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Construction and properties of a class of private states in arbitrary dimensions
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(Received 1 October 2014; revised manuscript received 28 November 2014; published 27 January 2015)

We present a construction of quantum states in dimension d that has at least 1 dit of ideal key, called private
dits (pdits), which covers most of the known examples of private bits (pbits) d = 2. We examine properties of this
class of states, focusing mostly on its distance to the set of separable states S, showing that for a fixed dimension
of key part dk , the distance increases with ds . We provide explicit examples of positive partial transpose states
(in d dimensions) which are nearly as far from separable ones as possible. Precisely, the distance from the
set of S is 2 − ε, where d scales with ε as d ∝ 1/ε3, as opposed to d ∝ 2[log(4/ε)]2

obtained by Badzia̧g et al.
[Phys. Rev. A 90, 012301 (2014)]. We do not use boosting (taking many copies of pdits to boost the distance) as
in the Badzia̧g et al. paper.
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I. INTRODUCTION

Quantum cryptography allows perfect secret sharing among
honest parties and is currently the most successful and
commercial branch of quantum information science. In 2007,
quantum cryptography was used to secure part of the vote
counting in a referendum in the canton of Geneva and, in 2010,
in collaboration with the University of Kwazulu-Natal, South
Africa, to encrypt a connection in the Durban stadium during
the football World Cup. But what is the source of its power?
Briefly speaking, the fundamental property which guarantees
security of the quantum cryptography is that if one does not
know the state of a qubit, then with a high probability one
disturbs the state while trying to get to know it.

This implies that there is a clear relation between quantum
security and correlations in the form of quantum entanglement.
If such correlations are maximal, between two qubits, they can
be changed via measurement into one bit of a secret key (also
called “classical” key). The first protocols of quantum key
distribution were based only on pure entangled states [1–3] and
were security proof [4], which led to natural expectations that
pure entangled quantum states are the only source of quantum
security [5,6]. However, we know that entanglement can be
manifested not only in a pure form, but also in a mixed one.
What is more, there are some mixed entangled quantum states
from which no pure entangled states can be obtained using
local operations and classical communication (LOCC), called
bound entangled states [7,8]. It was hoped that bound states
would be useless for quantum cryptography—no key would be
distillable from the classical distribution. But, quite surprising
at that time was the discovery of private bound entangled
states, which has tempered those hopes and demonstrated a
clear distinction between secrecy and bound entanglement [9].

The key ingredient in showing that distinction was the
notion of private states (introduced in [9]), quantum states
that contain a directly accessible, ideally secure classical key,
and private bits (pbit) or, more generally, a private dit (pdit),
which is a delocalized maximally entangled state that still
retains some entanglement monogamy result. A quantum pdit
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is composed from a d ⊗ d AB part called the “key,” and a A′B ′
part called the “shield,” shared between Alice (subsystems
AA′) and Bob (subsystems BB ′) in such a way that the results
of the local von Neumann measurements on the key part in a
particular basis are completely statistically uncorrelated from
the results of any measurement of an eavesdropper Eve on her
subsystem E, which is a part of the purification |�〉ABA′B ′E
of the pdit state ρABA′B ′ . Pdits (especially pbits) have been
studied extensively for some time [10–15].

Quite recently, an important discovery has been made
in studies between security and correlations. In [16], a
clean classical analog of bound entanglement and private
bound entanglement has been provided, where the authors
have constructed private bound entangled states based on
unambiguous classical probability distribution to a quantum
state that is not based on a “standard” key or shield scheme,
opening a new direction in the study of private states.

Our paper is organized in the following way. In Sec. II, we
present a general construction of an alternate class of pdits and
show that for specific choices of parameters, we can reduce
this class to the cases previously known in the literature. In
Sec. III, we investigate properties of this set of pdits. Namely,
we calculate the trace distance of arbitrary pdits from this class
from the pdit in maximally entangled form (Lemma 1). We
also show that for the specific subclass, this distance scales
inversely with the dimension of the shield part ds (Lemma
2). At the end of this section, we give the lower bound for
the trace distance from the set of separable states S and our
subclass (Lemma 3), which gives a better estimation than the
previous one [17]. Most importantly, we are able to show
that for a particular subclass of pdits, we do not need to take
many copies of pdits to boost the distance from the set of
separable set S (like in [17]) using our construction. We also
show that our family of states approximates the set of separable
states obtaining the distance equal to 2 − ε and improving
the scaling of ε with the distance. Additionally, we present
two appendices in which we describe a special method which
allows us to prove one of the crucial statements in our paper,
i.e., Lemma 2 (see Appendix A). In Appendix B, we recall the
special construction of the set of operators which is one of the
possible realizations of operators with desired spectra needed
in Sec. III.
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II. GENERAL CONSTRUCTION OF PDITS

As we have mentioned in Sec. I, we want to construct a
four-partite state ρABA′B ′ (pdit) which has a positive partial
transpose (PPT) property and is close to pdits in the so-called
maximally entangled form (see Sec. III). Let us consider the
following state:

ρABA′B ′ =
d∑

l=0

ωl ∈ B
(
Hdk

⊗ Hdk
⊗ Hds

⊗ Hds

)
, (1)

where B(H) is the algebra of all bounded linear operators
on Hilbert space H, d = 1

2dk(dk − 1), and by dk we denote
the dimension of the key part acting on AB and by ds the
dimension of the shield part acting on A′B ′. Now we describe
each of the components from Eq. (1). First of all, we define
the term ω0 as

ω0 =
dk−1∑
i,j=0

|i〉〈j | ⊗ |i〉〈j | ⊗ a
(0,0)
ij , (2)

where every a
(0,0)
ij ∈ B(Hds

⊗ Hds
). From now on, every

matrix of the form (2) we will call the matrix in the maximally
entangled form. The rest of the elements ωl , for 1 � l �
1
2dk(dk − 1) from Eq. (1), are given by the following formula:

ωl = |i〉〈i| ⊗ |j 〉〈j | ⊗ a
(i,j )
00 + |i〉〈j | ⊗ |j 〉〈i| ⊗ a

(i,j )
01

+ |j 〉〈i| ⊗ |i〉〈j | ⊗ a
(i,j )
10 + |j 〉〈j | ⊗ |i〉〈i| ⊗ a

(i,j )
11 , (3)

where i,j = 1, . . . ,dk − 1 and i < j . In the above, we also
implicitly assume a bijection function between indices l

and i,j .
Let us introduce the following notation:

A(i,j ) =
(

a
(i,j )
00 a

(i,j )
01

a
(i,j )
10 a

(i,j )
11

)
, (4)

where i,j = 0, . . . ,dk − 1 for i < j . Separately, for the term
A(0,0), we have

A(0,0) =

⎛⎜⎝ a
(0,0)
00 · · · a

(0,0)
0,dk−1

...
. . .

...
a

(0,0)
dk−1,0 · · · a

(0,0)
dk−1,dk−1

⎞⎟⎠. (5)

Then, there is an explicit connection between positivity of
the state ρABA′B ′ and each submatrix A(i,j ) and positivity of
ρ

TA′ TB′
ABA′B ′ and each block A(i,j ) after partial transposition on the

system B ′. This can be summarized as follows:
Observation 1. We have the following relations between

positivity of the state ρABA′B ′ before and after partial transpo-
sition and positivity properties of every block A(i,j ):

(i) Positivity of the state ρABA′B ′ ,

ρABA′B ′ � 0 ⇔ A(i,j ) � 0, (6)

(ii) Positivity of the state ρABA′B ′ with respect to partial
transposition in the cut AB : A′B ′,

(1A ⊗ TB ⊗ 1A′ ⊗ TB ′)ρABA′B ′ � 0 ⇔ Ã(i,j ) � 0, (7)

where Ã(i,j ) is given by

Ã(i,j ) =
(

ã
(i,j )
00 ã

(0,0)
ij

ã
(0,0)
ji ã

(i,j )
11

)
, i,j = 0, . . . ,dk − 1 with i < j,

and

Ã
(0,0)
ij =

⎧⎪⎨⎪⎩
ã

(0,0)
ij , i = j

ã
(i,j )
01 , i < j

ã
(i,j )
10 , i > j

, i,j = 0, . . . ,dk − 1.

In the above, we have ã
(i,j )
00 = (1B ⊗ TB ′)a00

(i,j ), and so on.
Proof. The proof of the above statement is based on

straightforward observation. Namely, one can notice that every
component of the state from Eq. (1) is defined on different
subspaces which are orthogonal to each other, thus every block
can be treated separately—we can consider positivity and PPT
conditions on each of the components independently. This fact
implies all claimed properties of states ρABA′B ′ from (1). �

At the end of this section, we show for which choices of
matrices ω0 and ωl we can reduce our general construction,
given by formulas (1)–(3), to the previously known cases. First
let us write general matrix expressions for state ρABA′B ′ from
the formula (1) when the dimension of the key part is dk = 2,3.
Namely, for dk = 2, we have

ρABA′B ′ = ω0 + ω1, (8)

where

ω0 =

⎛⎜⎜⎝
a

(0,0)
00 · · a

(0,0)
01· · · ·

· · · ·
a

(0,0)
10 · · a

(0,0)
11

⎞⎟⎟⎠ ,

(9)

ω1 =

⎛⎜⎜⎜⎝
· · · ·
· a

(0,1)
00 a

(0,1)
01 ·

· a
(0,1)
10 a

(0,1)
11 ·

· · · ·

⎞⎟⎟⎟⎠ .

For dk = 3, state ρABA′B ′ is represented as

ρABA′B ′ = ω0 + ω1 + ω2 + ω3 ∈ B(C3 ⊗ C3 ⊗ Cds ⊗ Cds ),
(10)

where

ρ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(0,0)
00 · · · a

(0,0)
01 · · · a

(0,0)
02· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·

a
(0,0)
10 · · · a

(0,0)
11 · · · a

(0,0)
12· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·

a
(0,0)
20 · · · a

(0,0)
21 · · · a

(0,0)
22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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ρ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · ·
· a

(0,1)
00 · a

(0,1)
01 · · · · ·

· · · · · · · · ·
· a

(0,1)
10 · a

(0,1)
11 · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ρ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · ·
· · · · · · · · ·
· · a

(0,2)
00 · · · a

(0,2)
01 · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · a

(0,2)
10 · · · a

(0,2)
11 · ·

· · · · · · · · ·
· · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ρ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · a

(1,2)
00 · a

(1,2)
01 ·

· · · · · · · · ·
· · · · · a

(1,2)
10 · a

(1,2)
11 ·

· · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

From the above examples, we see that operators ωk are
supported on orthogonal subspaces. Now, we are ready to
present five examples of private states which belong to our
class:

(i) Suppose that γ V ∈ B(C2 ⊗ C2 ⊗ Cds ⊗ Cds ) such that

γ V = 1

2

⎛⎜⎝1/d2
s · · V/d2

s

· · · ·
· · · ·

V/d2
s · · 1/d2

s

⎞⎟⎠, (12)

where V = ∑ds−1
i=0 |ij 〉〈ji| is known as the swap operator, 1

is the identity matrix of dimension d2
s × d2

s , and by dots we
denote matrices of dimension d2

s × d2
s filled with zeros [18].

(ii) Suppose that ρflower ∈ B(C2 ⊗ C2 ⊗ Cds ⊗ Cds ) such
that

ρflower = 1

2

⎛⎜⎝ σ · · UT /ds

· · · ·
· · · ·

U ∗/ds · · σ

⎞⎟⎠, (13)

where σ = (1/ds)
∑ds−1

i=0 |ii〉〈ii| is the classical maxi-
mally correlated state and U is an embedding of uni-
tary transformation W = ∑ds−1

i,j=0 wij |i〉〈j | in the form U =∑ds−1
i,j=0 wij |ii〉〈jj |. The state (13) is known as the flower

state [13].

(iii) Suppose that ρ ∈ B(C2 ⊗ C2 ⊗ Clds ⊗ Clds ) such that

ρABA′B ′

=1

2

⎛⎜⎝p(τ0 + τ1) · · p(τ1 − τ0)
· (1 − 2p)τ0 · ·
· · (1 − 2p)τ0 ·

p(τ1 − τ0) · · p(τ0 + τ1)

⎞⎟⎠.

(14)

In the above, τ0 = ρ⊗l
s ,τ1 = [(ρa + ρs)/2]⊗l , l is a posi-

tive integer number,B(Cds ) 
 ρs = 2
d2

s +ds
Psym,B(Cds ) 
 ρa =

2
d2

s −ds
Pas, where Psym,Pas are, respectively, symmetric and

antisymmetric projectors for the bipartite case. It has been
shown that a class of states (14) is bound entangled with a
private key, KD > 0 [13].

(iv) Finally, let us take ρABA′B ′ ∈ B(C2 ⊗ C2 ⊗ Cds ⊗ Cds )
in the most general form of pbit, the so-called X form of
pbit [13],

ρABA′B ′ = 1

2

⎛⎜⎜⎝
√

XX† · · X

· · · ·
· · · ·

X† · ·
√

X†X

⎞⎟⎟⎠, (15)

where X is an arbitrary operator with ||X||1 = 1, and dots
represent zero matrices.

(v) For a larger dimension of the key part, for example
dk = 3, we can take ρABA′B ′ ∈ B(C3 ⊗ C3 ⊗ Cds ⊗ Cds ) in
the following way:

ρABA′B ′

=1

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
XX† · · · X · · · XY

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

X† · · ·
√

X†X · · · Y

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

(XY )† · · · Y † · · ·
√

Y †Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(16)

where matrices X,Y satisfy ||X||1 = ||Y ||1 = 1 and X = WY †

for an arbitrary unitary transformation W [18].
From the above examples, we can easily figure out the

explicit form of the operators ωk in every case.

III. PROPERTIES

In this section, we formulate a theorem, which determines
the distance in the trace norm between our set of states and the
set of pdits in the maximally entangled form. Next, we show
(Lemma 2) that this distance depends on the shield dimension
ds for a special, but quite general, subclass of pdits. Namely,
we show that this distance scales inversely with the shield
dimension ds . At the end, we also calculate the trace distance
from the set of separable states using a special representation
of the pdit (Lemma 3). In this and the next sections, without
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loss of generality, we assume the state ρABA′B ′ to be

ρABA′B ′ = pγ0 + q

d

d∑
i=1

γi, (17)

where p + q = 1, d = 1
2dk(dk − 1) and

γ0 = 1

Trω0
ω0, γi = 1

Tr ωi

ωi, (18)

so such a state indeed belongs to the class defined in Sec. II,
and state γ0 we will call pdit in the maximally entangled form.
Now, we are ready to formulate the main results of this section.

Lemma 1. Let us assume that we are given ρABA′B ′ as in
Eq. (1) and the pdit γ0 in its maximally entangled form. Then
the following statement holds:

||ρABA′B ′ − γ0||1 = 2q. (19)

Proof. The proof is based on straightforward calculations. Let
us compute the desired trace distance between ρABA′B ′ and γ0,

||ρABA′B ′ − γ0||1

=
∣∣∣∣∣
∣∣∣∣∣pγ0 + q

d

d∑
i=1

γi − γ0

∣∣∣∣∣
∣∣∣∣∣
1

=
∣∣∣∣∣
∣∣∣∣∣qd

d∑
i=1

γi − qγ0

∣∣∣∣∣
∣∣∣∣∣
1

= q

d

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

γi − dγ0

∣∣∣∣∣
∣∣∣∣∣
1

. (20)

Now, using the definition of trace norm, we rewrite the last
term from the above calculations in a more explicit way,

||ρABA′B ′ − γ0||1

= q

d
Tr

⎡⎣(
d∑

i=1

γi − dγ0

)(
d∑

i=1

γi − dγ0

)†⎤⎦1/2

. (21)

Because we deal with Hermitian matrices, we have

||ρABA′B ′ − γ0||1 = q

d
Tr

⎡⎣(
d∑

i=1

γi + dγ0

)2
⎤⎦1/2

, (22)

and finally

||ρABA′B ′ − γ0||1 = q

d
Tr

[
d∑

i=1

γi + dγ0

]
= 2q. (23)

We obtain the statement of our theorem, so the proof is
finished. �

Next, we formulate and prove the next lemma, which states
that the distance between our class of states given in Sec. II
and pdit in its maximally entangled form decreases with the
dimension of the shield part ds . We do it for a specific choice
of operators ω0,ωk given by Eqs. (2) and (3), which gives a
wide class of pdits. Let us choose all matrices a

(0,0)
ij = a, where

0 � i,j � dk in such a way that

spec(a) =
{

1

d2
s

, . . . ,
1

d2
s

}
, (24)

and all matrices a
(i,j )
mn = b, where 0 � m,n � 1 and 0 � i,j �

1
2dk(dk − 1) with i < j as

spec(b) =
{

1

ds

, . . . ,
1

ds

}
. (25)

We also assume that operators which have such spectra are
invariant under partial transposition with respect to the system
B ′. At this point, we refer the reader to Appendix B in
which we show the explicit form of operators satisfying all
requirements. Using the above definitions, we are ready to
show the following.

Lemma 2. Let us consider the class of states given by

ρABA′B ′ = pγ0 + q

d

d∑
i=1

γi, (26)

where q = 1 − p, d = 1
2dk(dk − 1), and states γ0,γi are given

by Eqs. (2) and (3), together with (24) and (25). Then the trace
distance from the set of private dits in maximally entangled
form is equal to

1

2
||ρABA′B ′ − γ0||1 = 1

1 + ds

dk−1

, (27)

where ds is the dimension of the shield part and dk is the
dimension of the key part.

Proof. We need to show that in our scheme, the parameter
q which is equal to the trace distance between states ρABA′B ′

and pdits γ0 in their maximally entangled form is equal to
1/(1 + ds

dk−1 ), where ds,dk are dimensions of the shield and
the key part, respectively. To prove this property, we use the
construction described in detail in Appendix A. Because we
have assumed that our matrices a and b are invariant under
partial transposition with respect to the system B ′, we can
directly use the equality from Eq. (A8) putting, instead of ã, a
matrix a and, instead of b̃, a matrix b. Then we have

q

dk − 1
λ(b) − pλ(a) = 0, (28)

where by λ(a),λ(b) we denote nonzero eigenvalues of opera-
tors a and b, respectively. Now using formulas (24) and (25),
we get

q

dk − 1

1

ds

− p
1

d2
s

= 0. (29)

Solving the above equality with p = 1 − q, we obtain the
statement of our lemma. This finishes the proof. �

Before we formulate the next result, we introduce the
following notation.

Notation 1. Suppose that we are given a quantum state
ρ and the set of separable states S. Then, by dist(ρ,S), we
understand the following quantity:

dist(ρ,S) = min
σ∈S

||ρ − σ ||1, (30)

which is, of course, double minimal trace distance. In the
remainder of this manuscript, whenever we talk about distance,
we mean the above notation.

Now we are ready to calculate the lower bound on distance
between the set of separable states denoted by S and our
subclass of pdits given in the argument before Lemma 2.
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Lemma 3. The distance between the set of separable states
S and the class of states of the form

ρABA′B ′ = pγ0 + q

d

d∑
i=1

γi, (31)

where q = 1 − p and d = 1
2dk(dk − 1), is bounded from

below:

dist(ρABA′B ′ ,S) � 2 − 2

dk

− 2

1 + ds

dk−1

, (32)

where ds denotes the dimension of the shield part and dk

denotes the dimension of the key part.
Proof. In our proof, we use the fact that the distance between

an arbitrary private state γ̄ and the set of separable states S is
bounded from below [17] by

dist(γ̄ ,S) � 2 − 2

dk

, (33)

where dk is the dimension of the key part. Because the above
bound holds for an arbitrary private state, it also holds for a
pdit in its maximally entangled form γ0. Now let us take the
closest separable state ω to ρABA′B ′ given by Eq. (31). Using
the triangle inequality, we can write

||ρABA′B ′ − ω||1 + ||ρABA′B ′ − γ0||1
� ||ω − γ0||1 � dist(γ0,S) � 2 − 2

dk

, (34)

but from Lemma 2 we know that ||ρABA′B ′ − γ0||1 = 2
1+ ds

dk−1

,

so

||ρABA′B ′ − ω||1 + 2

1 + ds

dk−1

� 2 − 2

dk

. (35)

The above inequality directly implies that

dist(ρABA′B ′ ,S) � 2 − 2

dk

− 2

1 + ds

dk−1

. (36)

�
Let us notice that for our special case dk = 2, when Alice

and Bob share qubit states, the bound obviously improves with
dimension of the shield part and has minimum for ds = 2, i.e.,
when Alice and Bob share a four-qubit state.

Let us recall that the state from Lemma 2 can be considered
as a PPT state acting on Cd ⊗ Cd , where d = dsdk . We
can formulate the following, recovering the result from [17]
and [19].

Theorem 1. For an arbitrary ε > 0, there exists a PPT state
ρ acting on the Hilbert space Cd ⊗ Cd with d � c

ε3 such that

dist(ρ,S) � 2 − ε, (37)

where c is constant. The state is given by (26).
The proof is straightforward and based on simple calcula-

tions, so it is not reported here. We have found analytically that
constant c < 64. This result considerably improves the bound
obtained in [17].

IV. SUMMARY

In this paper, we present the construction of the set of pdits,
which contains many known examples of private states from
the literature (Sec. II). We also present the result specifying
the trace distance between our set of pdits and the pdit in the
maximally entangled form. Next, we connect this result with a
dimension of the shield part ds , and we prove that this distance
is inversely proportional to ds , at least for a particular subclass
of pdits. We also calculate the trace distance from the set of
separable states S and show that for a fixed dimension of key
part dk , this distance decreases with ds . The most interesting
property of our alternate class of states, which differentiates it
from the known results, is that we do not need many copies of
them (see [17]) to boost the distance from the set of separable
states S (Sec. III). We also provide explicit calculations of a
family of states such that we recover the 2 − ε distance from
S [17,19] in a natural and basic way. Finally, we show that the
scaling of ε with the distance is d ∝ 1/ε3, and it is considerably
better than d ∝ 2[log(4/ε)]2

from [17].
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APPENDIX A: CONSTRUCTION OF SPECIAL PDITS
SUBCLASS

In this section, we describe the method which we have used
to obtain explicit positivity conditions in the proof of Lemma 2
for an arbitrary dimension of the key part dk . Our argument is
made for the specific subclass of states given at the beginning
of Sec. II. Suppose that the above-mentioned subclass is in the
following form:

ρABA′B ′ = pγ0 + q

d

d∑
i=1

γi ∈ B
(
Hdk

⊗ Hdk
⊗ Hds

⊗ Hds

)
,

(A1)
where d = 1

2dk(dk − 1) and matrices γ0, γi are defined on
orthogonal subspaces in a similar way as in (2) and (3). Of
course, to satisfy ρABA′B ′ � 0, we need γ0 � 0 and γi � 0.
In our construction operator, γ0 corresponds with (2), but all
a

(0,0)
ij = a together with ||a||1 = 1. Similarly, we proceed for

the matrices γi by putting all submatrices a
(i,j )
mn equal to b

with ||b||1 = 1. Thanks to this, we have an explicit connection
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between states γ0,γi and ω0,ωi from (2) and (3) by the
following formulas:

γ0 = 1

dk

ω0, γi = 1

2
ωi, where d = 1

2
dk(dk − 1). (A2)

It is easy to see that to ensure the PPT property with respect
to partial transposition on BB ′, it is enough to satisfy the PPT
condition for every component of (A1) separately after partial
transposition. Thanks to this and the property of orthogonality,
we can write

(1A ⊗ TB ⊗ 1A′ ⊗ TB ′)ρABA′B ′

� 0 ⇔ PT dk
=

⎛⎜⎜⎜⎝
pã

q

dk−1 b̃ · · · q

dk−1 b̃
q

dk−1 b̃ pã · · · q

dk−1 b̃

...
. . .

...
q

dk−1 b̃ · · · pb̃
q

dk−1 ã

⎞⎟⎟⎟⎠ � 0,

(A3)

and

(1A ⊗ TB ⊗ 1A′ ⊗ TB ′)ρABA′B ′

� 0 ⇔ PT =
(

q

dk−1 b̃ pã

pã
q

dk−1 b̃

)
� 0, (A4)

where ã,̃b are operators a,b after partial transposition with
respect to subsystem B ′, and the second condition is taken dk

times.
In general, still it is hard to say whether constraints (A3)

and (A4) are satisfied, but there is a nice mathematical trick
which allows us to rewrite the above condition in a more
operative way. Namely, matrices PT dk

and PT can be written
as

PT dk
= 1dk

⊗ pã − 1dk
⊗ q

dk − 1
b̃ + Idk

⊗ q

dk − 1
b̃ � 0,

(A5)
PT = 12 ⊗ q

dk − 1
b̃ − 12 ⊗ pã + I2 ⊗ pã � 0,

where 1dk
,12 are identity matrices of dimensions dk and 2,

respectively, and Idk
and I2 are with all entries equal to 1 of

dimensions dk and 2, respectively. To say that PT dk
and PT

are positive is enough to say that they have all eigenvalues λ

greater or equal to zero, so we can write

λ
(
PT dk

) = λ(1dk
⊗ pã) − λ

(
1dk

⊗ q

dk − 1
b̃

)
+ λ

(
Idk

⊗ q

dk − 1
b̃

)
� 0,

λ(PT ) = λ

(
12 ⊗ q

dk − 1
b̃

)
− λ(12 ⊗ pã)

+ λ(I2 ⊗ pã) � 0. (A6)

Because spec(Idk
) = {0, . . . ,0,dk}, where 0 is taken dk − 1

times, we have the following set of constraints:

pλ(̃a) + qλ(̃b) � 0, pλ(̃a) − q

dk − 1
λ(̃b) � 0,

(A7)
q

dk − 1
λ(̃b) + pλ(̃a) � 0,

q

dk − 1
λ(̃b) − pλ(̃a) � 0.

From the above, we see that only nontrivial conditions are
given by the second and fourth inequality, which are reduced
(together) to equality

q

dk − 1
λ(̃b) − pλ(̃a) = 0. (A8)

We see that to ensure PPT property, it is enough to satisfy
only one constraint, which depends only on eigenvalues of
submatrices of γ0 and γi .

APPENDIX B: CONSTRUCTION OF THE OPERATORS
WITH SPECIFIC CONSTRAINTS ON SPECTRA

In Sec. II, we use a class of operators with the specific
properties such that invariance is with respect to partial
transposition on the B ′ system and the particular spectra. Now,
we present one of the possible realization of such operators.
Namely, let us take (see [17])

X = 1

ds

√
ds

ds∑
i,j=1

uij |ij 〉〈ji|,
(B1)

Y =
√

dsX
TB′ = 1

ds

ds∑
i,j=1

uij |ii〉〈jj |,

where uij are matrix elements of some unitary matrix U ∈
M(ds × ds,C) with |uij | = 1√

ds
. It is easy to see that (1B ⊗

TB ′)X = X and (1B ⊗ TB ′)Y = Y . Moreover, we can prove
the following.

Fact 1. Matrices
√

XX† and
√

YY †, where X,Y are given
by the formula (B1), satisfy

spec(
√

XX†) =
{

1

d2
s

, . . . ,
1

d2
s

}
,

(B2)

spec(
√

YY †) =
{

1

ds

, . . . ,
1

ds

,0, . . . ,0

}
,

where ds denotes the dimension of the shield part, and for every
matrix we have ds eigenvalues. Moreover, the multiplicity of
1/d2

s is equal to d2
s , the multiplicity of 1/ds is equal to ds , and,

finally, the multiplicity of zeros is equal to ds(ds − 1).
Proof. The proof is based on the following observation:

XX† = X†X = 1

d4
s

, YY † = Y †Y = 1

d2
s

. (B3)

Let us redefine X and Y , introducing X̃ = d2
s X and Ỹ =

ds

√
dsY . We have that X̃X̃† = X̃†X̃ = 1, and similarly for

Ỹ . Thanks to this, we see that matrices X̃,Ỹ are unitary, so
their eigenvalues are eiϕi , for i = 1, . . . ,ds . Now it is easy to
deduce that

spec(X) =
{

1

d2
s

eiϕ1 , . . . ,
1

d2
s

eiϕds

}
,

(B4)

spec(Y ) =
{

1

ds

eiϕ1 , . . . ,
1

ds

eiϕds

}
,
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and

spec(XX†) =
{

1

d4
s

, . . . ,
1

d4
s

}
,

(B5)

spec(YY †) =
{

1

d2
s

, . . . ,
1

d2
s

}
.

In Eqs. (B4) and (B5), for simplicity we have omitted zeros
in the spectra of spec(Y ) and spec(YY †). Moreover, they

do not give us any nontrivial condition for positivity (see
Appendix A). Finally, for

√
XX†,

√
YY †, we simply have to

take the square roots from every eigenvalue from the above
spectra to obtain the desired result. �

Now, in Lemma 2, we can directly substitute
√

XX† instead
of a

(0,0)
kl , where 0 � k,l � dk − 1, and

√
YY † instead of a

(i,j )
mn ,

where 0 � m,n � 1 and 0 � i,j � dk − 1; for i < j , we
obtain the specific example of the pdit from our class.
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