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Class of unambiguous state discrimination problems achievable by separable measurements
but impossible by local operations and classical communication
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We consider an infinite class of unambiguous quantum state discrimination problems on multipartite systems,
described by Hilbert space H, of any number of parties. Restricting consideration to measurements that act only
on H, we find the optimal global measurement for each element of this class, achieving the maximum possible
success probability of 1/2 in all cases. This measurement turns out to be both separable and unique, and by our
recently discovered necessary condition for local quantum operations and classical communication (LOCC) it is
easily shown to be impossible by any finite-round LOCC protocol. We also show that, quite generally, if the input
state is restricted to lie in H, then any LOCC measurement on an enlarged Hilbert space is effectively identical to
an LOCC measurement on H. Therefore, our necessary condition for LOCC demonstrates directly that a higher
success probability is attainable for each of these problems using general separable measurements as compared
to that which is possible with any finite-round LOCC protocol.
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I. INTRODUCTION

In a recent paper [1], we proved a necessary condition
(reproduced as Theorem 1, below) that a multiparty quantum
measurement can be implemented by local operations and clas-
sical communication (LOCC) in any finite number of rounds
of communication. It is easily seen that such measurements
must be separable—that is, the measurement operators must
all be tensor products—and our Theorem 1 provides a strong,
and quite general, constraint on the set of product operators
representing any measurement implemented by finite-round
LOCC. We also showed that the condition of Theorem 1 is
extensively violated by separable measurements, a violation
limited only by the size of the system, as measured by the
number of parties involved.

Despite the generality of Theorem 1, we were unable,
at the time of writing, to provide examples of separable
measurements having obvious practical interest, and which
violate the conditions of that theorem. A reasonable criticism,
then, was that the theorem was “primarily of mathematical
value with physical implications wanting” [2]. Here, we
remedy this deficiency by providing an infinite class of
physically motivated examples where the theorem can be
directly used to demonstrate the LOCC impossibility of these
specific operational tasks, each of which can, nonetheless, be
implemented by separable measurements.

Our examples involve the optimal unambiguous discrimi-
nation of quantum states, a subject pioneered by Ivanovic [3],
Dieks [4], and Peres [5]. This is one method of extracting
information from nonorthogonal states, wherein due to this
nonorthogonality the information cannot be obtained perfectly.
There are numerous scenarios that involve the extraction
of information under such conditions, including quantum
cryptography and quantum key distribution [6]. It is therefore
a subject of considerable significance in quantum information
processing, with implications for both theory and experiment,
and its study remains robust to this day [7–10].
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In the scenario of unambiguous state discrimination, a
quantum system is prepared in one of a given set of states, and
the aim is to perform measurements on that system in order to
determine in which state it was prepared. It is required that the
error probability is zero—one can never guess one state when
it happens to be another—which means that when the states
are not mutually orthogonal there must be an inconclusive
outcome, one for which the given state remains unknown.

Chefles [11] has shown that the states in the given set can be
unambiguously discriminated if and only if they are linearly
independent, and then the measurement involves the reciprocal
set of states (see below). When the states form a symmetric
set and the a priori probabilities are all equal, then an optimal
measurement—one achieving the maximum possible success
probability—was obtained in [12]. Later, Eldar [13] showed
that the problem of finding an optimal measurement for
an arbitrary set of linearly independent pure states can be
formulated as a semidefinite programming problem.

We will assume that the quantum system under consid-
eration is made up of P spatially separated parts, and that
the separate parties utilize LOCC in order to discriminate the
states. Chefles [14] found a condition, valid for both separable
measurements and for LOCC, which is necessary and sufficient
that a set of states can be unambiguously discriminated.
The equivalence of LOCC and the full set of separable
measurements for this question is not obvious, even though
every LOCC is also separable [15]. The reason is the existence
of separable measurements that cannot be implemented by
LOCC, a discovery first made in [16]. Of course, this result of
[14] does not say that, for unambiguous state discrimination,
use of the full set of separable measurements is equivalent
to using only LOCC, because there is still the question
of finding an optimal measurement. Along these lines, it
was shown in [17] that the success probability with general
separable measurements can exceed that for LOCC for a pair
of two-qubit states, one pure and the other mixed. As far as
we are aware, this is the only known example of a separation
between separable measurements and LOCC for unambiguous
state discrimination. Here, we provide an infinite set of new
examples showing such a separation, all of which only involve
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pure states, including one case involving two qubits. For these
examples, we use Theorem 1 to show that LOCC cannot
achieve as high a success probability as is possible with
separable measurements. This then accomplishes a main goal
of this paper, which is to demonstrate the utility of Theorem 1.

Consider a multipartite system of P parts, described by
Hilbert space H = H1 ⊗ · · · ⊗ HP of overall dimension D,
and a separable measurement on H consisting of N measure-
ment operatorsKj = K(1)

j ⊗ · · · ⊗ K(P )
j satisfyingKj � 0 and∑

j Kj = I , with I the identity on H. Following the ideas in
[1], we consider the convex cones generated by the set of local
operators {K(α)

j }, for each α. As the number of operators is
finite, these are polyhedral cones, having a finite number of
extreme rays.1 Let us count the distinct extreme rays in the
convex cone generated by the set of local operators {K(α)

j },
for each party α, and define this number to be eα . Then, the
following theorem was proved in [1].

Theorem 1. For any finite-round LOCC protocol of P

parties implementing a separable measurement corresponding
to the N distinct positive product operators {Kj = K(1)

j ⊗
. . . ⊗ K(P )

j }Nj=1, it must be that

P∑
α=1

eα � 2(N − 1), (1)

where eα is the number of distinct extreme rays in the convex
cone generated by operators {K(α)

j }Nj=1, and the sum includes
only those parties for which at least one of these local operators
is not proportional to the identity.

In [1], we presented separable measurements consisting of
a set of product operators {�k}Nk=1 for every D and prime
N > D, for which the upper bound in this theorem is violated
maximally, satisfying

∑
eα = PN , thus demonstrating a

very strong difference between separable measurements and
LOCC. In Sec. II, we use these same operators to construct
sets of states for which the optimal global measurement
for unambiguous state discrimination is separable and (for
present purposes, effectively) unique (see Theorem 2), and
which cannot be implemented by finite-round LOCC, a result
that follows immediately from Theorem 1. Theorem 2 thus
demonstrates that the optimal probability of success, which is
achievable by a separable measurement, cannot be achieved
using finite-round LOCC, even when applied to an enlarged
Hilbert space. In Sec. III, we give a proof of Theorem 2, and
then we offer our conclusions in Sec. IV.

II. SEPARABLE MEASUREMENTS THAT ARE STRICTLY
BETTER THAN LOCC

Consider any prime number N � 5 and a multipartite
system having overall dimension D = N − 1. The number of
parties P can be chosen in any way consistent with the prime
factorization of D—this choice is generally not unique, but it
is unimportant for our present purposes. Let Hα be the Hilbert

1A ray is a half-line of the form {λK̂(α)
j |λ � 0}. An extreme ray of

a convex cone is a ray that lies in the cone but cannot be written as a
positive linear combination of other rays in that cone.

space describing party α’s subsystem, and the overall Hilbert
space is then H = H1 ⊗ H2 ⊗ . . . ⊗ HP . Define states

|�j 〉 = ∣∣ψ (1)
j

〉 ⊗ . . . ⊗ ∣∣ψ (P )
j

〉
, j = 1, . . . ,N, (2)

with

∣∣ψ (α)
j

〉 = 1√
dα

dα−1∑
mα=0

e2πijpαmα/N |mα〉, (3)

where dα is the dimension ofHα , with parties ordered such that
d1 � d2 � . . . � dP , and overall dimension D = d1d2 . . . dP .
Here, p1 = 1 and, for α � 2,pα = d1d2 . . . dα−1, and |mα〉 is
the standard basis for party α. It was shown in [1] that

I = D

N

N∑
j=1

�j, (4)

where �j = |�j 〉〈�j |.
We will choose D of the |�j 〉 and then show they are a

basis of the full space. First note that diagonal unitary

U (α) =
dα−1∑
mα=0

e2πipαmα/N |mα〉〈mα|

permutes the states |ψ (α)
j 〉. That is, U (α)|ψ (α)

j 〉 = |ψ (α)
j+1〉, and

we have set |ψ (α)
N+1〉 = |ψ (α)

1 〉. Therefore, U = U (1) ⊗ · · · ⊗
U (P ) permutes the |�j 〉, showing that the latter N states are
a symmetric set. (Note, however, that the chosen D = N − 1
states are not a symmetric set.) As a consequence, it does
not matter which of the N states we omit in choosing a basis
of the full D-dimensional space—any conclusions reached by
omitting one could equally well have been reached by omitting
any other—so without loss of generality we will choose to omit
|�1〉.

Let us then define two sets of states,

S� = {|�j 〉}Nj=2 (5)

and

S� = {|�j 〉}Nj=2, (6)

each set reciprocal to the other. [Given Eqs. (2) and (3),
this reciprocity is how the |�j 〉 are to be determined; see
Eq. (8) below.] Our aim is to unambiguously discriminate S�.
Existence of a reciprocal set of states requires that the original
set is linearly independent, so we must demonstrate that the
D states of S� possess this property. Actually, the following
lemma is more general than what we need.

Lemma 1. Given a prime number N and any D � N , any
subset I ⊆ [1, . . . ,N] of D or fewer of the states |�j 〉, defined
in Eq. (2), constitutes a linearly independent set.

Proof. Consider

0 =
∑
j∈I

cj |�j 〉

=
d1−1∑
m1=0

· · ·
dP −1∑
mP =0

⎛
⎝∑

j∈I
cj e

2πij
∑

α pαmα/N

⎞
⎠ |m1 . . . mP 〉

⇐⇒ 0 =
∑
j∈I

cj e
2πij

∑
α pαmα/N∀m1, . . . ,mP . (7)
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By an argument similar to that following Eq. (6) of [1], one
sees that

∑
α pαmα takes on each value ranging from zero to

D − 1, and each of these values corresponds to a unique set
of the indices, mα . Choosing any |I| values of k = k({mα}) =∑

α pαmα from Eq. (7), we can represent these |I| constraints
as M �c = 0, where the j th component of �c is cj , and |I| ×
|I| matrix M has components Mkj = e2πijk/N . It is clear that
M is a submatrix of the N × N matrix � = (ωjk)N−1

j,k=0, with
ω = e2πi/N a primitive root of unity. Then, by Chebotarëv’s
theorem on roots of unity [18], M is invertible. This implies
that cj = 0 for all j ∈ I and that the set {|�j 〉}j∈I is linearly
independent, which completes the proof. �

Given states |�j 〉, the reciprocal states |�j 〉 are defined by
the relations

〈�k|�j 〉 = δjk〈�j |�j 〉 ∀ j,k = 2, . . . ,N. (8)

The set of states S�, given with a priori probabilities ηj ,
can be unambiguously discriminated [11] by the measurement
M({wj }) consisting of operators {wj�j }Nj=2 and one addi-
tional “failure” operator:

�f = I −
N∑

j=2

wj�j . (9)

To find an optimal measurement, the weights wj are chosen
so as to minimize the probability of failure,

Pr(f ) =
N∑

j=2

ηj Tr(�f �j ), (10)

with �j = |�j 〉〈�j |.
Note that since the D chosen |�j 〉 are linearly independent

and a basis of the full Hilbert space H, their reciprocal states
|�j 〉 are also linearly independent and a basis of H. Therefore,

since 〈�k|�j 〉 = 0 for all j �= k, if for some k we replace |�k〉
by |�k〉 in the basis formed by the states in S�, we will still
have a basis of H. This means that if we exclude |�k〉 from
the set S� the only positive operator that annihilates all of the
remaining states is �k , up to multiplicative factors. Hence, we
have the following corollary to Lemma 1.

Corollary. The only positive operators acting on H that
will unambiguously identify |�k〉 are those proportional to
�k defined in Eq. (2). This implies that the only such
measurements unambiguously discriminating the set S� are
those of the form M({wj }) defined above Eq. (9), and the only
freedom available for optimizing these measurements lies in
the choice of the wj .

In the next section, we will prove the following theorem.
Theorem 2. If a priori probabilities ηj = 1/D for all j ,

then the optimal global measurement, Mopt, for unambiguous
discrimination of the set of states that is reciprocal to any
D = N − 1 of the states defined in Eq. (2) (i) is separable;
(ii) is unique, when restricting to measurements that act only
on H; (iii) consists of measurement operators D�j/N,j =
1, . . . ,N ; and (iv) achieves Pr(f ) = 0.5. In addition, Pr(f ) >

0.5 for this task when using any finite-round LOCC protocol.
The last statement in this theorem requires the following

lemma, which is proved in the Appendix.
Lemma 2. Given a multipartite system of P parties

described by Hilbert space H, consider any enlargement of
H to H′. Then, for any LOCC protocol L implementing
a measurement on H′ that involves input states that are
supported only on H, there exists an effectively identical
LOCC measurement on H which accomplishes precisely what
is accomplished by L.

Before moving on to the proof of Theorem 2, let us give an
explicit example, providing expressions for the states, |�j 〉, in
the case of two qubits with N = 5. These four states are

|�2〉 = 1√
5 + √

5

( − e−2πi/5|00〉 + (1 + e−2πi/5)|01〉 − (1 + e2πi/5)|10〉 + e2πi/5|11〉),
|�3〉 = 1√

5 + √
5

(
e2πi/5

2 cos(2π/5)
|00〉 − |01〉 − eπi/5|10〉 + (1 + e−2πi/5)|11〉

)
,

(11)

|�4〉 = 1√
5 + √

5

(
(1 + e2πi/5)|00〉 − eπi/5|01〉 + eπi/5|10〉 − (1 + e2πi/5)|11〉),

|�5〉 = 1√
5 + √

5

(
|00〉 + e2πi/5

2 cos(2π/5)
|01〉 + (1 + e2πi/5)|10〉 − e−2πi/5|11〉

)
.

We note that these states are all entangled, their reduced density matrices having von Neumann entropy approximately equal to
0.3, the same for all four states. The optimal measurement to unambiguously discriminate this set of states is given by operators
D�j/N,j = 1,2,3,4,5, with

|�1〉 = 1
2 (|00〉 + e4πi/5|01〉 + e2πi/5|10〉 + e−4πi/5|11〉),

|�2〉 = 1
2 (|00〉 + e−2πi/5|01〉 + e4πi/5|10〉 + e2πi/5|11〉),

(12)
|�3〉 = 1

2 (|00〉 + e2πi/5|01〉 + e−4πi/5|10〉 + e−2πi/5|11〉),
|�4〉 = 1

2 (|00〉 + e−4πi/5|01〉 + e−2πi/5|10〉 + e4πi/5|11〉),
|�5〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉).
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The failure operator in this case is �f = D�1/N . We now
proceed to the proof of Theorem 2.

III. PROOF OF THEOREM 2

We begin by noting that Lemma 2 applies to any number
of parties, including when there is only one. Therefore, if
we find an optimal global measurement under the restriction
that it acts only on H, then this measurement is also optimal
without such a restriction. Then, according to our corollary,
we can find an optimal measurement by consideringM({wj }),
defined by Eq. (9) and the sentence which precedes it, and then
minimizing the probability of failure over all choices of the
weights, wj . Inserting Eq. (4) into Eq. (9), we have

�f = D

N

N∑
j=1

�j −
N∑

j=2

wj�j

= D

N
�1 +

N∑
j=2

(
D

N
− wj

)
�j . (13)

For each l �= 1, define a dual basis for the D states obtained
by omitting |�l〉 from the full set {|�j 〉}Nj=1. Denote these

bases—one basis for each l—as |ξ (l)
k 〉, which satisfy〈

ξ
(l)
k

∣∣�j

〉 = δjk ∀ j,k �= l. (14)

Let us first show that |〈ξ (l)
k |�l〉| = 1. Recalling the comment

in the sentence following Eq. (7), we have

0 =
N∑

j=1

e2πij/N |�j 〉. (15)

Since |ξ (l)
k 〉 is orthogonal to |�j 〉 for all j �= k,l, then multiply-

ing Eq. (15) from the left by 〈ξ (l)
k | yields

0 = e2πik/N + e2πil/N
〈
ξ

(l)
k

∣∣�l

〉
, (16)

and the desired result follows immediately. Recalling that
�f � 0, we now have from Eq. (13) that

0 �
〈
ξ

(l)
k

∣∣�f

∣∣ξ (l)
k

〉 = D

N
− wk +

(
D

N
− wl

)∣∣〈ξ (l)
k

∣∣�l

〉∣∣2
,

(17)

or

wk + wl � 2D

N
,∀k,l �= 1, (18)

a result we will use below.
We now turn to the failure probability,

Pr(f ) = 1

D

N∑
j=2

Tr(�f �j )

= 1

D

N∑
j=2

Tr

([
I −

N∑
k=2

wk�k

]
�j

)

= 1 − 1

D

N∑
j=2

qjwj , (19)

where we have used Eq. (9) followed by Eq. (8), and defined
qj = |〈�j |�j 〉|2. The qj can be found by taking the inner
product of |�k〉 with Eq. (15), obtaining

0 = e2πi/N 〈�k|�1〉 + e2πik/N 〈�k|�k〉, (20)

which gives

qk = |〈�k|�1〉|2 . (21)

On the other hand, multiplying Eq. (4) by �k and taking the
trace, we have

N

D
= |〈�k|�1〉|2 + |〈�k|�k〉|2

= 2qk, (22)

having used Eq. (21) to obtain the last line. Hence,

qk = N

2D
∀k = 2, . . . ,N. (23)

Inserting this into Eq. (19), we have

Pr(f ) = 1 − N

2D2

N∑
j=2

wj . (24)

Let us now see what happens if there exists k such that
wk > D/N . Then,

N∑
j=2

wj =
N∑

2=j �=k

wj + wk

�
N∑

2=j �=k

(
2D

N
− wk

)
+ wk

= (N − 2)
2D

N
− (N − 3)wk

< (D − 1)
2D

N
− (D − 2)

D

N
= D2

N
, (25)

where we used Eq. (18) to obtain the second line, and the
fact that D = N − 1 to get the last inequality. Therefore, the
maximum of this sum has wj = D/N for all j = 2, . . . ,N ,
because in this case

N∑
j=2

wj = D2

N
. (26)

Maximizing this sum minimizes Pr(f ) [see Eq. (24)], and
since by Eq. (4) the latter choice of wj is a valid complete
measurement—having measurement operators {D�j/N}Nj=1,
with �f = D�1/N—this is therefore our optimal global
measurement. From Eq. (24), we see that this measurement
achieves

Pr(f ) = 0.5, (27)

which is thus our optimal probability of failure. As each �j is a
product operator, this measurement is clearly separable. By our
corollary along with the fact, just demonstrated, that there is
one and only one set of {wj } that minimizes Pr(f ), it is also the
unique optimal measurement whose action is restricted to H.
Since every operator in this measurement is a tensor product of
positive, rank-1 operators on P parties, and noting that rank-1
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positive operators are extreme rays in the convex cone of all
positive operators and therefore must be extreme in the convex
cone generated by any set of positive operators, each local part
ψ

(α)
j of each �j is extreme in the collection of all ψ

(α)
j , for

each party α. We thus see that eα = N for all α, and the sum of
extreme rays yields

∑
α eα = PN > 2(N − 1), an extensive

violation of Theorem 1. Therefore, it is not possible to imple-
ment this measurement by finite-round LOCC acting on H.

By Lemma 2 we see that for these input states and any
LOCC measurement on an enlarged Hilbert space there is an
effectively identical LOCC measurement on H. The phrase
“effectively identical” means that the two measurements have
the same set of outcomes (excluding those outcomes that can
never occur; see the Appendix), where each outcome in the
measurement on the enlarged space has the same probability
(and output state) as the corresponding outcome in the other
measurement, which is a measurement that acts only on H.
Therefore, if there is a finite-round LOCC measurement on
the enlarged Hilbert space that achieves the optimal probability
of success, then its “effectively identical” counterpart, which
achieves the same probabilities, is a finite-round LOCC
measurement on H that also achieves that optimal probability
of success. This is a contradiction, since we have just seen that
no such measurement on H exists, implying there is no such
LOCC measurement on the enlarged Hilbert space, either.2

We therefore see that no finite-round LOCC protocol can be
optimal, including those that act on an enlarged Hilbert space,
and this completes the proof of Theorem 2.

IV. CONCLUSIONS

We have presented a class of problems involving the
unambiguous discrimination of quantum states, and have
shown in Theorem 2 that for each element in this class
there exists an optimal, separable measurement, achieving
the minimum possible failure probability of 0.5, which is
the unique such measurement that acts only on the space H
spanned by the set of states to be discriminated. We then
demonstrated the utility of Theorem 1 of [1], a recently
discovered necessary condition that a separable measurement
can be implemented by finite-round LOCC, by using the latter
theorem to (easily) prove that this separable measurement
cannot be implemented by LOCC in any finite number of
rounds. Finally, we showed that any LOCC measurement on an
enlarged Hilbert space must also be strictly less than optimal.
We note that this class of problems is infinitely large, having at
least one element for each prime number N . (Generally it will,
in fact, have more than one element for any given N , as long
as D = N − 1 is not the product of two primes.) Therefore,
we have solved an infinite set of unambiguous discrimination
problems, each of which has an optimal measurement that
is separable, but for which there is no finite-round LOCC
measurement that is optimal. Due to a result of [19], this class
of problems includes an infinite number of examples for each

2Note that since Theorem 1 only provides a necessary condition for
LOCC it may well be the case that the measurement on H′ satisfies
the bound in that theorem, even when that measurement cannot be
implemented by LOCC.

number of parties, P , and we have included an explicit example
here for the simplest system of two qubits [see Eq. (11)].

If the parties are given multiple copies of the chosen state,

∣∣�⊗n
j

〉 =
n copies︷ ︸︸ ︷

|�j 〉 ⊗ · · · ⊗ |�j 〉 , (28)

then one can use the same arguments used above for a
single copy to also show that there exists an optimal global
measurement that is separable and that achieves the minimum
possible Pr(f ) = 2−n. This optimal measurement consists of
the Nn measurement operators {(D/N )n�j1 ⊗ �j2 ⊗ · · · ⊗
�jn

,jk = 1, . . . ,N∀k}, and one can easily show that this
measurement cannot be implemented by finite-round LOCC,
again by using Theorem 1. However, there are now an infinite
number of other measurements that act only on the original
Hilbert space and also achieve this same Pr(f ), and we do not
at present know whether any of these are separable, let alone
if they are LOCC. It is thus an open question whether or not
LOCC is as good as separable measurements for these states
in the multiple-copy scenario.

For the single-copy case considered in this paper, we
conjecture that the set of states S� cannot be optimally
unambiguously discriminated by LOCC even with an infinite
number of rounds of communication. We have discussed why
we believe this is so in the conclusions of [1]. As an early step
toward proving this conjecture, we have recently managed to
prove a result which implies the following conclusion about
the optimal measurement for this task, Mopt of Theorem 2: If
there exists an LOCC protocol implementing Mopt, then every
branch of this protocol must continue for an infinite number
of rounds. That is, in any such protocol, no outcome of any
intermediate measurement can be terminal—the parties must
continue measuring forever no matter what outcomes have
been obtained in earlier rounds. While this result does not in
itself prove the conjecture, it does strengthen our belief that
Mopt cannot be implemented by LOCC even with an infinite
number of rounds, and we hope to find a full proof of this
result in the not-too-distant future.
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APPENDIX: PROOF OF LEMMA 2

Consider any measurement on the enlarged Hilbert space
H′ and suppose the Kraus operators for that measurement are
the set {Kj }. Define � = �1 ⊗ �2 ⊗ . . . to be the projector
(from H′) onto the original system H. Then, the set of Kraus
operators, {Kj�,I ′ − �}, is a complete measurement on H′,
where I ′ is the identity operator on H′. There is no guarantee
that I ′ − � is a product operator, but one can write

I ′ − � = (I ′
1 − �1) ⊗ I ′

2 ⊗ . . . ⊗ I ′
P

+�1 ⊗ (I ′
2 − �2) ⊗ I ′

3 ⊗ . . . ⊗ I ′
P + . . .

+�1 ⊗ �2 ⊗ . . . ⊗ �P−1 ⊗ (I ′
P − �P ), (A1)
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which as we will see in a moment is a sum of product operators
that, along with �, can be implemented by LOCC. Now
suppose the measurement under consideration, which acts on
the larger space, can be implemented by LOCC using, say,
protocol L. Then, consider the LOCC protocol consisting of
protocol L preceded by a series of measurements as follows:
Party 1 starts out by doing a two-outcome measurement
{�1,I

′
1 − �1}. If she gets the second outcome, they terminate

the protocol, but otherwise party 2 measures {�2,I
′
2 − �2}. If

he gets the second outcome, they terminate, but otherwise party
3 measures {�3,I

′
3 − �3}, and so on until all parties have done

this, after which they proceed with protocol L. Now, since we
consider only input states supported on H,I ′

1 − �1 has zero
probability of occurrence, as do the other outcomes I ′

α − �α

for each party α. Under these circumstances, the modification
of protocol L becomes an LOCC measurement acting on the
original space H alone, which has the exact same probabilities
as does protocol L, and in fact the output states for each branch
of the protocol are also identical in the two cases.

Or perhaps it is more precise to put it this way: Since
outcomes I ′

α − �α have zero probability of success, nothing
changes if we simply begin at the point where � has
been implemented (after all P parties have performed their
two-outcome measurements {�α,I ′

α − �α}). From a purely
technical perspective, we cannot really do this on the enlarged

space, because then the collection of measurement operators
does not represent a complete measurement, but we can
certainly do this on the original space instead of the enlarged
one. Then this is an LOCC measurement onH, which achieves
the exact same result as does protocol L. Indeed, in a matrix
representation, we can write � = diag(IH,0H⊥ ) and

Kj� = (K̃j 0̃), (A2)

where IH is the identity operator on H,K̃j is an operator that
acts only on H, and 0H⊥ and 0̃ are zero operators that act only
on H⊥, which we define to be the orthogonal complement of
H in H′. Note that, whereas 0H⊥ is a square matrix, K̃j and 0̃
need not be square; they may map to a space larger or smaller
than that on which they act, but both map to the same output
space, say Hout, which is also the output space for the operator
on H′ that we started with, Kj . Then the matrix K̃j represents
an operator that acts on H (and whose output is Hout), and
the collection of these operators constitutes a measurement
{K̃j } acting only on H, which is effectively identical to the
measurement {Kj } when the latter acts only on inputs that
are confined to H. That is, measurement {K̃j }, which is a
measurement that acts only on H, achieves exactly what is
achieved when {Kj } acts on inputs that are confined to H.
This completes the proof. �
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