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Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
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We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on
the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing
adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random
phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows
for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ− orthogonal polarization
geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated
by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable
parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ

gate in < 10 μs with error probability on the order of 10−3.
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I. INTRODUCTION

A primary obstacle to scalable quantum computation is
the requirement that qubits must interact strongly with each
other to produce entangling gates and conditional logic,
while interacting weakly with their environment to minimize
decoherence. Neutral atom qubits are naturally well isolated
from their environments, but their interactions with each other
tend to be similarly weak. As shown in the seminal work of
Jaksch et al. [1], one way around this difficulty is to couple
ground-state neutral atoms to highly excited Rydberg states,
producing strong dipole-dipole interactions on demand while
preserving the robustness properties in between operations.
In particular, the Rydberg blockade [2] provides a direct
mechanism for producing entangling interactions between
individually trapped atoms [3–5].

There have been numerous proposals to use the Rydberg
blockade as a mechanism for implementing two-qubit quantum
logic gates [6], and experimental progress in producing a
controlled-NOT (CNOT) gate has been promising [4,7]. In the
standard approach of fast gates, one employs short resonant
pulses, in conjunction with the Rydberg blockade to induce the
requisite entangling interaction. However, such a mechanism
is not robust to thermal motion of the atoms, which imparts
random phases on the two-atom state that vary from shot
to shot. Indeed, such random phases are impediments to the
direct observation of entanglement in the signature two-atom
Rydberg blockade [3]. More generally, the decoherence arising
from coupling internal (electronic) and external (motional)
degrees of freedom is a dominant source of error that limits
the implementation of high-fidelity quantum gates [8].

To address this issue we propose a method of implementing
entangling gates that is robust to errors caused by atomic
motion by dressing the ground states via the Rydberg blockade
[9–13], and evolving the system adiabatically. The original
proposal of Jaksch et al. [1] examined adiabatic evolution
as a mechanism for relaxing the requirement of single atom
addressability, and only did so for atoms cooled to the ground
state of motion. Subsequent proposals have suggested various
modifications, but most either ignore thermal motion in order

to focus on electronic effects [14,15] or require experimental
parameters that are challenging to achieve [16]. Our motivation
is to use adiabaticity to substantially improve the robustness
to errors caused by atomic motion, and thereby achieve
high-fidelity operation with current technology. Adiabatic
evolution, a well-known strategy for suppressing certain error
mechanisms, is a paradigm for implementation of a quantum
algorithm [17], and we have previously studied this in the
context of the Rydberg blockade [18]. Similar robustness
was recently studied in adiabatic passage of atoms to a
doubly excited Rydberg state [19], which might be used as
a mechanism to generate quantum logic gates.

Adiabatic evolution does not protect against all types of
decoherence, however, and the motional errors we consider
are not strongly suppressed by adiabaticity alone. In fact,
motional errors have been among the main fidelity-limiting
factors in recent attempts to produce an adiabatic gate [20].
The protocol we consider is compatible with a “Doppler-free”
laser configuration, in which the qubits are excited by two
counterpropagating beams rather than just a single beam.
Such a configuration does not directly reduce the terms in the
Hamiltonian that lead to motional decoherence, but it changes
their form to one more amenable to adiabatic suppression.
Taken together, adiabatic dressing and a Doppler-free config-
uration produce more than an order-of-magnitude reduction of
motional decoherence that neither change achieves on its own.

The remainder of this article is organized as follows. In Sec.
II we describe the dressed Rydberg blockade and describe
a protocol to perform a controlled-Z gate adiabatically via
this interaction. In Sec. III we examine the errors arising
from atomic motion, including both single-qubit errors due
to thermal motion and two-qubit errors due to an imperfect
Rydberg blockade. Among these errors, we identify the
Doppler shift as a primary obstacle to achieving high gate
fidelities, and show how it can be suppressed using a Doppler-
free configuration with counterpropagating lasers. In Sec. IV,
we numerically simulate the performance of such a gate
with realistic experimental parameters and find that error
probabilities on the order of 10−3 should be possible. Finally,
we offer some concluding remarks in Sec. V.
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II. IMPLEMENTING A CZ GATE

A. The dressed-blockade interaction

For concreteness, we consider qubits encoded in single
133Cs atoms, individually trapped in tightly focused optical
tweezers, with a typical separation of 5–10 microns (see
Fig. 1). Qubits are encoded in the magnetically insensi-
tive “clock” states, |0〉 ≡ |6S1/2; F = 4,MF = 0〉 and |1〉 ≡
|6S1/2; F = 3,MF = 0〉. We consider direct excitation to a
high-lying Rydberg level, |r〉 ≡ |84P3/2; MJ 〉 by a single
exciting laser at λL ≈ 319 nm in the absence of the trap
which is turned off during the duration of the interaction
so the atoms undergo ballistic motion [5]. In the absence
of the dipole-dipole interaction, each atom (labeled i = a,b)
interacts with a laser propagating on the interatomic z axis.
The Hamiltonian individually governing the dynamics of the
two atoms is (in the two-level, rotating wave approximation,
� = 1),

Hi = p2
i

2m
− �|r〉i〈r| + �

2
(eikLzi |r〉i〈0| + e−ikLzi |0〉i〈r|). (1)

where � is the Rabi frequency and � = ωL − ωA is the
detuning. When including the dipole-dipole interaction of
atoms in the Rydberg states, the two-atom Hamiltonian takes
the form,

H = Ha ⊗ 1 + 1 ⊗ Hb + Vdd (zb − za)|rr〉〈rr|, (2)

where Vdd (z) is the dipole-dipole potential for two atoms
excited to the Rydberg state. This form of the interaction
energy is approximately correct for atoms separated by a large
enough distance such that the interaction is perturbative when
compared to the splitting of the atomic Rydberg levels (e.g.,
in the van der Waals regime). For more closely spaced atoms,
the electrostatic forces will strongly mix many atomic orbitals
into molecular-type orbitals, so that the double excitation is no
longer of the form |rr〉〈rr|, for a single Rydberg level [21].
Nevertheless, as long as the blockade is strong, we can obtain

the essential physics by considering only one doubly excited
state with a given dipole-dipole potential.

The position-dependent phases exp(±ikLzi) associated
with photon recoil can be removed from the Hamiltonian by
moving to a frame where a Rydberg excited atom is moving
with a velocity v = −kL/m with respect to the laboratory
frame, yielding

Hi ⇒ p2
i

2m
−

(
� − kLpi

m

)
|r〉i〈r| + �

2
(|r〉i〈0| + |0〉i〈r|).

(3)

Here we have absorbed the constant recoil energy into the
standard definition of the detuning, � → � − k2

L/2m, and see
explicitly the Doppler shift, kLpi/m. The single-atom laser-
induced light shift (LS) on the ground state at zero momentum
is �E

(1)
LS = 1

2 (−� + sgn(�)
√

�2 + �2).
As the interaction is only a function of the relative atomic

distance, it is useful to express the Hamiltonian in terms
of the center-of-mass Pc.m. = pa + pb and relative prel =
(pb − pa)/2 momentum coordinates. In addition, the laser
field only couples the logical state |00〉 to a symmetric
superposition of one excited- and one ground-state atom.
Defining the bright and dark states of this two-atom system,
|B〉 ≡ (|r0〉 + |0r〉)/√2 and |D〉 ≡ (|r0〉 − |0r〉)/√2, Eq. (2)
can be rewritten as

H ≈ H0 + H1,

H0 = −�(|B〉〈B| + |D〉〈D|) − (2� − Vdd (z̄))|rr〉〈rr|

+
√

2�

2
(|B〉〈00| + |00〉〈B| + |rr〉〈B| + |B〉〈rr|),

H1 = T + Vgrad + VDop. (4)

Written in this form, H0 is the “frozen atom” model including
only the internal state dynamics, that show the usual

√
2� Rabi

flopping between the double-ground |00〉, single-Rydberg
bright |B〉, and double Rydberg |rr〉 states. The blockade
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FIG. 1. (Color online) (a) Schematic for the CPHASE gate. Two cesium atoms are trapped and cooled in dipole traps, several μm apart.
During the CPHASE gate, the trapping lasers are turned off and the atoms are illuminated by a 319-nm Rydberg laser. A bias magnetic field
ensures that the laser’s propagation axis coincides with the atomic quantization axis. (b) In each atom, the logical-|0〉 state is coupled to a
|84P3/2; MJ 〉 Rydberg state. The coupling laser has Rabi rate � and detuning from atomic resonance �0, with a momentum-dependent Doppler
shift δD ≡ klp/m. (c) In the two-atom basis, |00〉 is coupled to the bright state |B〉, again with base detuning �0 and Doppler shift δD . Excitation
to |rr〉 is blockaded by the dipole-dipole interaction Vdd . Atomic motion further couples |B〉 to a dark state |D〉, outside the ideal blockade
subspace.
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energy is taken at the mean atomic separation z̄. H1 accounts
for the effects of atomic motion according to

T ≡ P 2
c.m.

4m
+ p2

rel

m
,

Vgrad ≡ dVdd

dz

∣∣∣∣
z̄

(z − z̄) |rr〉〈rr|, and,

VDop ≡ kLPc.m.

2m
(|B〉〈B| + |D〉〈D| + 2|rr〉〈rr|)

−kLprel

m
(|B〉〈D| + |D〉〈B|). (5)

T is the kinetic energy; this term does not entangle internal
and external degrees of freedom and thus is unimportant
in the perturbation to the logic gate. Vgrad accounts for the
interatomic forces due to the local gradient of the dipole-dipole
potential for the doubly excited Rydberg state and results
from linearizing Vdd about the point z = z̄. VDop describes
the effect of the Doppler shift. This includes a term diagonal
in the {|B〉,|D〉} basis that depends on the center-of-mass
momentum. The off-diagonal terms in VDop account for the
coupling between bright and dark states due to the relative
motion of the atoms, familiar in studies of coherent population
trapping [22]. This term leads to random phases induced by
thermal motion that cause errors and reduce the entangling
action of the interaction.

The eigenstates of H0 are completely decoupled from the
motional degrees of freedom and define the adiabatic basis.
The problem can be simply diagonalized; the general case
has been studied in [10]. In a strongly blockaded regime,
|Vdd (z̄)| 
 |�|,�, excitation to the doubly excited state |rr〉 is
suppressed by a factor of order (Vdd )2/(�2 + �2). The ground
state |00〉 and the entangled bright state |B〉 form an effective
two-level system, and coupling to |rr〉 can be treated as a
perturbation. The two-atom ground-state light-shift energy
is then, approximately, E

(2)
LS ≈ 1

2 (−� + sgn(�)
√

�2 + 2�2)
[10]. The effective atomic interaction strength J is the differ-
ence between the two-atom light shift and that for two atoms
in the absence of the dipole-dipole force, J ≡ E

(2)
LS − 2E

(1)
LS .

For weak dressing, � � |�|, J ≈ −�4/(8�3). As we will
see, however, the regime of the highest fidelity operation
occurs for strong dressing, close to equal superpositions of
ground and bright states. In our previous analysis, we found
J/2π = 500 kHz to be experimentally feasible [18].

B. The CZ gate protocol

Given an interaction of this form, it is straightforward to
produce a two-qubit logic gate in a manner analogous to Jaksch
et al. [1]. Adiabatically increasing the Rydberg laser power
while decreasing the detuning creates the coupling J (t). Con-
currently, the instantaneous ground state of H0 evolves from
the bare |00〉 state into a “dressed” state with some admixture
of Rydberg character, |0̃0〉 = c0|00〉 + cB |B〉 + crr |rr〉, where
the coefficients c0, cB , and cr depend on the time-dependent
parameters �(t) and �(t), as well as the static blockade Vdd (z̄).
Perfect adiabatic state transfer is ensured by satisfying the
adiabatic condition, |〈e| d

dt
H0|0̃0〉| � |E(e) − E(0̃0)|2, where

|e〉 is any one of the instantaneous excited states of H0.

Inverting this ramp returns the system to the bare logical
subspace, with the addition of nontrivial phases. When the
adiabatic condition is satisfied, J (t) is the rate at which
the dressed ground state accumulates the entangling phase.
Integrating the evolution over the total time duration of the
gate, [0,T ], gives a unitary map, U

(2)
LS , that, when restricted to

the two-qubit-logical subspace, takes the diagonal form,

U
(2)
LS =

∑
xy=0,1

e−iφxy |xy〉〈xy|, where,

φ11 = 0; φ10 = φ01 =
∫ T

0
dt E

(1)
LS(t); φ00 =

∫ T

0
dt E

(2)
LS(t).

(6)

Following this with the inverse of local single qubit unitaries,
U

(1)
LS = exp(−iφ10|0〉〈0|), cancels the single-atom light shifts,

yielding the controlled phase gate, UCφJ
,

UCφJ
= (

U
(1)
LS ⊗ U

(1)
LS

)†
U

(2)
LS = e−iφJ |00〉〈00|,

where φJ =
∫ T

0
dt J (t).

(7)

The single-atom light shifts can be compensated by, e.g.,
applying microwave pulses or Raman lasers. The case where
φJ = π is of particular interest, since UCπ ≡ UCZ is the
controlled-Z (CZ) gate, which, up to local unitaries, is equiva-
lent to a controlled-X (CX, or CNOT) gate.

The speed of the gate is set by balancing the requirements
that one adiabatically follows the dressed ground state of
the Hamiltonian during the implementation of the gate
while avoiding the errors that accumulate over time. One
fundamental source of such errors is the finite lifetime of
the Rydberg state 
−1. Decay of |r〉 will not only dephase
the qubits, but with high probability optically pump them into
magnetic sublevels outside the computational space, so we
treat this as loss. This effect can be described as the action of a
non-Hermitian, effective Hamiltonian with an imaginary part
to the detuning: � → � − i
/2. Over the full duration T of a
gate, such loss will reduce the trace of the density matrix. For a
large detuning, the interaction strength scales as J ∼ −�4/�3,
while the decay rate due to absorption of a photon and decay
of the Rydberg state scales as γ ∼ �2
/�2. This implies that
it is not advantageous to remain in the large detuning limit,
but to instead adiabatically sweep to resonance, where the
dressing is maximum, while simultaneously avoiding, to the
maximum degree possible, double excitation of two atoms into
the Rydberg state.

The shape of the laser pulse can strongly influence the speed
at which one can perform the gate while remaining adiabatic;
finding the optimal pulse shape for a given control goal is an
area of active research (see, e.g., [23]). For a sufficiently large
energy gap between the dressed ground and excited states,
the adiabatic time scale can be small compared to the time
scales for decoherence, such as the finite Rydberg lifetime.
In this case, one can remain adiabatic solely by rounding the
edges of an essentially square-topped pulse and have minimal
impact on gate time. In the opposite limit, when the energy
gap is not very large compared to other decoherence rates,
to achieve very high levels of adiabaticity one might require
a more triangular pulse, where laser power increases slowly
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FIG. 2. (Color online) Pulse shape and bare state populations
over the course of a gate with experimentally feasible parameters:
pulse rise time 1 μs, Rabi frequency sweep �/2π = 0 → 3 MHz,
detuning sweep �/2π = 6 → 0 MHz, Rydberg decay rate 
/2π=
3.7 kHz (blackbody limited lifetime), and interatomic separation
r = 5 μm. As the laser turns on and is tuned to resonance, the bare
ground state (red) is dressed by admixing significant bright state
(blue) population, while the blockaded |rr〉 state (green) remains
mostly unpopulated. Adiabaticity and available interaction strength
set comparable constraints in this case, so that the laser pulse shape
that best achieves the desired evolution is neither square-topped nor
triangular.

until half the desired phase is accumulated at which point
the process is reversed. The parameter ranges we explored
fell between these two extremes where adiabaticity was one
of a few limiting factors on the gate’s speed and fidelity. A
sample simulation of the time-dependent Schrödinger equation
in the absence of decoherence is shown in Fig. 2 for the
following parameters: pulse rise time 1 μs, Rabi frequency
sweep �/2π = 0 → 3 MHz, detuning sweep �/2π = 6 →
0 MHz, Rydberg decay rate 
/2π= 3.7 kHz, and interatomic
separation z̄ = 5 μm. These parameters produce a blockade
shift of Vdd (z̄)/2π ≈ −6.4 MHz, giving an interaction strength
of J/2π ≈ 1.8 MHz at full power. For this example, the
populations are highly adiabatic; approximately 99.5% of the
original population returns to the ground state.

III. MOTIONAL ERRORS

The method described produces a high-fideity CPHASE gate
when errors due to motional effects are neglected. To account
for the motional degrees of freedom, we must consider the
near-degenerate manifold of dressed ground states, all with
the same electronic character but different momenta, |0̃0〉 ⊗
|prel,Pc.m.〉. The perturbative effects of motion are described
by H1, Eq. (4). For a gate performed for atoms in free flight,
the finite momentum spread of the atoms leads to two types of
errors corresponding to the two terms in VDop, Eq. (5). First,
the perturbation of the energy,

〈0̃0|VDop|0̃0〉 = kLPc.m.

2m
(|cB |2 + 2|crr |2), (8)

leads to a momentum-dependence of the light shift. This in turn
leads to a momentum-dependence of the phase accumulated
over the course of the gate, which manifests as decoherence
after averaging over motional degrees of freedom. Second,

the off-diagonal terms, 〈D|Vdd |0̃0〉, transfer population from
the ideal dressed ground states into electronic dark states,
potentially causing qubit loss as well as decoherence.

An adiabatic gate is naturally robust against some of
these motional noise sources. Specifically, the dressed ground
manifold is “protected” from the excited dressed states by an
energy gap, �E ≈ √

�2 + �2, and by design, we assume that
the laser intensity is turned on slowly enough to stay adiabatic
given this gap. As long as |〈e|H1|0̃0〉| � |�E|, averaged over
the atomic thermal distribution and for all excited states |e〉,
any time-dependent sweep of the laser parameters that is
adiabatic for H0 will also be adiabatic for H0 + H1. Since H1

does not significantly affect adiabaticity, we can completely
characterize its effects by examining its action on the dressed
ground subspace. By guaranteeing that we remain in a dressed
ground state, we make the gate robust against errors that couple
the system to states outside the desired three-level space,
{|00〉,|B〉,|rr〉}. The off-diagonal bright-dark coupling is such
an error, so its effects are largely suppressed. The Doppler
shift, on the other hand, is not suppressed and remains a major
source of error, even for cold atoms.

To ensure that Doppler errors are also suppressed, we
can make use of a “Doppler-free” configuration. We can
achieve this through the addition of the light shifts from
counterpropagating laser beams on two Rydberg transitions
such that the Doppler shift cancels to first order in p. Consider
counterpropagating lasers with opposite helicity, σ+/σ−, tuned
to address two different sublevels in the Rydberg manifold (see
Fig. 3),

σ+ : |0〉 = |6S1/2,F = 4,mF = 0〉
→ |r1〉 = |84P3/2,mJ = 3/2〉|I = 7/2,mI = −1/2〉,

σ− : |0〉 = |6S1/2,F = 4,mF = 0〉
→ |r2〉 = |84P3/2,mJ = −3/2〉|I = 7/2,mI = +1/2〉.

(9)

Note that we choose a nP3/2 Rydberg multiplet because this
has much larger oscillator strength than the corresponding
nP1/2 mutiplet [24]. We can suppress the coupling of the
mF = 0 ground state to the mJ = ±1/2 sublevels with a
sufficiently large Zeeman shift so that those transitions remain
well off resonance (e.g., B ≈ 10 G). Because the two beams
are differently detuned and orthogonally polarized, we avoid
standing waves in intensity and polarization.

Given the couplings in Eq. (9), we can write the single-atom
Hamiltonian as in Eq. (1),

HA = p2

2m
− �(|r1〉〈r1| + |r2〉〈r2|)

+
(

�1

2
eikLz|r1〉〈0| + �2

2
e−ikLz|r2〉〈0| + H.c.

)
.

Including counterpropagating laser beams doubles the incident
power, so in order to make a fair comparison to a single
laser beam we will assume that �2

1 = �2
2 = �2/2. In such a

configuration, there are coupled and uncoupled excited states
for each of the atoms |r±〉 ≡ (�1|r1〉 ± �2|r2〉)/�. As before,
we can go to a comoving frame, yielding the single-atom
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FIG. 3. (Color online) (a) Schematic for the “Doppler-free” configuration. Two cesium atoms are trapped and cooled in dipole traps, several
μm apart. During the CPHASE gate, the trapping lasers are turned off and the atoms are illuminated by two counterpropagating, 319-nm Rydberg
lasers. The two Rydberg lasers have opposite circular polarizations, so they couple the atoms to orthogonal magnetic sublevels of the Rydberg
manifold. Both Rydberg lasers propagate along the interatomic separation axis; a bias magnetic field ensures that this coincides with the atomic
quantization axis. (b) In each atom, counterpropagating lasers couple the logical-|0〉 state to the mJ = ± 3

2 magnetic sublevels of the |84P3/2〉
Rydberg manifold. The two lasers have the same Rabi rate �/

√
2 and detuning from resonance �0, but experience opposite Doppler shifts,

δD ≡ kLp/m. Zeeman splitting should be made large enough that coupling to mJ = ± 1
2 can be neglected. (c) In the two-atom basis, the states

|00〉, |B+〉, and |r+r+〉 are coupled by the ideal blockade Hamiltonian with no Doppler shifts. Instead, motional noise manifests as a coupling
to the dark states |D−〉 and |B−〉. Because |D−〉 and |B−〉 are outside the ideal adiabatic basis, we can suppress the effects of this coupling
through adiabatic evolution.

Hamiltonian,

HA = p2

2m
− � ( |r+〉〈r+| + |r−〉〈r−| )

+ kL p

m
( |r−〉〈r+| + |r+〉〈r−| ) + �

2
( |r+〉〈0| + |0〉〈r+| ).

(10)

For this configuration, as in Eq. (4), we can split the two-atom
Hamiltonian into H0 for “frozen atoms” and a perturbation H1

due to motion. Thus,

H0 = HA ⊗ 1 + 1 ⊗ HA + Vdd

= −�(0)
∑
i=±

(|Bi〉〈Bi | + |Di〉〈Di |)

+
∑

i,j=±

(
V

ij

dd (z̄) − 2�(0)
)|rirj 〉〈rirj |

+
√

2�

2
(|B+〉〈00| + |r+r+〉〈B+| + H.c.)

+�

2
[(|r−r+〉 + |r+r−〉)〈B−|

+(|r−r+〉 − |r+r−〉)〈D−| + H.c.], (11)

H1 = T + V = P 2
c.m.

4m
+ p2

rel

m
+ kL Pc.m.

2m

(
σ r

x ⊗ 1 + 1 ⊗ σ r
x

)
+ kL prel

m

(
σ r

x ⊗ 1 − 1 ⊗ σ r
x

)
+

∑
i,j=±

dV
ij

dd

dz
(z − z̄)|rirj 〉〈rirj |.

Here, we have defined the Pauli-x operators acting in Ry-
dberg states to be σ (r)

x ≡ |r−〉〈r+| + |r+〉〈r−| as well as the
bright and dark states, |B±〉 ≡ (|r± 0〉 + |0 r±〉) /

√
2 and

|D±〉 ≡ (|r± 0〉 − |0 r±〉) /
√

2. The effect of gradient forces
now depends on the dipole-dipole potential for the different
Rydberg states, V

ij

dd (z) = 〈ri |Vdd (z)|rj 〉.
We see that for the counterpropagating σ+/σ− geometry,

H0 is block diagonal in the electronic degrees of freedom
as well as diagonal in p. The states |00〉, |B+〉, and |r+r+〉
form a block described by our desired three-level blockade
Hamiltonian, while |B−〉, |D−〉, |r+,r−〉, and |r−,r+〉 form a
separate block; the state |D+〉 is completely uncoupled from
all other states. The terms in V arising from the Doppler shift
scale as kLpσ r

x /m, but because this coupling is off-diagonal,
its effect will manifest as a second-order perturbation to the
energies of |B+〉 and |r+r+〉. This counterpropagating laser
configuration can thus be considered as “Doppler free” to first
order. By contrast, with a single-laser beam, 〈B|V |B〉 was
nonzero, leading to contributions to the dressing energy that are
first order in the Doppler shift. To zeroth order in p, our scheme
only involves the states in the 3 × 3 ideal block; the other states
are only included through perturbations. Restricting H0 to this
subspace leaves

H0 = V ++
dd (z)|r+r+〉〈r+r+|

−�(|B+〉〈B+| + 2|r+r+〉〈r+r+|)

+
√

2|�|
2

(|B+〉〈00| + |00〉〈B+|
+|r+r+〉〈B+| + |B+〉〈r+r+|), (12)

a Doppler-free Hamiltonian (see Fig. 3).
The ability to suppress motional error via this Doppler-free

configuration is a key benefit of the adiabatic gate approach.
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For comparison, consider the effects of the same error
Hamiltonians on a gate protocol based on fast pulses [6]. Such
a gate involves the application of resonant lasers on one atom
at a time in a series of unitary evolutions: A π pulse excites a
control qubit in one logical state to the |r〉 state followed by a
2π pulse applied to the target qubit; the control qubit is then
de-excited by another π pulse. During its time T = 2π/� in
the Rydberg state, the control qubit freely evolves, resulting in
a phase accumulation due to the Doppler shift, exp(−2πi

kLp

m�
).

This error is first order in p, as in the single-laser adiabatic
protocol. Using the counterpropagating σ+/σ− laser geometry,
the situation is similar, except that now each atom evolves
according to the Hamiltonian HA, Eq. (10). During the time
T the off-diagonal terms of the Hamiltonian cause the control
qubit to evolve from |r+〉 to cos(2π

kLp

m�
)|r+〉 + sin(2π

kLp

m�
)|r−〉.

Any population transferred to |r−〉 will be uncoupled from
the de-exciting π pulse, and this leads to loss of probability
amplitude that is first order in p. The fast pulse scheme cannot
be made “Doppler free” to first order. In contrast, adiabatic
evolution suppresses population transfer to states outside the
3 × 3 ideal block, so this population loss is greatly reduced; it
only manifests as a second-order energy perturbation, which
leads to errors a factor of ∼ kLp

m�
smaller.

In addition to the effect of finite momentum spread,
recent work has shown that the Rydberg interaction itself can
lead to further two-body decoherence when the blockade is
imperfect [25]. Because the dipole-dipole energy Vdd varies
with interatomic distance, it can produce an interatomic force
when the system is in |rr〉. In our case, the effect of the
force is captured by Vgrad, Eq. (5), which does not change
in the Doppler-free geometry. The perturbation on the dressed
ground state is 〈0̃0|Vgrad|0̃0〉 = |crr |2 dVdd

dz
(z − z̄), leads to a

displacement on the relative momentum of atoms in this state,

δprel =
∫ T

0
|crr (t)|2 dVdd

dz
dt . Higher order perturbations take

the system out of its dressed ground state to some excited
state |e〉; as long as the evolution remains adiabatic, they
are suppressed by an extra order of |〈e|Vgrad|0̃0〉|/�E. For
a near “perfect blockade,” where |Vdd | 
 �,�, and crr ≈ 0,
this force can be neglected entirely.

IV. SIMULATED GATE FIDELITIES

To evaluate the performance of the gate, we use as our
metric the fidelity to produce the desired output given an
input of all the logical states, |ψ0〉 = (uH ⊗ uH ) |00〉, where
uH is the Hadamard gate. This fidelity F = 〈ψtar|ρout|ψtar〉,
where |ψtar〉 is the target state obtained through a combination
of local unitaries and an ideal CZ gate, |ψtar〉 = UCZ|ψ0〉 =
1
2 (|11〉 + |10〉 + |01〉 − |00〉), while ρout is the actual state in
the logical space produced in the presence of the error sources
described above: nonadiabatic dressing, decay of the Rydberg
state, Doppler shift, and dipole-dipole forces for an imperfect
blockade,

ρout = Trext[e
−i|00〉〈00|⊗δprelzUeff(|ψ0〉〈ψ0| ⊗ ρext)U †

eff

×ei|00〉〈00|⊗δprelz]. (13)

Here ρext is the thermal state associated with the “external”
(motional) degrees of freedom, δprel is the total momentum

displacement caused by the dipole force, and Ueff is the
total effective action of the gate including all decoherence
sources other than the dipole-dipole force. It is nonunitary
due to the non-Hermitian Hamiltonian arising from decay
of the Rydberg state and thus we treat the map as generally
non-trace-preserving. We are able to separate out the effects
of the dipole force through a first-order Baker-Campbell-
Hausdorff expansion; since H0 commutes with momentum
displacements, all higher-order terms will scale as the products
of already small error Hamiltonians and can be ignored.
Because Ueff does not couple different logical states, it is
convenient to expand F in the logical basis, giving

F = 1

4

∑
x,y,x ′,y ′

(−1)δxy,00−δx′y′,00 〈xy|ρout|x ′y ′〉, (14)

where |xy〉 are over the two-qubit logical states.
To understand the effects of atomic motion on gate errors,

consider the contribution to the fidelity from each of the matrix
elements in Eq. (14) under the assumption of perfect adiabatic
evolution of the dressed states. When both atoms are in the
logical-1 state, we assume no coupling to the laser, and thus
there is no error contribution from 〈11|ρout|11〉. When both
atoms are in the logical-0 state, both photon scattering and
motional effects come into play. Motional dephasing has no
effect on populations, only photon scattering contributes errors
on the diagonal terms of ρout,

〈0̃0|ρout|0̃0〉 = 1
4e−γ T , (15)

where the factor e−γ T accounts for loss due to the finite lifetime
of the Rydberg state γ T = 


∫ T

0 (|cB(t ′)|2 + 2|crr (t ′)|2)dt ′. On
the other hand, the off-diagonal terms are affected by both loss
and dephasing, leaving

〈11|ρout|0̃0〉 = −1

4
e−γ T /2

∫
dPc.m.dprel e

−iφDop

×〈Pc.m.,prel|ρext|Pc.m.,prel〉 (16)

= −1

4
e−γ T /2

∫
dPc.m.dprel e

−iφDop
e
− P 2

c.m.

4�p2
th e

− p2
rel

�p2
th

4π�p2
th

.

We have assumed a thermal state of motion associated with the
initial trapped atom of mass m with mean vibrational quantum
number n̄, with �p2

th = (n̄ + 1/2)mωosc, and used the fact that
the Doppler effect is diagonal in the momentum representation.
The additional phase, e−iφDop , is due to perturbation of the
dressed ground-state energy arising from the Doppler shift,

φDop(Pc.m.,prel) ≡
∫ T

0

(
〈0̃0(t ′)|VDop|0̃0(t ′)〉

+
∑

e

|〈e|VDop|0̃0(t ′)〉|2
〈0̃0(t ′)|H0|0̃0(t ′)〉 − 〈e|H0|e〉

)
dt ′.

(17)

With a single coupling laser the correction to the light shift,
Eq. (8), is first order in p, and Eq. (16) can be integrated
analytically. This leads to a reduction in the fidelity of order
e−(n̄+1/2)η2(ωoscT )2

, where η = √
Erecoil/�ωosc is the Lamb-

Dicke parameter. For example, using the parameters in Fig. 2
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and n̄ = 5, we find that the 〈11|ρout|00〉 coherence is reduced
to ∼ 0.90 of its original value due to Doppler effects—an
order of magnitude more decoherence than from any other
source. In contrast, with the Doppler-free configuration, the
first-order correction vanishes, thereby strongly suppressing
the effect of the Doppler shift. The |01〉 and |10〉 states
experience similar Doppler perturbations to their single atom
light shifts, which are generally different from the light shifts
on |00〉. This means that the coherences between {|01〉,|10〉}
and {|11〉,|00〉} are also significantly reduced by Doppler
effects, and the Doppler-free configuration likewise suppresses
these decoherences.

The effect of the dipole-dipole force is seen in the
coherences 〈xy|ρout|00〉, where xy �= 00. Because atoms in
|00〉 will experience a relative momentum kick when the
blockade is imperfect and they are both excited into the
Rydberg state, this logical basis state will contain “which way”
information relative to the other basis states. Tracing over the
motional degrees of freedom, this leads to a reduction of the
coherences,

〈xy|ρout|00〉 ∝ Trext
[
e−iδprel zρext

rel

]
=

∫
dprel 〈prel + δprel|ρext

rel |prel〉 = e− (n̄+1/2)δp2
rel

2Mω . (18)

Because δprel scales with |rr〉 population, this decoherence
provides a strong penalty for increasing the exciting laser
power beyond the point of “breaking” the blockade (see Fig. 4).
For this reason, strong blockade interactions as well as high
Rabi rates will be required to achieve very high fidelities.

Finally, the gate’s fidelity is reduced by imperfect adiabatic
following. Diabatic transitions during the dressing process
generally cause both population loss and dephasing for each
atom in the |0〉 state, so nearly every element of ρout is affected.
The magnitude of the resulting fidelity loss can be found by
numerical simulation.
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FIG. 4. (Color online) Simulated gate error rates (1 − F) as a
function of adiabatic ramp time. The upper pair of curves was
generated with the parameters given in Fig. 2, while the lower curves
used a higher Rabi rate for the exciting laser. Ignoring interatomic
forces but including all other errors (green triangles), the higher Rabi
rate improves both gate speed and fidelity. Including interatomic
forces (red circles), any gain in fidelity from the increased speed is
offset by stronger forces owing to a larger |rr〉 population when the
blockade is imperfect. This suggests that beyond a certain threshold,
increased laser power requires a commensurately stronger blockade
interaction in order to improve fidelity.
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FIG. 5. (Color online) Simulated gate error rates (1 − F) as a
function of adiabatic ramp time. For comparison, the red triangle
curve ignores motional effects and includes errors due solely to
diabatic transitions and finite Rydberg lifetime. For ramp times
significantly below 1 μs, all curves predict low fidelities because the
gate is not adiabatic. As the ramp time and adiabaticity are increased,
other error sources become limiting factors. Including all error
sources while using the Doppler-free configuration (blue circles),
we can reach error rates of ∼2 × 10−3, with finite blockade strength
as the primary fidelity-limiting factor. By contrast, the single-laser
configuration (green squares) suffers more than an order of magnitude
greater error than its counterparts.

To calculate the fidelity according to Eq. (14), we simulate
the evolution according to the (non-Hermitian) time-dependent
Schrödinger equation governed by Heff . This generates the
(non-trace-preserving) evolution Ueff , accounting for errors
due to imperfect adiabatic evolution, loss of atoms due to
excitation to the Rydberg state, and decoherence due to thermal
spread of Doppler shifts. We use the simulated excitation to
|rr〉 to calculate the relative momentum kick given to atoms
due to the dipole-dipole force, and from this include the
additional decoherence effect described in Eq. (18).

As an example, we take the parameters given in Fig. 2.
This requires a ramp time on the order of 1 μs to stay
adiabatic, so that one can perform a CPHASE gate in ∼ 2.3 μs.
Putting together all of the error sources discussed, we calculate
a gate infidelity of 1 − F ∼ 2 × 10−3 for the Doppler-free
configuration. The gate error arises in small part from the
second-order effect of Doppler shifts and finite Rydberg
lifetime, but it is dominated by interatomic dipole forces owing
to an imperfect blockade (see Fig. 5). By contrast, without
the Doppler-free configuration, the same parameters give an
infidelity of 1 − F ∼ .04, almost all of which is due to the
spread in Doppler shifts.

V. CONCLUSION

We have studied a method for robustly implementing a
CZ gate between neutral cesium atoms based on adiabatic
dressing of the ground state via the Rydberg blockade. The
main advantage of this approach is that it strongly suppresses
random phases between bright and dark-state superpositions
that arise due to atomic motion. In addition, by employing two
counterpropagating Rydberg lasers in a σ+/σ− configuration,
one can eliminate the Doppler shift to first order. All effects of
thermal motion then take the form of coupling to a dark state
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outside the ideal blockade subspace, which is suppressed by
an energy gap during adiabatic evolution. When both adiabatic
dressing and the Doppler-free configuration are used together,
errors from thermal motion are reduced by more than an order
of magnitude compared to either strategy used alone.

With motional errors reduced in this way, the main
remaining source of error is entanglement between internal
and external degrees of freedom due to dipole-dipole forces
when the Rydberg blockade is imperfect. Such error is highly
nonlinear in laser power; it can be kept small as long as the
Rydberg blockade is nearly perfect, but increases rapidly when
laser power is increased beyond the point of breaking the
blockade. This implies that the available blockade strength
sets an upper limit on useful laser power, which in turn limits
both the fidelity and speed of the gate. If the blockade shift can
be increased by bringing atoms into closer proximity or by the
appropriate choice of Rydberg levels, the gate errors will be
limited solely by finite Rydberg lifetime.

As a final note, we have considered here gates performed
while atoms are untrapped and fall ballistically. Recapturing
the atoms after the gate will generally cause the atoms to heat

[26]. This effect is not reflected in our error estimates because it
does not affect the fidelity of any one gate, but it could increase
decoherence if multiple gates are performed successively with
no re-cooling in between. In principle, all of these errors
would be substantially reduced in a “magic trap” which traps
electronic ground state and Rydberg atoms equivalently [27].
In that case, cooling the atoms to the vibrational ground state
would completely remove Doppler shifts as well as suppress
decoherence due to the dipole-dipole force in an imperfect
blockade, providing a potential path to high-fidelity quantum
logic.
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