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In this work, we introduce different types of quantum simulations according to different operator topologies
on a Hilbert space, namely, uniform, strong, and weak quantum simulations. We show that they have the same
computational power that the efficiently solvable problems are in bounded-error quantum polynomial time. For
the weak simulation, we formalize a general weak quantum simulation problem and construct an algorithm which
is valid for all instances. Also, we analyze the computational power of quantum simulations by proving the query
lower bound for simulating a general quantum process.
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I. BACKGROUND

In quantum computation, a string of qubits evolves through
a sequence of unitary gates and then are measured for the
learning of computational results. This process in general
includes three stages: preparation, evolution, and measure-
ment. Quantum simulation is motivated to simulate and solve
quantum physical problems using quantum computers [1–3]
and has been explored so far, corresponding to the three
stages, for quantum-state generation [4–7], for approximating
unitary and nonunitary evolution [8–13], and for implement-
ing measurement, such as positive operator-valued measure
(POVM) [14].

However, there exist diverse notions of simulation and
models of quantum simulators, e.g., digital vs analog simula-
tion [3]. The concepts of simulation, emulation, and imitation
are closely related and may cause confusion occasionally. In
fact, there could be different notions of simulation depending
on the simulation subject, object, quality, and other essential
factors. In this work, we explore the concept of simulation
from both mathematical and physical points of view.

Recently, it was shown that some special kinds of quantum
algorithms and quantum circuits can be efficiently simulated
by classical computers [15–18]. For the task of simulating
quantum algorithms by classical computers, there could
be different kinds of simulations, e.g., strong and weak
simulations, which prove to be of different computational
power [16,17]. This motivates the consideration of different
quantum simulations of quantum evolution, and the question
whether there exists a computational difference of various
quantum simulations.

We consider a quantum simulation problem which could
involve all three stages of a quantum process. Different simu-
lation problems would require different solutions (algorithms).
As quantum evolution is generally described by operators
and operator dynamics, we find that a natural mathematical
framework to classify quantum simulations involves the
operator topologies on a Hilbert space [19]. There exist three
types of commonly used operator topologies: uniform (or
norm), strong, and weak operator topologies. Accordingly,
we construct three different kinds of quantum simulations,
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namely, uniform, strong, and weak quantum simulations, and
provide proper physical interpretations of them.

The quantum simulation mostly considered so far in the
literature is the strong simulation, (e.g., Ref. [2]). In this work,
we focus on uniform and weak quantum simulations, which
have not been widely explored. Note that our notions of strong
and weak quantum simulations are different from the classical
simulations in Refs. [16,17].

We first show that the computational powers of these
different simulations are the same. It is not possible to simulate
a quantum process which cannot be implemented by a BQP
circuit efficiently for all kinds of simulations. By a “BQP
circuit” we mean a quantum circuit that can efficiently solve
problems in bounded-error quantum polynomial time (BQP).

We formalize a weak quantum simulation problem of
simulating a quantum process with a prepared initial system
state ρ, evolution (which could be a unitary operator or
completely positive map) E , and measurement result on
observable Ô such that the expectation value 〈Ô〉 on the
final state can be approximated within error tolerance ε for all
instances ρ. An algorithm is constructed to solve this problem
with complexity O(N2) for N as the dimension of the system.
The simulation cost is the same as that of a strong simulation
algorithm if a strong quantum simulation is considered [20],
which is consistent with our observation that all kinds of
simulations have the same computational power.

Different from the circuit model, the query model is also
widely employed for the study of computational complexity
and the design of algorithms. Previously, the query lower
bound for the generation of a general pure quantum state
is shown to be �(

√
N ), following from Grover’s searching

algorithm [21]. In this work, the lower bound for (all three
kinds of) quantum simulation of one general quantum process
is shown in the query model. We prove that the query lower
bound for quantum simulation is also �(

√
N ), instead of �(N )

as one might expect, by establishing a connection between the
quantum simulation problem and the quantum-state generation
problem.

This work contains the following parts. In Sec. II, we
introduce the three kinds of quantum simulations based on
operator topologies. We show that these simulations are
computationally equivalent. In Sec. III, we study the weak
quantum simulation problem and construct an algorithm for it.
In Sec. IV, we prove the query lower bound for the quantum
simulation problem. We conclude in Sec. V.
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II. QUANTUM SIMULATION FRAMEWORKS

We consider a finite-dimensional Hilbert space H and
the set of bounded linear operators B(H ) acting on it.
Given a quantum operator, which could be a density operator
(state), unitary operator, nonunitary completely positive map
(evolution), or Hermitian operator (observable), the task of
simulation is to find one approximation of it or its properties
within some distance quantified by a properly chosen metric,
and the distance could be reduced if the approximate operator
could converge to the given operator. Mathematically, the
problem of simulation can be characterized by notions from
the topology of bounded linear operators on the Hilbert
space [19]. There exist different kinds of convergence in
different topologies of the set of bounded linear operators on a
Hilbert space. Most commonly, there are uniform (also called
norm), strong operator, and weak operator topologies.

(1) Uniform topology: For a finite-dimensional Hilbert
space H , the uniform topology on the set of bounded linear
operatorsB(H ) is the norm convergence; i.e., T̃i → T in norm
if limi→∞ ‖T̃i − T ‖ = 0, for T ,T̃i ∈ B(H ).

(2) Strong operator topology: For a finite-dimensional
Hilbert space H , the strong operator topology on the set of
bounded linear operators B(H ) is the pointwise norm conver-
gence; i.e., T̃i → T strongly if limi→∞ ‖(T̃i − T )|ψ〉‖ = 0,
for T ,T̃i ∈ B(H ), and ∀ |ψ〉 ∈ H .

(3) Weak operator topology: For a finite-dimensional
Hilbert space H , the weak operator topology on the set of
bounded linear operators B(H ) is the pointwise weak con-
vergence; i.e., T̃i → T weakly if limi→∞ |〈ψ |T̃i − T |φ〉| = 0,
for T ,T̃i ∈ B(H ), and ∀ |ψ〉,|φ〉 ∈ H .

Correspondingly, we introduce three kinds of quantum
simulations and discuss examples for these simulations.

Definition 1: Weak quantum simulation. Given one quantum
operator T ∈ B(H ) for a finite-dimensional Hilbert space H ,
the weak quantum simulation is to approximate T by T̃ within
distance ε > 0 such that |〈ψ |T̃ − T |ψ〉| � ε, ∀ |ψ〉 ∈ H .

Note that this definition slightly deviates from the weak
operator topology in that the expectation value of the operator
is involved, which is related to measurement of an observable,
instead of the value evaluated with two different states |ψ〉
and |φ〉. Although a “weak value” (the notion “weak” is
used in a different sense) could exist when postselection is
considered [22], here we limit ourselves to the standard context
of quantum computing and standard quantum mechanics.

Definition 2: Strong quantum simulation. Given one quan-
tum operator T ∈ B(H ) for a finite-dimensional Hilbert space
H , the strong quantum simulation is to approximate the
action of T on state |ψ〉 ∈ H by T̃ within vector 2-norm
distance ε > 0 for the worst case such that ‖T − T̃ ‖ :=
sup|ψ〉 ‖(T − T̃ )|ψ〉‖ � ε.

Example 1: Strong quantum simulation of unitary operator.
The problem of strong quantum simulation of one unitary
operator U , e.g., U = e−iH t if it is generated by a time-
independent Hamiltonian H , is to approximate it by another
unitary Ũ satisfying the spectral norm distance condition
‖U − Ũ‖ � ε. The approximation can be achieved by, e.g.,
either constructing an approximate Hamiltonian H̃ using easy-
to-implement interactions or using a direct approximation Ũ

using elementary quantum gates.

Example 2: Quantum-state generation. The problem of
quantum-state generation is to generate a state |ψ〉 within
distance ε so that ‖|ψ〉 − |ψ̃〉‖ � ε. Now suppose |ψ〉 = U |0〉,
and |ψ̃〉 = Ũ |0〉 for some unitary operators U and Ũ , and then
the accuracy condition becomes ‖U |0〉 − Ũ |0〉‖ � ε, which
can be ensured if we can simulate U by Ũ strongly; i.e.,
‖U − Ũ‖ � ε.

Definition 3: Uniform quantum simulation. Given one
quantum operator T ∈ B(H ) for a finite-dimensional Hilbert
space H , the uniform quantum simulation is to approximate
T by T̃ within distance ε > 0 quantified by a certain operator
norm.

Example 3: Uniform quantum simulation of a unitary
operator. For unitary operator U , the uniform quantum
simulation is to approximate it without referring to its effects
on states or observables. As ‖ • ‖ � ‖ • ‖F � ‖ • ‖1 (where
‖ • ‖ denotes a spectral norm), the norm to be employed can
be the trace norm ‖ • ‖1 or the Frobenius norm ‖ • ‖F. The
uniform quantum simulation of U is to approximate it by
Ũ such that ‖U − Ũ‖F(1) � ε. It is obvious that the uniform
simulation is stronger than the strong simulation of one unitary
operator.

The different quantum simulations have natural physical
interpretations. The scenario for a uniform quantum simulation
is that, given an unknown process, one would like to simulate
or approximate the process itself after knowing enough
information about the process. One closely related, yet not
the same, task is the quantum process tomography, for which
one needs to construct the process matrix of the process
itself. For strong quantum simulation, one has to make sure
that the output state from a simulator is close enough to
the ideal output state for any input state. This only requires
that the simulator has similar effects on all input states. The
requirement of weak quantum simulation is merely to ensure
that the simulation provides similar observable effects for
a given quantum state and observable, without referring to
quantum process tomography or state tomography.

The definitions above can be generalized to the case of
simulation of linear mappings E ∈ B(D), with D ≡ B(H ).
We focus on quantum channels in which case D is the set
of density operators also forming a Hilbert space. A channel
E is usually represented by the set of Kraus operators {Ki}
[23]. As well, from channel-state duality [24,25], there exists
the Choi-Jamiołkowski isomorphism J : D → H ⊗ H and
equivalently J : B(D) → B(H ⊗ H ), which maps the op-
erator E ∈ B(D) into a quantum state, termed the Choi state
C ∈ B(H ⊗ H ).

For weak quantum simulation with respect to channels,
since there is no so-called superobservable living in B(D), we
need to consider an observable living in B(H ) instead.

Weak quantum simulation II. Given one quantum operator
T ∈ B(H ), the weak quantum simulation is to approximate
T by T̃ within the distance ε > 0 such that tr((T − T̃ )ρ) �
ε,∀ ρ ∈ D .

Example 4: Weak quantum simulation of an observable. Let
the operator be one quantum observable A. The simulation
accuracy condition is supρ |tr(Aρ) − tr(Ãρ)| � ε. In detail,
tr(Aρ) − tr(Ãρ) = tr(Atρ0) − tr(Ãtρ0) in the Heisenberg pic-
ture, At is the evolved observable E(A) for a certain channel
E , and ρ0 is the initial state, while in the Schrödinger picture,
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tr(Aρ) − tr(Ãρ) = tr(Aρt ) − tr(Aρ̃t ), and the final state is
ρt = E(ρ). The weak quantum simulation can be guaranteed
by strong quantum simulation or quantum mixed-state gener-
ation, since ‖ρ − ρ̃‖1 � ε implies |tr(Aρ) − tr(Aρ̃)| � ε‖A‖,
following from properties of the trace norm.

Strong quantum simulation II. Given one quantum operator
E ∈ B(D), the strong quantum simulation is to approximate the
action of E on ρ ∈ D by Ẽ within the trace distance ε > 0, such
that the diamond norm distance [26] satisfies ‖E − Ẽ‖� � ε.

Example 5: Strong quantum simulation of channels. For
quantum channel simulation, the strong simulation is to
simulate the evolution E ; e.g., E = eLt if it is generated
by a time-independent Liouvillian L, by another operator
Ẽ satisfying ‖E − Ẽ‖� � ε, or the induced Schatten 1-norm
distance (when no correlation of the system to others is
allowed) ‖E − Ẽ‖1→1 := supρ ‖(E − Ẽ)ρ‖1 � ε. This is a
generalization of Example 1.

Example 6: Quantum mixed-state generation. The problem
is to generate a state ρ within distance ε, so that ‖ρ − ρ̃‖1 � ε.
Now suppose ρ = E(ρ0), and ρ̃ = Ẽ(ρ0). The simulation
can be ensured if we can simulate E by Ẽ strongly; i.e.,
‖E − Ẽ‖� � ε. This is a generalization of Example 2.

Uniform quantum simulation II. Given one quantum
operator E ∈ B(D), the uniform quantum simulation is to
approximate E by Ẽ within the distance ε > 0 quantified by a
certain operator norm.

Example 7: Uniform quantum simulation of channels. As
we have seen from the channel-state duality, a channel can
be represented by a single matrix. As the result, we need to
consider uniform simulation in the Choi state representation.
The norm we employ is the trace norm on the Choi state.
Then, the norm simulation of a quantum channel represented
by Choi state C is to approximate C by C̃ such that ‖C −
C̃‖1 � ε. Since N‖C − C̃‖1 � ‖E − Ẽ‖� � ‖E − Ẽ‖1→1 [27],
for system dimension N , the uniform simulation is stronger
than the strong simulation of channels. This is a generalization
of Example 3.

In the above we have defined three types of quantum
simulations, and it is evident that there exists an “order” in their
simulation powers. For instance, for one problem an efficient
strong quantum simulation algorithm implies there also exists
an efficient weak quantum simulation algorithm. For these
different simulations, one of the most basic questions is
whether their “efficient simulation domains” are the same. We
define the efficient simulation domain as the set of problems
which can be efficiently solved by a certain simulation method.
The following theorem basically manifests that, although there
could be different simulations and simulation algorithms, their
simulation powers are constrained by the computational power
of quantum computing.

Theorem 1. The efficient simulation domains of uniform,
strong, and weak quantum simulations are the same, which is
BQP.

Proof. To prove the claim, we need to show that the smallest
possible domain, which is that for uniform simulation, and the
largest possible domain, which is that for weak simulation,
are both BQP. For uniform simulation, based on channel-state
duality, the efficient state generation of a Choi state ensures
the efficiency of uniform simulation. For weak simulation, it is
not possible to simulate any process beyond BQP efficiently,

since weak simulation requires quantum-state generation for
a certain state, which only serves to produce approximate
observable effects. A state which cannot be prepared by a
BQP circuit cannot be efficiently generated. The theorem then
follows. �

III. WEAK QUANTUM SIMULATION

In this section, we define the weak quantum simulation
problem and provide a concise algorithm for solving it, which
contains a classical preprocessing part and a quantum circuit
to realize the algorithm. It turns out the circuit complexity is
in general the same as that for a strong simulation algorithm.
We focus on the general case instead of efficient simulation
for special cases.

Weak quantum simulation problem. For one N -dimensional
quantum system prepared in state ρ, and measured by POVM
M = {Mi ; i = 0,1, . . . ,m � N2} for an observable Ô after an
evolution E , which is a quantum channel, construct an efficient
quantum circuit, implemented using a universal set of gates,
which can approximate the expectation value 〈Ô〉 on the final
state within the error tolerance ε for all instances ρ.

Before our analysis, it is better to note the differences from
strong simulation. If strong quantum simulation is considered,
one needs to simulate the evolution E itself, whereas for weak
quantum simulation one does not necessarily have to do this.
Also, the POVM M is not required to be simulated; instead,
one only needs to approximate the expectation value 〈Ô〉 for
all instances.

Furthermore, for weak quantum simulation there could
also be different algorithms. The problem merely requires the
approximation of 〈Ô〉 without specifying how to approximate
it. A notable example is the simulation method based on the
matrix product state [28,29], which employs an open-system
dynamics to approximate the dynamical observable of a
many-body system based on a duality mapping. One can use
a quantum circuit to realize the open-system dynamics, and
then the simulation of the many-body system is in fact a weak
quantum simulation, and the analysis of the duality relation is
the classical part of this simulation method. In the following
we present an algorithm which contains a classical analysis
of the probability distribution {pi} [in Eq. (2)] and a quantum
circuit for the weak simulation.

With the POVM {Mi}, an observable Ô can be expressed
as

Ô =
m∑

i=1

oiMi, (1)

for

pi = tr(ρf Mi), (2)

〈Ô〉 = tr(ρf Ô) =
m∑

i=1

oipi, (3)

with final state ρf = E(ρ). Given the set {Mi} and Ô, we can
obtain oi explicitly. Then the problem to approximate 〈Ô〉 is
reduced to the approximation of the probability distribution
{pi}.
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FIG. 1. The circuit for the replacement channel R. The leftmost
gate with two crosses represents a qudit swap gate. A circle with i in it
means an i control, and Xi is the Pauli X operator between states |0〉
and |i〉. The controlled Xi represents a qudit controlled-NOT (CNOT)
gate, and here there are a sequence of such CNOT gates for all i. The
bottom three ancillas are traced out finally.

The next step in our method is to construct a quantum
circuit, which can map any state ρ onto a well-defined state
σ , projective measurement on which yields the (approximate)
probability distribution {pi}. Without loss of generality, we
assume m = N2 and denote N ≡ d; i.e., the system is a qudit.
One easily finds that the state σ can be chosen as

σ = diag(p0,p1, . . . ,pd2−1). (4)

We employ the replacement channel R to map any state ρ

onto σ :

R(ρ) = σ =
∑

i,j

KijρK
†
ij , (5)

with Kraus operators

Kij = √
pi |i〉〈j |, (6)

for 0 � i � d2 − 1, 0 � j � d − 1.
Note that the state σ has higher dimension than the input

state ρ, which implies that a qudit ancilla is required. Also,
there are d3 Kraus operators, so another three qudit ancillas
are required for the implementation of this channel. The index
i in Kij can be split into two indices, i1 and i2 with 0 � i1,

i2 � d − 1, and pi ≡ pi1i2 .
The quantum circuit to implement the channel R is shown

in Fig. 1. We use the d-ary representation in the circuit diagram,
so each wire represents a qudit. There are five registers (from
top to bottom): Fig. 1(a), the system; Fig. 1(b), the ancilla
which is a part of the output system; and Figs. 1(c)–1(e), the
bottom three ancillas to implement the projections.

The gate G is defined as

G|0〉|0〉 =
∑

i

√
pi |i〉 =

∑

i1,i2

√
pi1i2 |i1〉|i2〉 (7)

and can be realized by an O(d2) sequence of rotations {Gi,i+1}
which only act on two basis states

G =
0∏

i=d2−1

Gi,i+1, Gi,i+1|i〉 = cos θi |i〉 + sin θi |i + 1〉,

(8)

containing d2 parameters 0 � θi � 2π , which can be obtained
from pi based on the following concise relations:

pi =
∑

Si⊆S

∏

n∈Si

sin θn

∏

m�∈Si

cos θm, (9)

where S denotes the set {0,1, . . . ,d2 − 1}, Si denotes the set
{α1, . . . ,αi}, and α1 �= α2 �= · · · �= αi ∈ S.

Next we show the action of the quantum circuit. For input
state |ψ〉|0〉|0〉|0〉|0〉 with system state |ψ〉 = ∑d−1

j=0 cj |j 〉, the
quantum circuit proceeds as follows:

(1) The swap gate leads to |0〉|0〉|0〉|0〉|ψ〉.
(2) The gate G leads to |0〉|0〉(∑i1,i2

√
pi1i2 |i1〉|i2〉)|ψ〉.

(3) The two sequences of CNOT gates yield the state
(
∑

i1,i2

√
pi1i2 |i1〉|i2〉|i1〉|i2〉)|ψ〉.

(4) The projector Pij = |i1,i2,j 〉〈i1,i2,j | on the bottom
three ancillas leads to the state

√
pi1i2cj |i1〉|i2〉 which is

equivalent to the action Kij |ψ〉.
We see that the projective measurement

P = {Pij ; Pij = |i,j 〉〈i,j |, 0 � i � d2 − 1,

0 � j � d − 1} (10)

realizes the Kraus operators {Kij } and leads to the probability
distribution {pic

2
j }. The distribution {pi} is obtained by

combining pic
2
j for all js since

∑
j pic

2
j = pi .

In order to ensure the simulation accuracy, a weak quantum
simulation accuracy condition is defined as

sup
ρ

|〈Ô〉 − 〈 ˜̂O〉| � ε. (11)

In order to satisfy this, we require

‖R − R̃‖� � ε‖Ô‖/2, (12)

which implies

sup
ρ

Dt (σ,σ̃ ) � ε‖Ô‖/2, (13)

and then the weak simulation accuracy condition in Eq. (11)
is satisfied. Condition (12) can be ensured if the whole circuit
unitary operator U can be approximated by Ũ such that ‖U −
Ũ‖ � ε‖Ô‖/4, since ‖R − R̃‖� � 2‖U − Ũ‖ [10]. The ‖Ô‖
is the spectral norm of observable Ô.

Next we analyze the complexity of the circuit. The O(d2)
sequence of gates Gi,i+1 can be realized by a sequence of
single-qubit gates and CNOT gates in the same order. There
are O(d2) controlled-Xi gates, and the swap gate can be
realized by O(d) CNOT gates. Employing Solovay-Kitaev-
type algorithms for single-qubit gate compiling [30–32], the
complexity of the circuit becomes O(d2 log2

d2

ε
).

For strong quantum simulation of one unitary evolution
U ∈ SU(d) or quantum channel E , the circuit complexity is
O(d2 log2

d2

ε
) [33]. By comparison, one finds the complexity

is the same for weak and strong quantum simulations. This is
reasonable since a POVM with d2 elements is informationally
complete so that the final state can be fully reproduced. If
there are fewer POVM elements, the weak simulation cost
could be smaller than that for strong simulation. For instance,
for a POVM with d elements, the circuit complexity reduces
to O(d log2

d
ε
).
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IV. QUERY LOWER BOUND FOR
QUANTUM SIMULATION

In this section, we study the query lower bound for quantum
simulation. The quantum query model for unitary operation
simulation has been investigated [34–36], yet the query lower
bound is unknown. Here our method to prove the lower bound
is to consider the uniform quantum simulation.

Instead of designing a quantum circuit based on channel
parameters, in the query model the parameters are provided
in a black box, i.e., oracle, which can only be queried by an
oracle call to extract limited information of the channel each
time. The total number of queries to this oracle and others to
be used are counted as the query complexity.

Uniform quantum simulation problem in the query model.
For a quantum channel E ∈ B(D) acting on an N -dimensional
system, represented by the set of Kraus operators {Kα},α =
0, . . . ,N2 − 1, Kα = ∑N−1

i,j=0 k
(α)
ij |i〉〈j |, there exists an oracle

call Oα such that Oα|i〉|j 〉|α〉|0〉 = |i〉|j 〉|α〉|k(α)
ij 〉. The prob-

lem is to simulate E within error tolerance ε and prove the
query lower bound.

Instead of the set of Kraus operators, the channel E can
be equivalently represented by the normalized Choi state C
which takes the form C = E ⊗ 1(ω), with ω = 1√

N

∑N−1
i=0 |i,i〉.

Precisely, the Choi state is

C = 1

N

N2−1∑

α=0

N−1∑

ijkl

k
(α)
ij k

(α)∗
kl (|i〉〈k|) ⊗ (|j 〉〈l|). (14)

We introduce the uniform simulation accuracy condition,
which takes the form

‖C − C̃‖1 � ε

N
. (15)

Since N‖C − C̃‖1 � ‖E − Ẽ‖� � ‖E − Ẽ‖1→1 [27], the con-
dition above implies the strong and weak simulations of the
channel.

The norm ‖ • ‖1 is twice the trace distance, which has the
operational meaning of distinguishing two quantum states.
That is to say, the successful generation of the Choi state
implies the channel can be simulated in the uniform simulation.
Following from this, we convert the quantum simulation
problem to a quantum-state generation problem; i.e., we
consider how to generate a Choi state by a quantum circuit.

A circuit for generating a Choi state is shown in Fig. 2.
There are four registers: the controller [Fig. 2(a)], the system
[Fig. 2(b)], and two ancillas [Figs. 2(c) and 2(d)]. First, we
consider pure quantum-state generation, which is implemented
when the controller [Fig. 2(a)] is omitted.

We consider how to generate the dual state of a unitary
operator. A unitary operator can be viewed as a channel with
only one Kraus operator which is unitary. For unitary operator
U ∈ SU(N ), and U = ∑N−1

i,j=0 uij |i〉〈j |, its dual Choi state is

|ψU 〉 = 1√
N

∑N−1
i,j=0 uij |i,j 〉. The oracle in the circuit does not

depend on α in this case. The oracle O works as O|i〉|j 〉|0〉 =
|i〉|j 〉|uij 〉. Note that the ancilla is not a single qubit. The
algorithm follows from Grover’s method [21]. The algorithm
proceeds as follows:

FIG. 2. The circuit for the generation of a mixed state ρ. State
|0〉 in bold represents a qubit string of |0〉. R is a multiqubit gate
to generate superposition depending on the form of the mixed state.
H is the Walsh-Hadamard gate. Ry is the single-qubit rotation about
the y axis. Oα and its Hermitian conjugate are queries. G represents
the generalized Grover searching algorithm [37–39]. The controller
(a) is traced out at the end. The generation of a pure state is
achieved when the controller is omitted, so the query complexities
for generation of pure and mixed states are the same.

(1) The Walsh-Hadamard gate H leads to the state
1√
N

∑N−1
i,j=0 |i,j 〉|0〉|0〉.

(2) From the oracle call we get the state
1√
N

∑N−1
i,j=0 |i,j 〉|uij 〉|0〉.

(3) The controlled rotation of the Ry gate yields the state
1√
N

∑N−1
i,j=0 |i,j 〉|uij 〉(uij |0〉 +

√
1 − u2

ij |1〉).
(4) From the inverse oracle call we get the state

1√
N

∑N−1
i,j=0 |i,j 〉|0〉(uij |0〉 +

√
1 − u2

ij |1〉).
(5) We use Grover’s searching algorithm or, generally,

amplitude amplification G to convert the second ancilla to
|0〉, which needs the Grover oracle call O(

√
N ).

(6) Tracing out the two ancillas [Figs. 2(c) and 2(d)], we
get state |ψU 〉.

It is known that pure quantum-state generation can be
realized by a search algorithm with O(

√
N ) queries along with

failure probability O(1/N ), which could be further reduced to
zero with generalized search algorithms [37–39].

For the generation of a mixed Choi state, we first observe
that the Choi state takes the form C ≡ ∑N2−1

α=0 pα|ψα〉〈ψα|,
with |ψα〉 = Kα ⊗ 1(ω) = 1√

N

∑N−1
i,j=0 k

(α)
ij |i,j 〉, and pα =

tr[K†
αKα ⊗ 1(ω)], with

∑N2−1
α=0 pα = 1. Although state |ψα〉

is not normalized, the algorithm above for generation of a
pure state still applies. The algorithm for generating a Choi
state proceeds as follows:

(1) On input state |0,0,0,0〉, the gate R generates state∑N2−1
α=0

√
pα|α〉|0,0,0〉. Note the state |α〉 is a computational

basis state. After the Walsh-Hadamard gate H, the state
becomes 1√

N

∑N2−1
α=0

∑N−1
i,j=0

√
pα|α〉|i,j 〉|0,0〉.

(2) From the controlled oracle call we get the state
1√
N

∑N2−1
α=0

∑N−1
i,j=0

√
pα|α〉|i,j 〉|k(α)

ij 〉|0〉.
(3) The controlled rotation of the Ry gate yields

1√
N

∑N2−1
α=0

∑N−1
i,j=0

√
pα|α〉|i,j 〉|k(α)

ij 〉(k(α)
ij |0〉 +

√
1 − |k(α)

ij |2|1〉).
(4) From the inverse oracle call we get the state

1√
N

∑N2−1
α=0

∑N−1
i,j=0

√
pα|α〉|i,j 〉|0〉(k(α)

ij |0〉 +
√

1 − |k(α)
ij |2|1〉).

(5) We use amplitude amplification G to convert the second
ancilla to |0〉, which needs the Grover oracle call O(

√
N ).
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(6) Tracing out the controller [Figs. 2(a)] and the two
ancillas [Figs. 2(c) and 2(d)], we obtain the Choi state.

As the uniform, strong, and weak quantum simulations
are computationally equivalent, the query lower bound is the
same for all of them. This can be explained by showing that
a weak quantum simulation algorithm in the query model can
be employed to generate the Choi state of a channel. From
quantum process tomography, the expectation values of a set of
observables, denoted as {〈Ôi〉}, need to be measured. Suppose
the query lower bound is �(

√
N ) for approximating each 〈Ôi〉;

then the total query lower bound is still �(
√

N ) for process
tomography since the approximations for each 〈Ôi〉 are in
parallel and the lower bounds do not add up together. As a
result, we can state the query lower bound regardless of the
type of simulations.

As the search algorithm is optimal [40], the following
theorem is proved based on the quantum-state generation
algorithm above.

Theorem 2. The quantum query lower bound to simulate
a quantum channel E acting on an N -dimensional system is
�(

√
N ).

The result shows that the query lower bounds for generating
a pure state and a mixed state with the same dimension are
the same, and the query lower bounds for simulation of a
unitary operator and a quantum channel acting on the same
dimensional system are also the same.

Simple quantum algorithm achieving the query lower
bound Here we provide a quantum algorithm which achieves
the query lower bound for strong quantum simulation. The
algorithm is a “one-shot” algorithm; that is, it generates the
corresponding final state given one initial state within error
tolerance for each instance. If we could prepare the initial
state and final state successfully, then we say the simulation is
successful.

First we consider the strong simulation of a unitary operator.
Given U acting on N -dimensional H , suppose U |λi〉 =
e−iθi |λi〉, with eigenstate |λi〉 and eigenvalue e−iθi . Any pure
state can be expressed in the form |ψ〉 = ∑N−1

i=0 ψi |λi〉, and the
evolution generates the final state |ψf 〉 = ∑N−1

i=0 ψie
−iθi |λi〉,

with each coefficient ψi accumulating a phase e−iθi . We
introduce a unitary operator oracle OU |i〉|0〉 = |i〉|e−iθi 〉,
which actually performs phase estimation [41]. Combined with
the state oracle Oψ |i〉|0〉 = |i〉|ψi〉, we introduce the oracle
O|i〉|0〉|0〉 = |i〉|ψi〉|e−iθi 〉. With the circuit for quantum-state
generation in Fig. 2, it is easy to see that the initial state |ψ〉 is
generated with two calls to Oψ and O(

√
N ) calls to the oracle

in the Grover algorithm, and the final state |ψf 〉 is generated
with two calls to O and O(

√
N ) calls to the oracle in the

Grover algorithm. The mixed-state case can be reduced to the
pure-state case by expanding a density operator as a mixture
of pure states.

Next we consider the strong simulation of a quantum
channel. Using results on a strong simulation of a quantum
channel based on the convex combination of extreme channels,
it is known that a quantum channel acting on an N -dimensional

system can be simulated by convex combination of N extreme
quantum circuits, each having a well-defined structure with one
initial and one final unitary operator acting on the system [33].
For the query model, we use oracle calls for the initial and final
unitary operators, while the rest of the circuit keeps the same
gate operations. The algorithm is the combination of the one
for the unitary operator above and the extreme channel circuit.
In this way, we can simulate a quantum channel in the query
model with the same query complexity as a unitary operator.

V. CONCLUSION AND DISCUSSION

In this work, we have introduced three types of simula-
tions according to operator topologies on a Hilbert space.
We showed that the uniform, strong, and weak quantum
simulations have the same computational powers, that their
efficient simulation domains are all BQP, and, as well, the
query lower bound in the query model for them is the same.
Note that the three types of different simulations not only
apply to quantum simulation, which simulates some objects
employing quantum computers, but also can be easily adapted
for other forms of simulations, such as simulation on classical
standard computers.

We proposed a weak quantum simulation problem, which
focuses on the simulation of an observable quantity instead of
only evolutions as usually considered in the strong quantum
simulation. The recent work on quantum algorithm computing
correlation functions [42] can be considered a type of weak
quantum simulation. Also, the weak simulation method has
a close connection with the numerical simulation methods
employed in the literature, particularly in computational
physics. For instance, based on the duality between the
partition functions of a D spatial dimensional quantum system
and a (D + 1)-dimensional classical system, the method of
simulating a quantum system by a classical one is weak
simulation [43].

Back to one of the motivations of this work, which is the
classical simulation of quantum computation, there are some
open problems at this stage. For instance, Refs. [16,17] found
that there exist quantum algorithms that can be efficiently
weakly simulated yet not strongly simulated by classical
computers. Here the “weak classical simulation” is to sample
the quantum computational result, and the “strong classical
simulation” is to evaluate the quantum computational result.
By rough comparison, the strong classical simulation cor-
responds to our weak simulation method, as both evaluate
observable quantities. It would be interesting if a quantum
sampling simulation method (relating to operator topology)
can also be defined.
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