaling cannot
unveil the here uncovered universality of the concurrence
decay. Using Fig. 3 together with the definition (11), and
recalling the properties of the Gamma function [40], we
obtain an asymptotic (l0 → ∞) scaling law, L ∼ |l0|5/6, for
the dependence of the propagation distance L (over which
the concurrence remains finite) on l0. This provides a rigorous
justification of an earlier, phenomenological result of Ref. [17].

IV. CONCLUSION

To conclude, we introduced the phase correlation length
ξ (l) of OAM beams, which fully determines the entanglement
evolution of OAM qubit states in weak turbulence. Since
ξ (l) reflects the complex spatial structure of OAM beams
and is independent of the turbulence model, it is suggestive
to apply this quantity to characterize entanglement evolution
in strong turbulence. A recent successful communication of
OAM superpositions across 3 km of strong turbulence [41]
will potentially render long-distance OAM entanglement
distribution possible. Another direction of future work will
be to see whether a generalization of the phase correlation
length to high dimensions—as a weighted sum of partial phase
correlation lengths of individual OAM components—can be
useful for an improved understanding of the entanglement
evolution of OAM qudit states in turbulence and/or for the
identification of high-dimensional and robust entangled OAM
states [24].
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