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Entanglement dynamics for uniformly accelerated two-level atoms
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We study, in the paradigm of open quantum systems, the entanglement dynamics of two uniformly accelerated
atoms with the same acceleration perpendicular to the separation. The two-atom system is treated as an open
system coupled with a bath of fluctuating massless scalar fields in the Minkowski vacuum, and the master equation
that governs its evolution is derived. It has been found that, for accelerated atoms with a nonvanishing separation,
entanglement sudden death is a general feature when the initial state is entangled, while for those in a separable
initial state, entanglement sudden birth only happens for atoms with an appropriate interatomic separation and
sufficiently small acceleration. Remarkably, accelerated atoms can get entangled in certain circumstances while
the inertial ones in the Minkowski vacuum cannot. A comparison between the results of accelerated atoms and
those of static ones in a thermal bath shows that uniformly accelerated atoms exhibit features distinct from those
immersed in a thermal bath at the Unruh temperature in terms of entanglement dynamics.
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I. INTRODUCTION

Entanglement is one of the most fascinating features which
distinguish the classical and quantum worlds, and it plays the
key role in quantum information science [1]. The inevitable
interactions between quantum systems and the environment,
which cause decoherence and may lead to entanglement
degradation, are one of the main obstacles in the realization
of quantum technologies. Therefore, the time evolution of
quantum entanglement between atoms under the influence
of external environment is an important issue in quantum
information science. Recently, it has been found that although
local decoherence processes take an infinite time, two atoms
may get completely disentangled within a finite time. This
phenomenon, named entanglement sudden death [2,3], has
attracted broad attention [2–11]. On the other hand, if the atoms
are placed in a common bath, indirect interactions between oth-
erwise independent atoms can be generated through correla-
tions that exist, and this leads to interesting phenomena such as
the revival of destroyed entanglement [12] and the creation of
entanglement in initially separable states [13–17]. For specific
initial states, the entanglement generated by the dissipative
evolution may exhibit a delayed feature, which is called the
delayed sudden birth of entanglement [18–21]. In particular, it
has been found that for a two-atom system with a nonvanishing
separation immersed in a thermal bath, entanglement sudden
birth only happens for atoms with an appropriate separation
in a thermal bath at sufficiently small temperatures, while
entanglement sudden death is a general feature [21]. However,
when the interatomic separation is vanishing, entanglement
can persist in the asymptotic equilibrium state depending on
the initial state [17]. Here let us note that entanglement between
atoms with nonvanishing separations may survive even in the
asymptotic steady state when immersed in an environment out
of thermal equilibrium [22,23].

A uniformly accelerated observer perceives the Minkowski
vacuum as a thermal bath at a temperature proportional
to its proper acceleration, which is the well-known Unruh
effect [24]. Then a natural question is how the behaviors
of entanglement between a pair of qubits are influenced
by acceleration. Benatti and Floreanini have studied the

entanglement generation for two uniformly accelerated atoms
with a vanishing atomic separation and found that the asymp-
totic entanglement of such a two-atom system is exactly the
same as that in a thermal bath at the Unruh temperature [25].
Later, this work was generalized to the case of two accelerated
atoms with a finite separation near a reflecting boundary,
and it has been found that accelerated atoms may show
distinct features from static ones in a thermal bath in terms
of the entanglement creation in the neighborhood of the
initial time [26]. The studies mentioned above deal with
entanglement either in the neighborhood of the beginning time
or for the late equilibrium states, instead of the whole evolution
process. Recently, the time evolution of entanglement for a
two-qubit system has been investigated in Refs. [27,28], with
the assumption that one of the qubits is accelerating while
the other is inertial and isolated from the environment. In
Ref. [29], the authors study the entanglement dynamics of a
two-qubit system accelerating at diametrically opposite points
of a circular path initially in a Bell state, assuming that the
atoms are isolated from each other before adding the two
together to solve for the total density operator.

In the present paper, we plan to study the entanglement
dynamics of two mutually independent two-level atoms
accelerating with the same acceleration perpendicular to the
separation coupled with a bath of fluctuating massless scalar
fields in the Minkowski vacuum. In particular, we investigate
how entanglement decays for atoms initially prepared in a
maximally entangled state and whether atoms in a separable
initial state can get entangled during evolution. We also make
a comparison between our results and those of static atoms
immersed in a thermal bath at the Unruh temperature.

II. THE MASTER EQUATION

We consider a two-atom system interacting with a bath of
fluctuating scalar fields in the Minkowski vacuum. The total
Hamiltonian of such a system takes the form

H = HA + HF + HI . (1)
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Here HA is the Hamiltonian of the two atoms,

HA = ω

2
σ

(1)
3 + ω

2
σ

(2)
3 , (2)

where σ
(1)
i = σi ⊗ σ0,σ

(2)
i = σ0 ⊗ σi , with σi(i = 1,2,3) be-

ing the Pauli matrices and σ0 being the 2 × 2 unit matrix. The
two atoms share the same energy level spacing ω. HF is the
Hamiltonian of the scalar fields. In this paper, we aim to study
the effects of vacuum fluctuations (modified by acceleration)
on the dynamics of entanglement, so we assume that each
of the two atoms interacts locally with a common bath of a
fluctuating scalar field in the Minkowski vacuum and there are
no direct interactions between the two atoms themselves. The
interaction Hamiltonian HI , which is supposed to be weak, is
taken in analogy to the electric dipole interaction as [30]

HI = μ
[
σ

(1)
2 �(t,x1) + σ

(2)
2 �(t,x2)

]
, (3)

where μ is the coupling constant.
We assume the atoms are uncorrelated with the environment

at the beginning; that is, the initial state takes the form ρtot(0) =
ρ(0) ⊗ |0〉〈0|, where |0〉 is the Minkowski vacuum state of the
scalar fields and ρ(0) is the initial state of the two-atom system.
In the weak-coupling limit, the reduced dynamics of the two-
atom system takes the Kossakowski-Lindblad form [31–33]

∂ρ(τ )

∂τ
= −i[Heff, ρ(τ )] + L[ρ(τ )] , (4)

with

Heff = HA − i

2

2∑
α,β=1

3∑
i,j=1

H
(αβ)
ij σ

(α)
i σ

(β)
j (5)

and

L[ρ] = 1

2

2∑
α,β=1

3∑
i,j=1

C
(αβ)
ij

[
2 σ

(β)
j ρ σ

(α)
i

− σ
(α)
i σ

(β)
j ρ − ρ σ

(α)
i σ

(β)
j

]
. (6)

Here C
(αβ)
ij and H

(αβ)
ij are determined by the Fourier and Hilbert

transforms, G(αβ)(λ) and K(αβ)(λ), of the field correlation
functions

G(αβ)(τ − τ ′) = 〈�(τ,xα)�(τ ′,xβ)〉, (7)

which are defined as

G(αβ)(λ) =
∫ ∞

−∞
d�τ eiλ�τ G(αβ)(�τ ), (8)

K(αβ)(λ) = P

πi

∫ ∞

−∞
dω

G(αβ)(ω)

ω − λ
, (9)

with P denoting the principal value. Then C
(αβ)
ij can be written

explicitly as

C
(αβ)
ij = A(αβ)δij − iB(αβ)εijk δ3k − A(αβ)δ3i δ3j , (10)

where

A(αβ) = μ2

4
[G(αβ)(ω) + G(αβ)(−ω)],

B(αβ) = μ2

4
[G(αβ)(ω) − G(αβ)(−ω)]. (11)

Replacing G(αβ) with K(αβ) in the above equations, one obtains
H

(αβ)
ij .

III. ENTANGLEMENT DYNAMICS
OF THE TWO-ATOM SYSTEM

In this section we investigate the dynamics of the
two-atom system accelerating with the same acceleration
perpendicular to the separation and compare it with that
of static ones immersed in a thermal bath at the Unruh
temperature.

The trajectories of the two uniformly accelerated atoms can
be described as

t1(τ ) = 1

a
sinh aτ, x1(τ ) = 1

a
cosh aτ, y1(τ ) = 0,

z1(τ ) = 0,

t2(τ ) = 1

a
sinh aτ, x2(τ ) = 1

a
cosh aτ, y2(τ ) = 0,

z2(τ ) = L. (12)

The Wightman function of massless scalar fields in the
Minkowski vacuum takes the form

G+(x,x ′)

= − 1

4π2

1

(t − t ′ − iε)2 − (x − x ′)2 − (y − y ′)2 − (z − z′)2
.

(13)

Allowing for the trajectories (12), the correlation functions can
be written as

G(11)(x,x ′) = G(22)(x,x ′) = − a2

16π2

1

sinh2
(

a(τ−τ ′)
2 − iε

) ,

(14)

G(12)(x,x ′) = G(21)(x,x ′)

= − a2

16π2

1

sinh2
(

a(τ−τ ′)
2 − iε

) − a2L2

4

. (15)

The Fourier transforms of the above correlation functions
are

G(11)(λ) = G(22)(λ) = 1

2π

λ

1 − e−2πλ/a
, (16)

G(12)(λ) = G(21)(λ) = 1

2π

λ

1 − e−2πλ/a
f (λ,a,L), (17)

where

f (λ,a,L) = sin
(

2λ
a

sinh−1 aL
2

)
λL

√
1 + a2L2/4

. (18)

Then the coefficients of the dissipator in the master equation
can be obtained directly as

C
(11)
ij = C

(22)
ij = A1 δij − iB1εijk δ3k − A1δ3i δ3j , (19)

C
(12)
ij = C

(21)
ij = A2 δij − iB2εijk δ3k − A2δ3i δ3j , (20)
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where

A1 = �0

4
coth

πω

a
, A2 = �0

4
f (ω,a,L) coth

πω

a
,

(21)

B1 = �0

4
, B2 = �0

4
f (ω,a,L),

with �0 = μ2ω/2π being the spontaneous emission rate.
Usually, the master equation is solved in the computational

basis {|1〉 = |00〉,|2〉 = |10〉,|3〉 = |01〉,|4〉 = |11〉}. How-
ever, for certain cases, the coupled basis {|G〉 = |00〉,|A〉 =

1√
2
(|10〉 − |01〉),|S〉 = 1√

2
(|10〉 + |01〉),|E〉 = |11〉} is more

convenient. Then a set of equations describing the time
evolution of the populations in the coupled basis, which
are decoupled from other matrix elements, can be obtained
as [34]

ρ̇G = −4(A1 − B1)ρG + 2(A1 + B1 − A2 − B2)ρA

+ 2(A1 + B1 + A2 + B2)ρS, (22)

ρ̇A = −4(A1 − A2)ρA + 2(A1 − B1 − A2 + B2)ρG

+ 2(A1 + B1 − A2 − B2)ρE, (23)

ρ̇S = −4(A1 + A2)ρS + 2(A1 − B1 + A2 − B2)ρG

+ 2(A1 + B1 + A2 + B2)ρE, (24)

ρ̇E = −4(A1 + B1)ρE + 2(A1 − B1 − A2 + B2)ρA

+ 2(A1 − B1 + A2 − B2)ρS, (25)

where ρI = 〈I |ρ|I 〉,I ∈ {G, A, S, E}. Since ρG + ρA +
ρS + ρE = 1, only three of the above equations are indepen-
dent.

We take concurrence [35] as a measurement of quantum
entanglement, which is 1 for the maximally entangled states
and 0 for separable states. For X states, namely, states with
nonzero elements only along the diagonal and antidiagonal of
the density matrix, the concurrence takes the form [36]

C[ρ(τ )] = 2 max{0,K1(τ ),K2(τ )}, (26)

where

K1(τ ) = |ρ23(τ )| −
√

ρ11(τ )ρ44(τ ),
(27)

K2(τ ) = |ρ14(τ )| −
√

ρ22(τ )ρ33(τ ),

with ρij = 〈i|ρ|j 〉. In the following, we consider the entangle-
ment dynamics for atoms initially prepared in states |A〉,|S〉,
and |E〉. Since the equations of motion of these populations

are decoupled from other matrix elements, we have ρ14(τ ) =
ρAS(τ ) = ρGE(τ ) = 0. Therefore, the concurrence can be
expressed with the populations in the coupled basis as

C[ρ(τ )] = max{0,K(τ )},
K(τ ) = |ρS(τ ) − ρA(τ )| − 2

√
ρG(τ )ρE(τ ). (28)

Before the investigation of the time evolution of entangle-
ment, we first examine the behaviors of the asymptotic state by
setting the rates of change of the populations in Eqs. (22)–(25)
equal to zero. For atoms with a nonvanishing separation [which
ensures the coefficients of Eqs. (22)–(25) different from zero],
we find that

ρA(∞) = ρS(∞) = e2πω/a

(e2πω/a + 1)2
. (29)

Therefore, K(∞) (28) is negative, which implies that the
accelerated atoms will get disentangled within a finite time.
When the interatomic separation is vanishing, the asymptotic
state depends on the initial state, so the atoms can be
entangled [25]. These conclusions are in agreement with those
in the thermal case [17,21].

Now we begin our study of the entanglement dynamics
for uniformly accelerated atoms with the same acceleration
perpendicular to the separation. For atoms initially prepared
in a maximally entangled state, we want to know how quantum
entanglement between the two atoms decays, while for atoms
initially in a separable state, we check whether they can get
entangled during evolution.

A comparison between the modulating function
f (ω,a,L) (18) and that of the thermal case [see Eq. (37)
in [17]] shows that the modulating function here depends
on acceleration a, but the counterpart in the thermal case
is temperature independent. Therefore, the entanglement
dynamics for uniformly accelerated atoms would generally
be different from the static ones immersed in a thermal bath
at the Unruh temperature. We address these issues in detail in
the following.

A. Atoms with maximally entangled initial states |A〉 and |S〉
We begin our discussion with the cases when the two-atom

system is initially prepared in the symmetric state |S〉 and the
antisymmetric state |A〉, which are maximally entangled.

When the interatomic separation is very large (L → ∞),
the modulating function f (ω,a,L) tends to zero. For atoms
initially in |A〉, the time evolution of the elements of the density
matrix can be solved as

ρG(τ ) = 1

(e2πω/a + 1)2
[−e2πω/ae−8A1τ − e2πω/a(e2πω/a − 1)e−4A1τ + e4πω/a],

ρA(τ ) = 1

(e2πω/a + 1)2
[e2πω/ae−8A1τ + (e4πω/a + 1)e−4A1τ + e2πω/a],

ρS(τ ) = 1

(e2πω/a + 1)2
(e2πω/ae−8A1τ − 2e2πω/ae−4A1τ + e2πω/a),

ρE(τ ) = 1

(e2πω/a + 1)2
[−e2πω/ae−8A1τ + (e2πω/a − 1)e−4A1τ + 1]. (30)
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FIG. 1. Comparison between the dynamics of concurrence for uniformly accelerated atoms (black lines marked with points) and static ones
in a thermal bath at the Unruh temperature (gray lines) initially prepared in (left) |A〉 and (right) |S〉, with ωL = 1. The dashed, dot-dashed,
and solid lines correspond to a/ω = 2/10,a/ω = 2, and a/ω = 20, respectively.

Since the equations governing the time evolution of both ρA

and ρS are the same in this limit, it is obvious that for atoms
initially in |S〉, the solutions can be obtained by exchanging
ρA with ρS in the above equations. Therefore, there is no
difference in the dynamics of concurrence whether the initial
state is |A〉 or |S〉 according to Eq. (28). Physically, the atoms
can be regarded as being coupled to individual baths in the large
separation limit. In this limit, the entanglement dynamics for
the accelerated atoms and thermal ones cannot be distinguished
since the modulating functions for both cases take the same
limiting value of zero. Our results are in agreement with those
derived in Ref. [11], in which the entanglement dynamics for
atoms immersed in individual reservoirs at finite temperatures
are studied. Note the decay rate of concurrence at τ = 0 is
�0 coth πω

2a
, which is smaller than �0 coth πω

a
, namely, the

decay rate of ρA or ρS .

When the interatomic separation is vanishingly small (L →
0), the atoms interact with the field modes in a collective
and coherent way, which is usually referred to as the two-
atom Dicke model [37]. In this limit, the modulating function
f (ω,a,L) (18) tends to 1, and the coefficients A1 = B1,A2 =
B2, so Eq. (23) reduces to ρ̇A = 0; that is, the population of the
antisymmetric state remains constant, which means that even
the equilibrium state depends on the initial state. Here, for
atoms initially in the antisymmetric state |A〉, the spontaneous
transition is suppressed completely, and it is obvious that

ρA(τ ) = 1, ρG(τ ) = ρS(τ ) = ρE(τ ) = 0, (31)

so the concurrence remains maximum during evolution. For
atoms initially in the symmetric state |S〉, the transition rate of
ρS is enhanced as twice that of the large separation limit, and
direct calculations show that

ρE(τ ) = eπω/a − 1

2(e2πω/a − eπω/a + 1)
e−2�1τ − eπω/a + 1

2(e2πω/a + eπω/a + 1)
e−2�2τ + 1

e4πω/a + e2πω/a + 1
,

ρG(τ ) = −eπω/a(eπω/a − 1)

2(e2πω/a − eπω/a + 1)
e−2�1τ − eπω/a(eπω/a + 1)

2(e2πω/a + eπω/a + 1)
e−2�2τ + e4πω/a

e4πω/a + e2πω/a + 1
,

(32)

ρS(τ ) = (e2πω/a − 1)2

2(e2πω/a − eπω/a + 1)
e−2�1τ + (e2πω/a + 1)2

2(e2πω/a + eπω/a + 1)
e−2�2τ + e2πω/a

e4πω/a + e2πω/a + 1
,

ρA(τ ) = 0,

where

�1 = e2πω/a − eπω/a + 1

e2πω/a − 1
�0,

�2 = e2πω/a + eπω/a + 1

e2πω/a − 1
�0. (33)

So the atoms get disentangled within a finite time, and the
decay rate of concurrence at t = 0 is 2�0 coth πω

2a
, which is

twice that of atoms with infinitely large separations. Since
the modulating functions of both the accelerated atoms and
the thermal ones take the same limiting value of 1 when the

separation is vanishing, the entanglement dynamics for the two
cases cannot be distinguished.

Now let us investigate the effects of acceleration on
entanglement dynamics when the interatomic separation L

is comparable to the transition wavelength of the atoms ∼ω−1.
In this regime, the solutions of Eqs. (22)–(25) are rather
complicated, so we solve these equations numerically. As dis-
cussed above, the decay rate of concurrence for atoms initially
prepared in |A〉 and |S〉 is related to those of populations ρA

and ρS , which are proportional to [1 − f (ω,a,L)] and [1 +
f (ω,a,L)], respectively. Since f (ω,a,L) is not a monotonic
function of a and L, the effect of acceleration a on the decay
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FIG. 2. Comparison between the dynamics of concurrence for uniformly accelerated atoms (black lines marked with points) and static ones
in a thermal bath at the Unruh temperature (gray lines) initially prepared in (left) |A〉 and (right) |S〉, with ωL = 4. The dashed, dot-dashed,
and solid lines correspond to a/ω = 1/10,a/ω = 1, and a/ω = 10, respectively.

rate of entanglement depends on the specific value of L. In the
following, we study the effects of acceleration on entanglement
dynamics for accelerated atoms initially prepared in |A〉 and
|S〉 with two different interatomic separations and compare the
results with those of static ones in a thermal bath at the Unruh
temperature in Figs. 1 and 2, respectively. In the case ωL = 1,
the larger the acceleration is, the faster the concurrence decays.
When ωL = 4, it is shown that the decay rates may not increase
with acceleration, which is distinct from the thermal case.
For small accelerations, the entanglement dynamics of the
uniformly accelerated atoms is essentially the same as that
of the thermal case since the function f (ω,L) (18) can be
expanded with respect to the acceleration a as

f (ω,a,L) = sin ωL

ωL
− 1

24

(
L2cos ωL + 3L

ω
sin ωL

)
a2

+O[a4], (34)

and the zeroth-order term takes exactly the same form as
that in the thermal case. As the acceleration increases, the
entanglement dynamics of the accelerated atoms becomes
more distinguishable from that of the corresponding thermal
case.

B. Atoms with a separable initial state |E〉
Here we investigate the entanglement dynamics for two-

atom systems initially prepared in a separable state |E〉. From
Eq. (28) we know that the factor 2

√
ρGρE acts as a threshold,

and thus, entanglement can be generated only if the difference
of populations of the symmetric and antisymmetric states
overweights this threshold. Therefore, when the atoms are
initially in state |E〉, they may get entangled after a finite time
of evolution via spontaneous emission [18].

Now let us investigate under what conditions entanglement
sudden birth can happen for atoms initially prepared in |E〉.
When the separation L is vanishing, A1 = A2,B1 = B2, and
ρA remains zero during evolution. In this case, the threshold
overweights the population ρS all the time, and no quantum
entanglement can be generated [18]. In addition, if the
separation is very large, A2 ≈ 0,B2 ≈ 0, one derives from
Eqs. (23) and (24) that d

dt
(ρA − ρS) = −4A1(ρA − ρS); thus,

(ρA − ρS) remains zero all the time for atoms initially prepared
in |E〉, and no entanglement is created. In Fig. 3 we study

numerically the range of acceleration (temperature) within
which entanglement can be generated for both accelerated
atoms and static ones in a thermal bath initially prepared in
|E〉 when ωL ranges from 0 to 3. Similar to the conclusion
derived in Ref. [21] that entanglement sudden birth happens
only when the temperature of the thermal bath is sufficiently
small, here we find that for each interatomic separation,
there exists an upper bound of acceleration larger than which
entanglement cannot be generated. Another fact shown in this
phase diagram is that the possible region of entanglement
generation for accelerated atoms does not completely overlap
with that for the static atoms in a thermal bath. That is, for
certain circumstances, accelerated atoms can get entangled
while the static ones in a thermal bath at the corresponding
Unruh temperature cannot and vice versa. In particular, for

FIG. 3. Entanglement profile for two-atom systems initially
prepared in |E〉. Region A: both accelerated atoms and static ones in
a thermal bath can get entangled. Region B: accelerated atoms can
get entangled while static ones in a thermal bath cannot. Region C:
accelerated atoms cannot get entangled while static ones in a thermal
bath can. Region D: neither accelerated atoms nor static ones in a
thermal bath can get entangled. Region E: accelerated atoms can get
entangled while inertial ones in the Minkowski vacuum cannot.
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FIG. 4. Comparison between the dynamics of concurrence for uniformly accelerated atoms (black lines marked with points) and static
ones in a thermal bath at the Unruh temperature (gray lines) initially prepared in |E〉, with (left) ωL = 1/2 and (right) ωL = 3/2. The dashed,
dot-dashed, and solid lines correspond to a/ω = 1/10,a/ω = 1, and a/ω = 6/5, respectively.

certain interatomic separations, accelerated atoms with an
appropriate acceleration can get entangled while the inertial
ones in the Minkowski vacuum cannot. Similar conclusions
have been drawn in Ref. [38], in which it has been found
that the degree of entanglement of some particular states
shared by two observers increases as one of the observers
accelerates, and in Ref. [39], in which the enhancement of
vacuum entanglement by a weak gravitational field has been
shown.

In the following, we study the effects of acceleration on the
evolution of concurrence for two-atom systems initially in |E〉
with two different interatomic separations in Fig. 4. It is shown
that the lifetime of entanglement decreases as the acceleration
grows. In the case ωL = 3/2, when the acceleration becomes
larger than 6ω/5, entanglement generation does not happen for
accelerated atoms, while the static ones in a thermal bath at the
corresponding Unruh temperature can still be entangled. For
atoms with separation ωL = 1/2, entanglement sudden birth
for static atoms in a thermal bath stops first as the acceleration
or the corresponding Unruh temperature increases.

Another point we want to address is the maximum of
entanglement generated during evolution. Intuitively, one may
expect it would decrease as the acceleration increases as a
result of the Unruh effect. However, we find that this is not
always the case. It is shown in Fig. 5 that, for the thermal case,
the maximum of concurrence always decreases as the temper-
ature increases. When the temperature is small, the maximum
of concurrence varies extremely slow with acceleration and

is almost a constant. However, for the accelerated ones, this
maximum may not decrease with acceleration for certain
separations. In particular, it may even exceed that of statics
ones in vacuum. In the following, we give a brief approximate
analysis of how this happens when the acceleration is small. In
the limit of small acceleration or temperature, the spontaneous
excitations can be neglected, and the factor coth πω

a
can be

approximated as 1. In fact, coth πω
a

− 1 is an infinitesimal of
higher order than aN , with N being any finite natural number.
This leads to A1 − B1 = 0 and A2 − B2 = 0, and then the
time evolution of the populations (22)–(25) can be solved
analytically as

ρG(τ ) = 1 − 1 + f

1 − f
e−(1+f )�0τ

− 1 − f

1 + f
e−(1−f )�0τ + 1 + 3f 2

1 − f 2
e−2�0τ ,

ρA(τ ) = 1 − f

1 + f
e−2�0τ (e(1+f )�0τ − 1),

(35)

ρS(τ ) = 1 + f

1 − f
e−2�0τ (e(1−f )�0τ − 1),

ρE(τ ) = e−2�0τ ,

with f being the modulating function. Then, for the thermal
case, f (ω,L) is temperature independent, so the concurrence
is also independent of temperature in this approximation,
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C Ρ max
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FIG. 5. Comparison between the maximum of concurrence during evolution for uniformly accelerated atoms (solid lines) and static ones
in a thermal bath at the Unruh temperature (dashed lines) initially prepared in |E〉 with (left) ωL = 1/2 and (right) ωL = 3/2.
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which explains why the maximum of concurrence is almost a
constant for small accelerations. As for the accelerated case,
the maximum of concurrence can either increase or decrease
with acceleration depending on the specific value of L, as
f (ω,a,L) is acceleration dependent.

IV. CONCLUSION

In conclusion, we have studied the dynamics of two
uniformly accelerated two-level atoms in the Minkowski
vacuum in the framework of open quantum systems. We take
concurrence to be a measurement of quantum entanglement
and investigate how it evolves. For atoms in a maximally
entangled state, entanglement sudden death is a general feature
for accelerated atoms with a nonvanishing separation. In
contrast to the thermal case, the decay rate of entanglement
may not necessarily increase with acceleration. When both

of the two accelerated atoms are initially in the excited state,
the conditions for entanglement generation are investigated
numerically and are found not to be completely the same as
those for static ones in a thermal bath. Remarkably, for certain
interatomic separations, accelerated atoms can get entangled
while the inertial ones in the Minkowski vacuum cannot, and
the maximum of concurrence generated during evolution for
accelerated atoms may increase with acceleration.
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