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We investigate the problem of computing optimal quantum measurements in both minimal measuring and
minimax strategies. A Belavkin weighted square-root measurement (BWSRM) with appropriate weights can
represent the measurement that maximizes the correct probability for any given prior probabilities of quantum
states. Using this fact, we propose methods for computing optimal solutions by optimizing the weights of the
BWSRM. First, we explain the conditions for the BWSRM to be optimal. In particular, we argue that if a BWSRM
with certain weights is a minimax measurement, then the minimax probabilities can be immediately obtained.
Next, we propose an extension of the iterative algorithm developed by Ježek et al. [Phys. Rev. A 65, 060301
(2002)] for maximizing the correct probability. We prove that, for a linearly independent pure state set, Ježek
et al.’s algorithm converges to an optimal measurement. We also propose an iterative algorithm for a minimax
solution and prove that, for a pure state set, our algorithm monotonically decreases the difference between
estimated and true minimax values. Finally the performance of our algorithms is evaluated through numerical
experiments.
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I. INTRODUCTION

Discriminating between quantum states is one of the
fundamental problems in quantum information science. Since
the pioneering work of Helstrom, Holevo, and Yuen et al.
[1–3], the problem of finding a measurement that can dis-
criminate a set of quantum states as accurately as possible
has been widely studied. There are different criteria for the
detection of quantum states. A great deal of work has been
devoted to the strategy of minimum-error discrimination (see,
e.g., [4–11]). In this criterion, under the assumption that the
receiver knows the probability distribution of the quantum
states, we find a measurement that minimizes the average
probability of a detection error. In contrast, Hirota and Ikehara
discussed the quantum minimax strategy, which minimizes
the worst case of the average probability of a detection error
under the assumption that the receiver has no knowledge of
the prior probabilities of the quantum states [12]. Several
studies have also been reported on the quantum minimax
strategy [13–16].

There are some cases in which analytical solutions for
a minimum-error measurement are known. Necessary and
sufficient conditions for a minimum-error measurement have
been derived [1,3,17]. These conditions are often used to
prove the optimality of measurements [5,7,10,11]. Necessary
and sufficient conditions for a minimax solution are also
known [12,15,16]. However, it is usually difficult to obtain
a closed-form analytical expression for an optimal solution.
Analytical optimal solutions are not known with some excep-
tions, such as the case in which the dimension of the state

space is small or that in which a state set has some kind of
symmetry.

We can use numerical methods instead of analytical
approaches. The design of a minimum-error measurement
can be formulated as a semidefinite programming (SDP)
problem [18]. The problem of obtaining a minimax solution
can also be expressed as SDP [16]. In many cases, an
optimal solution can be computed in polynomial time by
exploiting well-known algorithms for solving semidefinite
programs with interior point methods. However, these classical
methods are often inefficient since they require an excessive
number of iterations in large scale problems (e.g., [19]). In
several areas, such as signal and image processing, alternative
numerical algorithms have recently been proposed that can
effectively solve several types of optimization problems (see,
e.g., [20–23]). In quantum signal detection theory, Ježek et al.
proposed an iterative algorithm for obtaining a minimum-error
measurement [24]. Their algorithm can be applied to general
problems for minimum-error measurement and can effectively
compute a solution in many cases. Later Tyson generalized the
iterative scheme of Ježek et al. and proved that Ježek et al.’s
algorithm monotonically increases the correct probability [25]
(as he described in Ref. [25], Reimpell et al. also proved
this in a different context [26,27]). An iterative algorithm
for obtaining a minimax solution was also proposed [28].
However, it has not been guaranteed that the solutions of
these algorithms are the global optimal ones. Moreover, their
approach may require considerable computational effort at
least if naively implemented.
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To reduce the computational complexity, suboptimal mea-
surements are sometimes used. In particular, the square-root
measurement (SRM), which is also referred to as the pretty
good measurement (PGM), has several desirable properties,
thus widely studied [5,6,8,29–33]. The SRM can be con-
structed directly from the given collection of states and is
optimal for several problems where quantum states have high
symmetries. A generalized SRM referred to as a Belavkin
weighted SRM (BWSRM) (also called a generalized PGM or
a weighted least-squares measurement), has also been investi-
gated [8,25,34–37]. The BWSRM can be described using a few
parameters called weights. It is shown that a minimum-error
measurement for arbitrary given prior probabilities can be
expressed by a BWSRM with appropriate weights [34].

We propose methods of computing optimal quantum
measurements in both the minimal measuring and minimax
strategies by optimizing the weights of the BWSRM. In
Sec. II, we describe a minimum-error measurement and a
minimax solution. In Sec. III, we describe a BWSRM and
conditions for the BWSRM to be optimal. In Sec. IV, we
explain our algorithm of numerically obtaining a minimum-
error measurement. Our algorithm is a generalization of Ježek
et al.’s iterative algorithm [24] with less computational cost.
We also discuss a method for estimating the precision of
the estimated maximum correct probability by computing its
upper and lower bounds at each iteration. Moreover, we prove
that, in the case of a linearly independent pure state set, Ježek
et al.’s algorithm converges to a minimum-error measurement.
In Sec. V, we explain our algorithm of numerically obtaining
a minimax solution and of obtaining upper and lower bounds
for the correct probability of a minimax solution. We also
derive that, in the case of a pure state set, the difference
between estimated and true minimax values is monotonically
decreasing in our algorithm. We show that computational cost
can be reduced for a group covariant state set. In Sec. VI, we
evaluate the performance of our algorithms through numerical
experiments. In Sec. VII, we investigate the time and space
complexity of our algorithms.

II. OPTIMAL DETECTION OF QUANTUM STATES

We consider the discrimination between M quantum states
represented by density operators ρm (m ∈ IM ), where Ik =
{0,1, . . . ,k − 1}. The density operator ρm satisfies ρm � 0 and
has unit trace (Trρm = 1), where A � 0 denotes that A is
positive semidefinite (similarly, A � B denotes that A − B

is positive semidefinite). A set of quantum states, ρ = {ρm :
m ∈ IM}, is called a quantum state set. Let H be the Hilbert
space spanned by the supports of the operators {ρm : m ∈ IM},
which we refer to as the state space of ρ. A state with a rank-1
density operator is called a pure state. A state that is not a pure
state is called a mixed state. A pure state set has only pure
states, and a mixed state set has at least one mixed state.

A quantum measurement that distinguishes ρ can be
modeled by a positive operator-valued measure (POVM) � =
{�m : m ∈ IM}. Without loss of generality, we can assume that
each detection operator �m is on H. In this paper we use the
matrix representation with respect to an orthonormal basis of
H. Let N = dimH and Sn be the entire set of n-dimensional

positive semidefinite matrices. In this case, ρm ∈ SN and
�m ∈ SN hold for each m ∈ IM .

Let M be the entire set of POVMs. Each � ∈ M satisfies

�m � 0, ∀m ∈ IM,

M−1∑
m=0

�m = I, (1)

where I is the identity matrix on H.
Let ξm be the prior probability of the state ρm. To

simplify the notation, {ξ 2
m : m ∈ IM} is denoted as ξ 2 for

any collection of prior probabilities ξ = {ξm : m ∈ IM}. The
average probability of correct detection, PC(ξ,�), is expressed
as

PC(ξ,�) =
M−1∑
m=0

ξmTr(ρm�m). (2)

The average probability of a detection error is 1 − PC(ξ,�).
In the minimal measuring strategy, the receiver knows the

collection of prior probabilities. Let

P
opt
C (ξ ) = max

�∈M
PC(ξ,�). (3)

The task of the receiver is to obtain a POVM � ∈ M
maximizing PC(ξ,�), i.e., satisfying PC(ξ,�) = P

opt
C (ξ ). We

call such � a minimum-error measurement for ρ with ξ .
If we consider a minimum-error measurement, we assume
that ξm > 0 for any m ∈ IM . In the case in which ξ is not
given, however, we can apply the minimax strategy. Under
this strategy, a receiver attempts to find a POVM �� ∈ M that
maximizes the worst-case correct probability over the prior
probabilities. We can regard PC(ξ,�) as both a continuous
convex function of ξ for fixed � and a continuous concave
function of � for fixed ξ . Thus, from the minimax theorem
in convex analysis [38], we can prove that there exists a pair
(ξ�,��), which we call a minimax solution for ρ, such that
(see [15] for details)

min
ξ∈X

max
�∈M

PC(ξ,�) = PC(ξ�,��)

= max
�∈M

min
ξ∈X

PC(ξ,�), (4)

where X is the entire set of possible prior probabilities
ξ = {ξm : m ∈ IM}. Let us call ξ� minimax probabilities, ��

a minimax measurement, and P �
C = PC(ξ�,��) the minimax

value. From Eq. (4), P �
C = P

opt
C (ξ�) holds.

III. BELAVKIN WEIGHTED SQUARE-ROOT
MEASUREMENTS (BWSRMS)

A. Definition of BWSRMs

Let Rm = rankρm. Also, let ψm be the N × Rm complex
matrix whose kth column is

√
λm,k |ψm,k〉, where λm,k and

|ψm,k〉 ∈ H are the nonzero eigenvalue and corresponding unit
eigenvector, respectively, of ρm. Then, we can write ρm =
ψmψ

†
m (A† denotes the conjugate transpose of A).

Let w, which we will call weights, be a set of Rm-
dimensional positive semidefinite matrices wm, i.e., w =
{wm ∈ SRm : m ∈ IM}. The BWSRM with weights w, which
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we denote as �(w) = {�(w)
m ∈ SN : m ∈ IM}, is the POVM

expressed as (see Sec. 2.2 of Ref. [34])

�(w)
m = [G(w)]−1/2ψmwmψ†

m[G(w)]−1/2, (5)

where G(w) ∈ SN is defined by

G(w) =
M−1∑
k=0

ψkwkψ
†
k . (6)

In this paper, we assume w ∈ W , where W is the entire
set of w = {wm ∈ SRm : m ∈ IM} satisfying G(w) > 0 (A > 0
denotes that A is strictly positive semidefinite). In this case,
since G(w) > 0 holds, [G(w)]−1/2 exists. Moreover, since wm �
0 holds, �(w)

m is guaranteed to be positive semidefinite.
In the case of a pure state set, since Rm = 1,ψm (also

denoted as |ψm〉) is a vector in H and wm is a non-negative
real number. From Eqs. (5) and (6), �(w)

m is expressed as
�(w)

m = |π (w)
m 〉 〈π (w)

m |, where [4,36]∣∣π (w)
m

〉 = [G(w)]−1/2√wm |ψm〉 ,
(7)

G(w) =
M−1∑
k=0

wk |ψk〉 〈ψk| .

Note that �(w) satisfies

Tr
[
ρm�(w)

m

] = Tr
[
Y (w)

m wmY (w)
m

]
, (8)

where Y (w)
m ∈ SRm is defined by

Y (w)
m = ψ†

m[G(w)]−1/2ψm. (9)

Y (w)
m > 0 holds from [G(w)]−1/2 > 0. �(w) is scale invariant

with respect to w, that is, �(w) = �({kwm}) for any positive real
number k.

Any minimum-error measurement and minimax measure-
ment can be expressed as a BWSRM, with appropriate weights,
as shown later. The probability of correctly detecting the
state ρm,Tr[ρm�(w)

m ] tends to increase as the trace of the
corresponding weight Trwm relatively increases.

B. Examples of BWSRMs

The first example is the SRM (also referred to as the
Belavkin-Hausladen-Wotters PGM [25,37]). This measure-
ment can be denoted as the BWSRM �(w) with w = {ξmIm ∈
SRm : m ∈ IM}, where Im is an Rm-dimensional identity
matrix. From Eq. (5), �(w)

m is expressed as

�(w)
m =

(
M−1∑
k=0

ξkρk

)−1/2

ξmρm

(
M−1∑
k=0

ξkρk

)−1/2

. (10)

In particular, in the case of a pure state set, w = ξ = {ξm}
holds. From Eq. (7), we have �(w)

m = |π (w)
m 〉 〈π (w)

m | with

∣∣π (w)
m

〉 =
(

M−1∑
k=0

ξk |ψk〉 〈ψk|
)−1/2 √

ξm |ψm〉 . (11)

The second example is the quadratically weighted mea-
surement (QWM) [25,36,37,39], which is equivalent to the
BWSRM �(w) with w = {ξ 2

mψ
†
mψm ∈ SRm : m ∈ IM}. From

Eq. (5), we find that

�(w)
m =

(
M−1∑
k=0

ξ 2
k ρ2

k

)−1/2

ξ 2
mρ2

m

(
M−1∑
k=0

ξ 2
k ρ2

k

)−1/2

. (12)

In particular, in the case of a pure state set, we have w = ξ 2 =
{ξ 2

m}. From Eq. (7), we have �(w)
m = |π (w)

m 〉 〈π (w)
m | with

∣∣π (w)
m

〉 =
(

M−1∑
k=0

ξ 2
k |ψk〉 〈ψk|

)−1/2

ξm |ψm〉 . (13)

C. Conditions of minimum-error measurements

Now we introduce an important remark for investigating
a minimum-error measurement expressed as a BWSRM. The
following remark shows that any minimum-error measurement
can be always expressed as a BWSRM and provides a
necessary and sufficient condition for optimality.

Remark 1 (Theorem 3 of Ref. [34]). We consider a collec-
tion of M quantum states, ρ = {ρm = ψmψ

†
m : m ∈ IM}, with

prior probabilities ξ = {ξm : m ∈ IM}.
A necessary and sufficient condition for a POVM � =

{�m : m ∈ IM} to be a minimum-error measurement is that
� is identical to the BWSRM �(w) = {�(w)

m : m ∈ IM} with
weights w = {wm ∈ SRm : m ∈ IM} ∈ W such that there ex-
ists a positive real number c satisfying

ξmY (w)
m � cIm, ∀m ∈ IM, (14)

ξmY (w)
m wm = cwm, ∀m ∈ IM. (15)

From Eq. (15), each column of wm is an eigenvector of Y (w)
m

with eigenvalue cξ−1
m . This implies that Eqs. (14) and (15) are

equivalent to the statement that Y (w)
m can be expressed as

Y (w)
m = cξ−1

m

(
I supp
m ⊕ Z(w)

m

)
,

(16)
Z(w)

m � IKer
m ,

where I
supp
m is the identity matrix on the space spanned by

the supports of wm, and Z(w) and IKer
m are respectively a

(Rm − rankwm)-dimensional positive semidefinite matrix and
the (Rm − rankwm)-dimensional identity matrix on the kernel
of wm. In particular, if wm > 0, then Eq. (16) is equivalent to

ξmY (w)
m = cIm. (17)

Note that a POVM � is a minimum-error measurement if
and only if an operator X ∈ SN exists such that [2,3]

X − ξmρm � 0, ∀m ∈ IM, (18)

(X − ξmρm)�m = 0, ∀m ∈ IM. (19)

We can find that Eqs. (14) and (15) are respectively identical to
Eqs. (18) and (19). Indeed, substituting wm = c−2ξ 2

mψ
†
m�mψm

and X = c[G(w)]1/2, and after some algebra, Eqs. (14) and (15)
follow from Eqs. (18) and (19), and vice versa (see [4,34] for
details). Also note that Eldar et al. argued that a sufficient
condition for the SRM to be a minimum-error measurement is
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that c exists such that (Theorem 1 of Ref. [40])

ξmψ†
m

(
M−1∑
k=0

ξkρk

)−1/2

ψm = cIm. (20)

Since the SRM is the BWSRM with {wm = ξmIm}, Eq. (20)
is a special case of Eq. (17). Since wm > 0, Eq. (20) is also a
necessary condition.

D. Conditions of minimax solutions

In this subsection, we present a proposition that is useful
for considering a minimax solution in which the minimax
measurement is expressed by a BWSRM. In preparation, we
introduce the following remark.

Remark 2 (Theorem 2 of Ref. [12]). We consider a state set
ρ = {ρm : m ∈ IM}. Let ξ = {ξm : m ∈ IM} be prior probabil-
ities and � = {�m : m ∈ IM} be a POVM. Assume ξm > 0 for
any m ∈ IM [41]. Then, (ξ,�) is a minimax solution for ρ if
and only if � is a minimum-error measurement for ρ with ξ

and Tr(ρm�m) is a constant independent of m ∈ IM .
Using Remarks 1 and 2, we can prove the following

proposition.
Proposition 3. We consider a state set ρ = {ρm = ψmψ

†
m :

m ∈ IM}. We also consider a BWSRM �(w) = {�(w)
m : m ∈

IM}, where w = {wm ∈ SRm : m ∈ IM} ∈ W are weights. As-
sume Trwm > 0 for any m ∈ IM . Let ξ (w) be prior probabilities
ξ (w) = {ξ (w)

m : m ∈ IM} with

ξ (w)
m =

√
Trwm∑M−1

k=0

√
Trwk

. (21)

The following three statements are equivalent:
(1) �(w) is a minimum-error measurement for ρ with ξ (w).
(2) �(w) is a minimax measurement for ρ.
(3) A positive real number c exists such that for any m ∈ IM ,

ξ (w)
m Y (w)

m � cIm,
(22)

ξ (w)
m Y (w)

m wm = cwm.

Moreover, if one of the above statements is true, then the
following statement is also true:

(4) ξ (w) are minimax probabilities.
In particular, if ρ is a pure state set, then the above four

statements are equivalent.
In the case of a pure state set, we obtain ξ (w)

m = √
wm by

normalizing wm such that
∑M−1

k=0
√

wk = 1. This means that
we can identify w with [ξ (w)]2 = {[ξ (w)

m ]2 : m ∈ IM} when
obtaining a minimax solution. Proposition 3 indicates that
if minimax probabilities ξ� are obtained, then a minimax
measurement is obtained as the QWM �([ξ�]2) for a pure state
set. Thus, in this case, the problem of obtaining a minimax
solution can be reduced to finding minimax probabilities ξ�.

In contrast, in the case of a mixed state set, we cannot
identify w with [ξ (w)]2 since w is a set of matrices. However,
it follows from Remark 1 that w� ∈ W exists such that �(w�)

is a minimax measurement. Moreover, from Proposition 3, if
such w� is obtained, then minimax probabilities are obtained
as ξ (w�) of Eq. (21). Thus, in this case, the minimax problem
can be reduced to finding w�.

Proof. Since (1) ⇔ (3) from Remark 1, it is sufficient to
show (2) ⇔ (3) and (3) ⇒ (4) for any state set, and (4) ⇒ (1)
for any pure state set.

First, we prove (3) ⇒ (2) and (3) ⇒ (4). Assume that c

exists satisfying Eq. (22). From Eq. (22), we find that[
ξ (w)
m

]2
Y (w)

m wmY (w)
m = c2wm. (23)

By taking the trace on both sides of this equation and
substituting Eq. (8), we obtain[

ξ (w)
m

]2
Tr

[
ρm�(w)

m

] = c2Trwm

= c2
[
ξ (w)
m

]2

(
M−1∑
k=0

√
Trwk

)2

, (24)

where the second line follows from Eq. (21). In contrast, ξ (w)
m >

0 holds from Trwm > 0. Thus, from Eq. (24), Tr[ρm�(w)
m ]

is a constant independent of m ∈ IM . In contrast, �(w) is a
minimum-error measurement for ρ with ξ (w) since (1) ⇔ (3).
Therefore, from Remark 2, (ξ (w),�(w)) is a minimax solution.

Next, we prove (2) ⇒ (3). Assume that �(w) is a minimax
measurement. Let ξ be the corresponding minimax probabili-
ties. Since �(w) is a minimum-error measurement for ρ with
ξ , c exists such that Eqs. (14) and (15) hold. From Eq. (15),
we find that

ξ 2
mY (w)

m wmY (w)
m = c2wm. (25)

Taking the trace on both sides of this equation and substituting
Eq. (8) yield

ξ 2
mTr

[
ρm�(w)

m

] = c2Trwm. (26)

Since c > 0 and Trwm > 0 hold, ξm > 0 holds. In contrast,
from Remark 2, Tr[ρm�(w)

m ] is a constant independent of m ∈
IM . Therefore, from Eq. (26), ξm ∝ √

Trwm (i.e., ξ = ξ (w))
holds, which indicates from Eqs. (14) and (15) that c exists
such that Eq. (22) holds.

Finally we prove (4) ⇒ (1) for a pure state set. Assume that
ξ (w) are minimax probabilities. From Remark 1, a minimax
measurement, which is also a minimum-error measurement
for ρ with ξ (w), can be represented as a BWSRM �(w′) with
certain weights w′. Now we will show that �(w′) = �(w). Since
ξ (w)
m > 0 for any m ∈ IM , from Eq. (8) and Remark 2, we have

w′
m

[
Y (w′)

m

]2 = Tr
[
ρm�(w′)

m

] = P
opt
C [ξ (w)]. (27)

The second equality follows from the fact that Tr[ρm�(w′)
m ] is

independent of m ∈ IM . It is obvious that P opt
C [ξ (w)] > 0 holds,

which gives w′
m > 0 from Eq. (27). Substituting ξm = ξ (w)

m

and wm = w′
m into Eq. (15) and dividing both sides by w′

m

yield that ξ (w)
m Y (w′)

m is a constant independent of m ∈ IM .
In contrast, as derived from Eq. (27),

√
w′

mY (w′)
m is also a

constant independent of m. Therefore, ξ (w)
m Y (w′)

m ∝ √
w′

mY (w′)
m ,

i.e., ξ (w)
m ∝ √

w′
m, holds. Since ξ (w)

m ∝ √
wm also holds from

Eq. (21), we have w′
m ∝ wm, which yields �(w′) = �(w). �

Note that in the case of a mixed state set, statement (4)
of Proposition 3 is usually not equivalent to statements (1)–
(3). This can be explained as follows. Assume that �(w) is
a minimax measurement. Let 	 = {	m = umwmu

†
m ∈ SRm :

m ∈ IM} ∈ W , where um is an Rm-dimensional unitary matrix.
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Since Tr	m = Trwm holds and statement (4) is true for w,
ξ (	 ) = ξ (w) are minimax probabilities. However, in general
�(	 ) is not a minimax measurement.

IV. CALCULATION OF MINIMUM-ERROR
MEASUREMENT

We consider a quantum state set ρ = {ρm = ψmψ
†
m : m ∈

IM} with prior probabilities ξ = {ξm : m ∈ IM}. In this section
we present our iterative algorithm for finding weights w =
{wm ∈ SRm : m ∈ IM} of the BWSRM �(w) = {�(w)

m : m ∈
IM} so that the correct probability PC[ξ,�(w)] is as close as
possible to the maximum one P

opt
C (ξ ) (denoted by P

opt
C for

simplicity). Our algorithm is based on an iterative algorithm
developed by Ježek et al. [24]. We then give upper and lower
bounds for the maximum correct probability. We also argue
that Ježek et al.’s algorithm is guaranteed to converge to a
global optimization solution for a linearly independent pure
state set.

A. Iterative algorithm

Ježek et al. proposed the following iterative formula [24]:

�(r+1)
m = ξ 2

m[
(r)]−1/2ρm�(r)
m ρm[
(r)]−1/2,

(28)


(r) =
M−1∑
k=0

ξ 2
k ρk�

(r)
k ρk,

where r ∈ {0,1,2, . . . }. We assume that �t is the BWSRM
with certain weights wt = {wt

m : m ∈ IM} ∈ W , i.e., �t =
�(wt ), for a certain t � 0, and will show that �(t+1) is also
a BWSRM. Let us denote G(r) and Y (r)

m as G(r) = G(w(r)) and
Y (r)

m = Y (w(r))
m for simplicity. We also assume, for any r � 0,

w(r+1)
m = ξ 2

mY (r)
m w(r)

m Y (r)
m . (29)

We have

ξ 2
k ρk�

t
kρk = ξ 2

k ρk[Gt ]−1/2ψkw
t
kψ

†
k [Gt ]−1/2ρk

= ξ 2
k ψkY

t
kw

t
kY

t
kψ

†
k

= ψkw
(t+1)
k ψ

†
k , (30)

where the first and second lines follow from Eqs. (5) and (9),
respectively. Thus, we have that, from Eqs. (6) and (28),


t =
M−1∑
k=0

ψkw
(t+1)
k ψ

†
k = G(t+1). (31)

Equations (28), (30), and (31) give

�(t+1)
m = [G(t+1)]−1/2ψmw(t+1)

m ψ†
m[G(t+1)]−1/2

= �(w(t+1))
m , (32)

where the last line follows from Eq. (5). Equation (32) indicates
that �(t+1) is the BWSRM with weights w(t+1). Therefore, as
far as an initial measurement �(0) is chosen to be the BWSRM
�(w(0)) with certain weights w(0) ∈ W , �(r) = �(w(r)) holds for
any r � 0, where w(r) ∈ W are the weights satisfying Eq. (29).
This means that Eq. (29) can also be used as an iterative
formula. Initial weights w(0) may be set to w(0)

m = ξmIm (i.e.,
�(0) are the SRM) or w(0)

m = ξ 2
mψ

†
mψm (i.e., �(0) are the QWM).

Now let us consider the following iterative formula instead
of Eq. (29):

w(r+1)
m = ξ 2d

m

[
Y (r)

m

]d
w(r)

m

[
Y (r)

m

]d
, (33)

where d is a positive real number, which we call the
acceleration parameter. It is easy to verify that Eq. (33)
with d = 1 is equivalent to Eq. (29). The entire algorithm
for finding a minimum-error measurement is found in the
following pseudocode (the stopping criterion, i.e., steps 3 and
4, will be shown in Sec. IV C).

Finding a minimum-error measurement:
Input: prior probabilities ξ = {ξm},
quantum states ρ = {ρm = ψmψ

†
m},

a constant for the stopping criteria δPC,
and an acceleration parameter d.
1. Initialize w(0)

(e.g., w(0)
m = ξmIm or w(0)

m = ξ 2
mψ

†
mψm).

2.for r = 0,1, . . . do
/* Decide whether to stop */

3. Compute PC
(w(r)) and PC

(w(r))
from Eqs. (39)

and (40), respectively.

4. if PC
(w(r)) − PC

(w(r)) < δPC then break
/* Update the weights */
5. Compute
G(r) = ∑M−1

k=0 ψkw
(r)
k ψ

†
k ,

Y (r)
m = ψ

†
m[G(r)]−1/2ψm,

w(r+1)
m = ξ 2d

m [Y (r)
m ]dw(r)

m [Y (r)
m ]d .

6. end for
7. Compute �(w(r)) from Eq. (5).
Output: the POVM �(w(r)).
Like the Ježek et al.’s algorithm, the proposed algorithm

is based on a necessary condition for a minimum-error
measurement. Equation (28) implies that if �(r) converges
to �, then � satisfies

�m =
(

M−1∑
k=0

ξ 2
k ρk�kρk

)−1/2

ξmρm�m, (34)

which is a necessary condition for a minimum-error measure-
ment [24]. Similarly, Eq. (33) guarantees that if w(r)

m converges
to wm, then wm satisfies Eq. (15) with c = 1. Indeed, from
Remark 10 in Appendix A with A = ξmY (w)

m and B = wm,
Eq. (15) with c = 1 is equivalent to

wm = ξ 2d
m

[
Y (w)

m

]d
wm

[
Y (w)

m

]d
. (35)

We can interpret that our algorithm tries to find a fixed point
of the function f (wm) = ξ 2d

m [Y (w)
m ]dwm[Y (w)

m ]d using Eq. (33).
We expect to speed up our algorithm using an appropriate

acceleration parameter d with d > 1. For example, if Y (r+1)
m ≈

Y (r)
m holds, then we obtain

ξ 2
mY (r+1)

m

[
ξ 2
mY (r)

m w(r)
m Y (r)

m

]
Y (r+1)

m

≈ ξ 4
m

[
Y (r)

m

]2
w(r)

m

[
Y (r)

m

]2
. (36)

Therefore, one iteration of Eq. (33) with d = 2 is approxi-
mately equivalent to two iterations of Eq. (29). As discussed
in Sec. VI, numerical experiments show that Eq. (33) with
d > 1 tends to convergence faster than Eq. (29).
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Our algorithm updates weights w(r) instead of a POVM
�(r), which provides two advantages. One advantage is low
computational cost. Since the size of w(r) is usually smaller
than that of �(r) (in particular, w(r) is a set of M real numbers
in the case of a pure state set), our algorithm is expected
to require lower computational time and memory than Ježek
et al.’s algorithm at least if naively implemented. The other
advantage is easy to accelerate the convergence speed by
tuning the parameter d. The acceleration technique of our
method is difficult to apply to Ježek et al.’s algorithm. Indeed,
one may consider a formula such as

�(r+1)
m = ξ 2d

m ([
(r)]−1/2ρm)d�(r)
m (ρm[
(r)]−1/2)d (37)

instead of Eq. (28). However, �(r+1) given by Eq. (37) does
not satisfy Eq. (1).

B. Example

We show an example of finding a minimum-error measure-
ment using the proposed algorithm. We consider a binary pure
state set ρ = {|ψ0〉 〈ψ0| , |ψ1〉 〈ψ1|} satisfying | 〈ψ0|ψ1〉 | =
0.8. Prior probabilities are set to ξ0 = 0.3 and ξ1 = 0.7. Since
ρ is a pure state set, i.e., R0 = R1 = 1, w(r)

m and Y (r)
m are

nonnegative real numbers. The acceleration parameter is set to
d = 1.

Figures 1(a) and 1(b) respectively show w(r)
m and ξmY (r)

m .
We set the initial weights to w

(0)
0 = ξ 2

0 = 0.09 and w
(0)
1 =

ξ 2
1 = 0.49, which means that the POVM �(w(0)) is the QWM.

Note that the correct probability of the QWM is larger than that
of the SRM [36]. In the first iteration, we compute Y (0)

m from
Eq. (9). In this example, we have {ξmY (0)

m } ≈ {0.789,0.965} (≈
denotes approximately equal). Substituting this into Eq. (33)
yields w(1)

m = [ξmY (0)
m ]2w(0)

m ≈ {0.0561,0.456}. ξ0Y
(0)
0 < 1 and

ξ1Y
(0)
1 < 1 hold, which gives w

(1)
0 < w

(0)
0 and w

(1)
1 < w

(0)
1 .

{ξmY (r)
m } converges to {1,1} in this example (note that,

0.50
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FIG. 1. Example of the result of our method for finding a
minimum-error measurement in the case of a binary pure state set:
(a) the transition of w(r)

m ; (b) the transition of ξmY (r)
m ; (c) the lower and

upper bounds for P
opt
C vs number of iterations.

from Eq. (33), if w(r)
m converges to a positive number, then

ξmY (r)
m converges to 1). The optimal weights w are w ≈

{0.0519,0.467}. We can see that weights w(r) converge to the
optimal ones as r increases.

Figure 1(c) shows the lower and upper bounds for P
opt
C (i.e.,

PC
(w(r)) and PC

(w(r))
), which are discussed in Sec. IV C. P

opt
C

can be obtained by [1]

P
opt
C = (1 +

√
1 − 4ξ0ξ1| 〈ψ0|ψ1〉 |2)/2 = 0.84. (38)

We can see that both PC
(w(r)) and PC

(w(r))
converge to P

opt
C .

C. Estimation of accuracy of maximum correct probability

Obtaining the maximum correct probability P
opt
C is usually

difficult; instead, we consider obtaining lower and upper
bounds for P

opt
C based on the theory of SDP. More precisely, we

exploit the fact that feasible solutions to the primal and dual
problems for finding a minimum-error measurement always
provide lower and upper bounds, respectively. In the proposed
algorithm, these bounds are used as the stopping criterion.

Let PC
(w) be the correct probability of the BWSRM �(w),

that is,

PC
(w) = PC[ξ,�(w)] =

M−1∑
k=0

ξkTr
[
Y

(w)
k wkY

(w)
k

]
. (39)

It is obvious that PC
(w) is a lower bound for P

opt
C .

The following proposition gives an upper bound.
Proposition 4. We consider a state set ρ = {ρm = ψmψ

†
m :

m ∈ IM} with prior probabilities ξ = {ξm : m ∈ IM}. Let w ∈
W . Also let

PC
(w) = Tr[G(w)]1/2 +

M−1∑
k=0

(
ξk − 1

λ0
[
Y

(w)
k

]
)+

, (40)

where λ0[Y (w)
k ] is the largest eigenvalue of Y

(w)
k , and (x)+

is defined as x if x > 0 and zero otherwise. Then, PC
(w) �

P
opt
C holds for any w ∈ W . Moreover, if w satisfies Eqs. (14)

and (15) with c = 1 (note that the BWSRM �(w) is a minimum-
error measurement from Remark 1), then PC

(w) = P
opt
C holds.

Proof. First, we prove PC
(w) � P

opt
C for any w ∈ W . Let

X(w) = [G(w)]1/2 +
M−1∑
k=0

(
1 − c

(w)
k

)+
ξkρk, (41)

where c
(w)
k is the largest real number such that

[G(w)]1/2 � c
(w)
k ξkρk. (42)

From Eq. (41), we have that for any m ∈ IM ,

X(w) − ξmρm �
M−1∑
k=0

(
1 − c

(w)
k

)+
ξkρk − [

1 − c(w)
m

]
ξmρm

�
(
1 − c(w)

m

)+
ξmρm − [

1 − c(w)
m

]
ξmρm

� 0. (43)

In contrast, any positive semidefinite matrix X with X � ξmρm

for any m ∈ IM , which means that X is a feasible solution
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to the dual problem, satisfies TrX � P
opt
C (see Theorem 1

of Ref. [18]). From Eq. (43), X(w) is a feasible solution of
the dual problem, and thus TrX(w) � P

opt
C holds. Therefore, it

suffices to show that TrX(w) = PC
(w)

. Using Remark 11 in Ap-
pendix A (with c = c

(w)
k ξk,� = ψk , and B = [G(w)]−1/2) and

substituting Y
(w)
k = ψ

†
k [G(w)]−1/2ψk , it follows that Eq. (42)

is identical to c
(w)
k ξkY

(w)
k � Im. Since c

(w)
k is the largest real

number satisfying this inequality, c(w)
k = (ξkλ0[Y (w)

k ])−1 holds.
Substituting this into Eq. (41) and taking the trace, we obtain

TrX(w) = PC
(w)

.
Next, we assume that w satisfies Eqs. (14) and (15) with

c = 1 and prove PC
(w) = P

opt
C . Let

X =
M−1∑
k=0

ξkρk�
(w)
k . (44)

Since �(w) is a minimum-error measurement, X � ξmρm

holds for any m ∈ IM [17]. In contrast, from Remark 12 in
Appendix B, [G(w)]1/2 = X holds. Thus, we have [G(w)]1/2 �
ξmρm, which means c

(w)
k = 1. Therefore, from Eqs. (41)

and (44), we have

PC
(w) = TrX(w) = Tr[G(w)]1/2 = TrX = P

opt
C . (45)

�
From Eq. (39) and Proposition 4, for any w ∈ W,P

opt
C

satisfies

PC
(w) = PC[ξ,�(w)] � P

opt
C � PC

(w)
. (46)

In particular, if w satisfies Eqs. (14) and (15) with c = 1, then
�(w) is a minimum-error measurement and PC

(w) = P
opt
C =

PC
(w)

holds. PC
(w) and PC

(w)
are expected to be close to P

opt
C

under the condition that �(w(r)) is close to a minimum-error
measurement as the iteration proceeds.

Note that it is not guaranteed that PC
(w(r))

is monotonically
decreasing with respect to r . Considering this, we can use

mint�r PC
(w(t))

as an upper bound of P
opt
C instead of PC

(w(r))
at

each iteration in our proposed algorithm. In contrast, PC
(w(r)) =

PC[ξ,�(w(r))] is monotonically increasing with respect to r , as
described in the next subsection.

D. Convergence of solution

Ježek et al. reported the numerical observation that their
algorithm monotonically increases the correct probability at
each iteration and converges to the maximum correct proba-
bility [24]. Later, Reimpell et al. proposed an algorithm for
maximizing entanglement fidelity of quantum channels [26],
which is a generalization of Ježek et al.’s algorithm (see [25]).
Reimpell et al. also proved the monotonic increase of their
algorithm [26,27], which means that Ježek et al.’s algorithm
monotonically increases the correct probability. Moreover,
Tyson gave a geometric interpretation of these algorithms by
embedding the set of POVMs (or completely positive maps) in
a semidefinite inner product space, and generalized Reimpell
et al.’s monotonicity result to a more general iteration [25].
However, the convergence to the optimality has not been

proved yet (see [25]). The following theorem shows that in
the case of a linearly independent pure state set Ježek et al.’s
algorithm converges to a minimum-error measurement (proof
in Appendix C).

Theorem 5. We consider a linearly independent pure state
set ρ = {|ψm〉 〈ψm| : m ∈ IM} with prior probabilities ξ =
{ξm : m ∈ IM}. Using the iterative formula of Eq. (29) [i.e.,
Eq. (33) with d = 1] starting from initial weights w(0) =
{w(0)

m > 0 : m ∈ IM}, the BWSRM �(w(r)) converges to a
minimum-error measurement.

V. CALCULATION OF MINIMAX SOLUTION

We now consider a quantum state set ρ = {ρm = ψmψ
†
m :

m ∈ IM}. We present our iterative algorithm for finding
weights w = {wm ∈ SRm : m ∈ IM} of the BWSRM �(w) =
{�(w)

m : m ∈ IM} so that �(w) is as close as possible to a min-
imax measurement. Note again that, from Proposition 3, ξ (w)

is minimax probabilities if �(w) is a minimax measurement.

A. Iterative algorithm

In the previous section, we discussed the iterative formula
of Eq. (33) by focusing on the fact that Eq. (15), which is a
necessary condition for a minimum-error measurement, holds
if and only if Eq. (35) holds for a positive real number d.
In a similar manner, we construct an iterative algorithm for a
minimax solution using a necessary condition for a minimax
solution. To be more precise, we use the fact that �(w) is a
minimax measurement if and only if Eq. (22) holds, as given
in Proposition 3.

First, we give an iterative formula for a pure state set. As
stated in Proposition 3, for a pure state set, the QWM �([ξ�]2) is
a minimax measurement for minimax probabilities ξ�. Here we
assume that w = ξ 2 holds (i.e., �(w) is the QWM) during each
iteration and update prior probabilities ξ such that ξ converges
to ξ�. We introduce the following formula:

ξ (r+1)
m = 
(d)

m [ξ (r)],
(47)


(d)
m (ξ ) = ξm[

ξmY
(ξ 2)
m

]d

(
M−1∑
k=0

ξk

[ξkY
(ξ 2)
k ]d

)−1

,

where r ∈ {0,1,2, . . . }. The basic idea is based on Remark 13
in Appendix B. Indeed, 
(1)

m (ξ ) of Eq. (47) is identical to

m(ξ 2) defined by Eq. (B3). From Remark 13, �([ξ (r)]2) is
a minimum-error measurement for ρ with ξ (r+1) if d = 1.
Here, d > 0 is an acceleration parameter. It follows from

Eq. (47) that ξ is a fixed point of 
(d)
m (ξ ) if ξmY

(ξ 2)
m is a

constant independent of m ∈ IM (note that c > 0 exists such

that ξmY
(ξ 2)
m = c in this case), i.e., ξ satisfies the necessary and

sufficient condition of Eq. (22). Initial probabilities ξ (0) are
chosen such that ξ (0)

m > 0 and
∑M−1

k=0 ξ
(0)
k = 1 (for example,

ξ (0)
m = 1/M).

Next, we extend the iterative formula of Eq. (47) to a
mixed state set. From Proposition 3, if optimal weights w� are
obtained, then (ξ (w�),�(w�)) is a minimax solution. To obtain
an iterative formula with respect to w, let us consider the
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following equation:

[
ξ (w)
m

]2
Y (w)

m wmY (w)
m = c2wm, (48)

which follows from Eq. (22). We normalize w such
that

∑M−1
k=0

√
Trwk = 1, which means ξ (w)

m = √
Trwk from

Eq. (21). Then Eq. (48) can be rewritten as

wm = [
ξ (w)
m

]2 Tm

TrTm

,

(49)
Tm = Y (w)

m wmY (w)
m ∈ SRm.

In consideration of this, we propose the following iterative
formula:

w(r+1)
m = [

ξ (r+1)
m

]2 T (r)
m

TrT (r)
m

,

ξ (r+1)
m =

√
Trw(r)

m[
TrT (r)

m

]d/2

⎛
⎝M−1∑

k=0

√
Trw(r)

k[
TrT (r)

k

]d/2

⎞
⎠

−1

,

(50)
T (r)

m = Y (r)
m w(r)

m Y (r)
m ,

Y (r)
m = ψ†

m[G(r)]−1/2ψm,

G(r) =
M−1∑
k=0

ψkw
(r)
k ψ

†
k ,

where r ∈ {0,1,2, · · · }. Note that Y (r)
m = Y (w(r))

m and G(r) =
G(w(r)) hold. We can see that this formula is a generalization
of Eq. (47). Indeed, in the case of a pure state set, the first line
of Eq. (50) gives w(r) = [ξ (r)]2 for any r > 0, and substituting
this into the second line of Eq. (50) yields Eq. (47).

The proposed iterative algorithm can be summarized as
follows (the stopping criterion will be shown in the next
subsection):

Finding a minimax solution:
Input: quantum states ρ = {ρm = ψmψ

†
m},

a constant for the stopping criteria δPC,
and an acceleration parameter d.
1. Initialize w(0) (e.g., w(0)

m = Im/M2).
2. for r = 0,1, · · · do
/* Decide whether to stop */

3. Compute P �
C

(w(r)) and P �
C

(w(r))
from Eqs. (51)

and (55), respectively.

4. if P �
C

(w(r)) − P �
C

(w(r)) < δPC then break
/* Update the prior probabilities and weights */
5. Compute w(r+1) from Eq. (50) [Eq. (47) can
also be used for a pure state set].
6. end for
7. Compute ξ (w(r)) and �(w(r)) from Eqs. (21)
and (5), respectively.
Output: the prior probabilities ξ (w(r))

and the POVM �(w(r)).

B. Estimation of accuracy of a minimax value

We can calculate the upper and lower bounds for the
minimax value P �

C at each iteration. Let

P �
C

(w) = min
m∈IM

Tr
[
ρm�(w)

m

]
= min

m∈IM

Tr
[
Y (w)

m wmY (w)
m

]
. (51)

P �
C

(w) is a lower bound for P �
C since P �

C
(w) satisfies

P �
C

(w) = min
ξ

PC[ξ,�(w)] � PC[ξ�,�(w)] � P �
C. (52)

For a pure state set, it is known that Remark 13 in
Appendix B holds, which yields, for any w ∈ W ,

PC[
(w),�(w)] = P
opt
C [
(w)] � min

ξ
P

opt
C (ξ ) = P �

C, (53)

where 
(w) is defined by Eq. (B3). Thus, PC[
(w),�(w)]
(denoted as P �

Cpure(w) ) is an upper bound for P �
C. From Eq. (8),

P �
C

(w)

pure is expressed as

P �
C

(w)

pure =
(

M−1∑
k=0

1

Y
(w)
k

)−1 M−1∑
m=0

wmY (w)
m . (54)

It is obvious that if �(w) is a minimax measurement, then
P �

C
(w) = P �

C = P �
C

(w)

pure holds. Although Remark 13 cannot be
applied to a mixed state set, the following proposition gives an
alternative upper bound.

Proposition 6. We consider a state set ρ = {ρm = ψmψ
†
m :

m ∈ IM}. Let w ∈ W . Also let

P �
C

(w) =
(

M−1∑
k=0

1

λ0
[
Y

(w)
k

]
)−1

Tr[G(w)]1/2, (55)

where λ0[Y (w)
k ] is the largest eigenvalue of Y

(w)
k . Then, P �

C
(w) �

P �
C holds for any w ∈ W , where P �

C is the minimax value.

Moreover, if �(w) is a minimax measurement, then P �
C

(w) = P �
C

holds.
Note that in the case of a pure state set P �

C
(w)

is equivalent

to P �
C

(w)

pure since P �
C

(w)
can also be expressed as

P �
C

(w) =
(

M−1∑
k=0

1

λ0
[
Y

(w)
k

]
)−1

Tr
M−1∑
m=0

wmY (w)
m . (56)

Indeed, this is given by

Tr
M−1∑
m=0

wmY (w)
m = Tr

M−1∑
m=0

wmψ†
m[G(w)]−1/2ψm

= Tr
M−1∑
m=0

ψmwmψ†
m[G(w)]−1/2

= Tr[G(w)]1/2, (57)

where the first and last lines follow from Eqs. (9) and (6),
respectively.
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Proof. First, we prove that P �
C

(w) � P �
C holds for any w ∈

W . Let c(w)
m be the largest real number such that [G(w)]1/2 �

c(w)
m ρm. Also let

ξ ′
m = Cc(w)

m ,
(58)

X = C[G(w)]1/2.

where C = [
∑M−1

k=0 c
(w)
k ]−1. Then, we have that for any m ∈

IM ,

X − ξ ′
mρm = C

(
[G(w)]1/2 − c(w)

m ρm

)
� 0. (59)

In contrast, from the theory of the SDP, if a positive semidef-
inite matrix X and prior probabilities ξ ′ satisfy X − ξ ′

mρm � 0,
then TrX � P

opt
C (ξ ′) holds (see Theorem 1 of Ref. [18]). Thus,

we obtain

TrX � P
opt
C (ξ ′) � P �

C. (60)

Therefore, it suffices to show that c(w)
m = (λ0[Y (w)

k ])−1, since,

from Eqs. (55) and (58), P �
C

(w) = TrX holds in this case.
Using Remark 11 in Appendix A (with c = c(w)

m ,� = ψm,
and B = [G(w)]−1/2) and substituting Eq. (9), it follows that
[G(w)]1/2 � c(w)

m ρm is equivalent to c(w)
m Y (w)

m � Im. Therefore,
c(w)
m = (λ0[Y (w)

m ])−1 holds.
Next, we assume that �(w) is a minimax measurement, and

prove P �
C

(w) = P �
C. From Proposition 3, Eq. (22) holds, which

indicates that Eq. (16) with ξm = ξ (w)
m holds. Thus, the largest

eigenvalue of Y
(w)
k can be expressed by λ0[Y (w)

k ] = c[ξ (w)
m ]−1.

Substituting this into Eq. (55) yields P �
C

(w) = cTr[G(w)]1/2. In
contrast, from Remark 12 in Appendix B, we have

c[G(w)]1/2 =
M−1∑
k=0

ξ
(w)
k ρk�

(w)
k . (61)

Taking the trace on both sides gives cTr[G(w)]1/2 = P �
C,

which yields P �
C

(w) = P �
C. �

C. Convergence of solution

Here we show the monotonically decreasing property of
P

opt
C [ξ (r)] for a pure state set when the acceleration parameter

is d = 1. As described in Sec. V A, ξ (r+1)
m = 
(1)

m [ξ (r)] =

m([ξ (r)]2) holds for any r � 0 in the case of d = 1, which

yields P �
C

(w) = P
opt
C [ξ (r+1)] from Eq. (53). Theorem 7 claims

that the upper bound P �
C

(w)
is monotonically decreasing. We

also show the condition of convergence toward an optimal
solution in Theorem 8.

Theorem 7. We consider a pure state set ρ = {|ψm〉 〈ψm| :
m ∈ IM}. Using the iterative formula of Eq. (47) with d = 1
starting from initial prior probabilities ξ (0) satisfying ξ (0)

m > 0
for any m ∈ IM , P

opt
C [ξ (r)] is monotonically decreasing.

Proof. Let F (r,r ′) = PC[ξ (r ′),�([ξ (r)]2)]. P
opt
C [ξ (r)] �

F (r,r) is obvious. Since, from Remark 13, ξ (r+1) = 
([ξ (r)]2)
are prior probabilities such that �([ξ (r)]2) is a minimum-error
measurement, P

opt
C [ξ (r+1)] = F (r,r + 1) holds. Thus, it is

sufficient to show F (r,r) � F (r,r + 1) since in this case we
obtain

P
opt
C [ξ (r)] � F (r,r) � F (r,r + 1) = P

opt
C [ξ (r+1)]. (62)

Let K (r) = ∑M−1
k=0 [Y (r)

k ]−1. Since

ξ (r+1)
m = 
m([ξ (r)]2) = 1

K (r)Y
([ξ (r)]2)
m

, (63)

i.e., Y
([ξ (r)]2)
m = 1/[K (r)ξ (r+1)

m ],

F (r,r ′) =
M−1∑
m=0

ξ (r ′)
m

[
ξ (r)
m Y ([ξ (r)]2)

m

]2

= 1

[K (r)]2

M−1∑
m=0

ξ (r ′)
m

[
ξ (r)
m

ξ
(r+1)
m

]2

, (64)

where the first line follows from Eq. (8) with w = [ξ (r)]2. Thus,

F (r,r) − F (r,r + 1)

= 1

[K (r)]2

M−1∑
m=0

ξ (r)
m

{[
ξ (r)
m

ξ
(r+1)
m

]2

− ξ (r)
m

ξ
(r+1)
m

}

� 1

[K (r)]2

M−1∑
m=0

ξ (r)
m ln

[
ξ (r)
m

ξ
(r+1)
m

]

= DKL[ξ (r)‖ξ (r+1)]

[K (r)]2
� 0, (65)

where DKL is the Kullback-Leibler divergence. The first
inequality of Eq. (65) follows from x2 − x � ln x for any
x > 0. The second inequality follows from the fact that the
Kullback-Leibler divergence is non-negative. �

Theorem 8. We consider a state set ρ = {ψmψ
†
m : m ∈

IM}. Assume that w(r)
m ∈ SRm in Eq. (50) converges to a strictly

positive matrix (denoted by wm) for each m ∈ IM . Then,
(ξ (w),�(w)) is a minimax solution, where w = {wm : m ∈ IM}.

Proof. From Eq. (50), ξ (r)
m ,T (r)

m , and Y (r)
m converge. We

denote their limits by ξm,Tm, and Ym, respectively. Taking
the trace on both sides of the first equality of Eq. (50) yields
[ξ (r+1)

m ]2 = Trw(r+1)
m . Thus, from Eq. (21), ξ (r) = ξ (w(r)) holds

for any r � 1, which indicates ξ = ξ (w). From Eq. (50), Ym

equals to Y (w)
m of Eq. (9). Hence, from Proposition 3, it is

sufficient to show that there exists a positive real number c

satisfying Eq. (22).
Equation (50) yields

wm = [
ξ (w)
m

]2 Y (w)
m wmY (w)

m

TrTm

. (66)

Note that TrTm > 0 since wm > 0. Let A = ξ (w)
m Y (w)

m /
√

TrTm

and B = wm, then Eq. (66) is expressed as B = ABA. Since
A � 0 and B > 0, from Remark 10 in Appendix A, A = Im

holds. Therefore, ξ (w)
m Y (w)

m = cIm holds with c = √
TrTm, and

thus ξ (w)
m Y (w)

m wm = cwm holds, which means that Eq. (22)
holds with c = √

TrTm. �

D. Group covariant state sets

We consider a state set ρ = {ρm = ψmψ
†
m : m ∈ IM} that

is invariant under the action of a group G (|G| � 2) in which
each element g ∈ G corresponds to an N -dimensional unitary
matrix Ug . Such ρ is called as a group covariant state set with
respect to G [42]. For any m ∈ IM and g ∈ G, there exists
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k ∈ IM such that

UgρmU †
g = ρk. (67)

Assume without loss of generality that Eq. (67) is equivalent
to Ugψm = ψk (indeed, this is true if {ψm : m ∈ IM} is
appropriately set). To simplify the notation, we denote such k

as g ◦ m. Similarly, we denote UgAU
†
g as g ◦ A for any matrix

A. Equation (67) can be rewritten as

g ◦ ρm = ρg◦m. (68)

G may include an antiunitary matrix (see [16,42] for details).
A group covariant state set is a generalization of a so-called
geometrically uniform state set [40], in which for any m ∈ IM

and k ∈ IM , there exists g ∈ G such that k = g ◦ m.
For a group covariant state set ρ, a minimax solution

(ξ�,��) exists such that, for any m ∈ IM and g ∈ G [16],

ξ�
m = ξ�

g◦m,
(69)

g ◦ ��
m = ��

g◦m.

Thus, a minimax solution is expected to be computed effi-
ciently for a group covariant state set. Note that a computa-
tionally efficient numerical solution using SDP for quantum
states satisfying geometrical symmetry in minimal measuring
strategy has been proposed [43,44].

The following proposition holds.
Proposition 9. Let G be a group with |G| � 2 in which

each element g ∈ G corresponds to an N -dimensional unitary
or antiunitary matrix Ug . We consider a group covariant state
set ρ = {ρm = ψmψ

†
m : m ∈ IM} satisfying Ugψm = ψg◦m for

any m ∈ IM and g ∈ G. We consider computing a minimax
solution for ρ using the iterative formula of Eq. (50), where
initial weights w(0) are chosen such that w(0)

g◦m = w(0)
m for any

m ∈ IM and g ∈ G. Then, we have that for any r � 0,m ∈ IM ,
and g ∈ G,

w(r)
g◦m = w(r)

m . (70)

This proposition implies that we need to calculate only one
weight for each orbit; we do not need to calculate M weights,
where the orbit of m is the set {g ◦ m : g ∈ G}. In the case of a
geometrically uniform state set [40], which has just one orbit,
we need only calculate one weight w

(r)
0 for each r . Note that a

similar result can be easily obtained in the case of the iterative
formula for finding a minimum-error measurement.

Proof. We prove this proposition by induction on r . By
assumption, it is obvious for r = 0. Assume that, for a certain
t � 0,w(t)

g◦m = w(t)
m for any m ∈ IM and g ∈ G. We have, for

any g ∈ G,

g ◦ G(w(t)) =
M−1∑
m=0

g ◦ [
ψmw(t)

m ψ†
m

]

=
M−1∑
m=0

ψg◦mw(t)
m ψ†

g◦m

=
M−1∑
m′=0

ψm′w
(t)
m′ψ

†
m′

= G(w(t)), (71)

where m′ = g ◦ m. Thus, Y (t)
m satisfies

Y (t)
g◦m = ψ†

g◦m[G(w(t))]−1/2ψg◦m

= ψ†
m{g−1 ◦ [G(w(t))]−1/2}ψm

= ψ†
m[G(w(t))]−1/2ψm

= Y (t)
m . (72)

Therefore, from Eq. (50), w(t+1)
g◦m = w(t+1)

m holds for any m ∈
IM and g ∈ G. �

VI. NUMERICAL EXAMPLES OF PROPOSED
ALGORITHMS

In this section, we explain the performance of proposed
iterative algorithms. First, we investigate the convergence
properties for pure states using an M-ary optical amplitude
shift keyed (ASK) coherent state set ρ = {|kα〉 〈kα| : k ∈
{0, ± 1, . . . , ± �M/2�}}, where |kα〉 is the eigenvector of the
photon annihilation operator corresponding to the eigenvalue
kα. Let |α|2 = 0.1 and M be odd. Next, we investigate the
performance for mixed states using randomly selected states.

The convergence properties of the iterative algorithm for
a minimum-error measurement, expressed by Eq. (33), for ρ

with equal prior probabilities are shown in Fig. 2 for d = 1.0,
1.25, and 1.5. The initial weights are chosen to be w(0)

m = 1/M2

for each m ∈ IM . We plot the number of iterations r to achieve
the difference between the upper and lower bounds for the

maximum correct probability, i.e., PC
(w(r)) − PC

(w(r)), less than
10−9 for different M . Note again that the result with d = 1.0 is
the same as that of the iterative algorithm developed by Ježek
et al. [24]. At least in the range of 1.0 � d � 1.5, we can see
that the number of iterations required decreases as d increases.
We verified that solutions tend to diverge at about d = 2.0. d

may change at each iteration, and our algorithm is expected to
be accelerated if d is appropriately scheduled.

Number of states M
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d = 1.5

FIG. 2. Example of numerical calculations for minimum-error
measurements for an M-ary optical ASK coherent state set. Number
of iterations to achieve difference between upper and lower bounds

for maximum correct probability, PC
(w(r)) − PC

(w(r)), less than 10−9 is
shown.
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FIG. 3. Example of numerical calculations for minimax solutions
for an M-ary optical ASK coherent state set. Number of iterations
to achieve difference between upper and lower bounds for minimax

value, P �
C

(w(r)) − P �
C

(w(r)), less than 10−9 is shown.

The convergence properties of the iterative algorithm for a
minimax solution, expressed by Eq. (47), for ρ are shown in
Fig. 3. From Proposition 3, the QWM �([ξ�]2) with minimax
probabilities ξ� is a minimax measurement for a pure state set.
In consideration of this, we set the initial weights as w(0)

m =
1/M2 for each m ∈ IM . In a similar manner to Fig. 2, we plot

the number of iterations r to achieve P �
C

(w(r)) − P �
C

(w(r)) less

than 10−9 for different M . We can also see that the number of
iterations required almost decreases as d increases in the range
of 1.0 � d � 1.5. Note that the number of iterations required
for a minimax solution is less than that for a minimum-error
measurement. However, we found that this is generally not the
case; in many state sets, the algorithm for a minimum-error
measurement has a faster rate of convergence than that for a
minimax solution.

The values of P �
C

(w(r)) − P �
C and P �

C − P �
C

(w(r)) for 20
iterations when M = 3 are illustrated in Fig. 4. For M = 3,
a closed-form analytical expression for the minimax value

P �
C is known [28]. One can see that both P �

C
(w(r)) − P �

C and

P �
C − P �

C
(w(r)) nearly exponentially decreases as the number

of iterations increases. Note that in this case our algorithm
with d = 1.25 has a faster rate of convergence than that with
d = 1.5.

In Figs. 5 and 6, we show the dependence of the convergence
properties of the proposed algorithms for a minimum-error
measurement and a minimax solution, respectively, on the rank
of density operators. We use 100 sets of randomly generated
four quantum states {ρm : m ∈ I4} whose supports are linearly
independent. Prior probabilities are also randomly selected
in the case of finding a minimum-error measurement. For
any m ∈ I4,ρm has a rank of R, i.e., Rm = rankρm = R, and
thus, the dimension of the state space is N = 4R. We plot
the average number of iterations r to achieve the difference
between the upper and lower bounds for optimal value less
than 10−9 for different R. In Figs. 5 and 6, the numbers of

Iteration
0 5 10 15 20

1

10−4

10−8

10−12

Er
ro

r

d = 1.0
d = 1.25
d = 1.5

10−10

10−6

10−2

FIG. 4. Accuracy of minimax value vs number of iterations for a
ternary ASK coherent state set.

iterations required tend to increase and decrease as R increases,
respectively; however, it is not significantly changed by R

at least in the range of R � 15. Thus, since the proposed
algorithms take O(N3) = O(R3) time for a single iteration
as explained in the next section, they require about R3 times
higher computational complexity than in the case of R = 1.

In Figs. 2–6, the proposed algorithms with d = 1.25 always
take less average number of iterations than those with d =
1.0, which implies that d ≈ 1.25 is expected to offer stable
performance. Note that, using the property that the logarithm of
the difference between the upper and lower bounds decreases
approximately linearly with the number of iterations, as we can
see in Fig. 4, we can obtain a rough estimate of the number of
iterations required after a few iterations, and thus can choose
an appropriate value of d.

Rank of each state R
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FIG. 5. Example of numerical calculations for minimum-error
measurements for four pure (R = 1) and mixed (R > 1) states.
Number of iterations to achieve difference between upper and lower
bounds for maximum correct probability less than 10−9 is shown.
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FIG. 6. Example of numerical calculations for minimax solutions
for four pure (R = 1) and mixed (R > 1) states. Number of iterations
to achieve difference between upper and lower bounds for minimax
value less than 10−9 is shown.

VII. TIME AND SPACE COMPLEXITY

The proposed algorithms are expected to have lower
computational complexity and memory size than classical
approaches for solving an SDP. Here we will compare our
algorithms with CSDP [45], which is a widely used SDP solver
implementing a primal-dual interior point method. We assume
that the spans of {ρm : m ∈ IM} are linearly independent (i.e.,∑M−1

m=0 Rm = N ), and N2 is much larger than M , which is
satisfied in many practical cases. We do not assume that ρ is
symmetric.

In minimal measuring strategy, CSDP solves the problem
of maximizing PC(ξ,�) under the constraint of Eq. (1).
Since the number of scalar equality constraints is N2, CSDP
takes O(N6) time for a single iteration and requires O(N4)
storage [45]. In contrast, in our algorithm the calculation of
[G(r)]−1/2 of Eq. (9), which requires O(N3) time for a single
iteration, is often much harder than the other operations. Our
algorithm requires O(N2) storage for N -dimensional square
matrices.

In minimax strategy, the problem can be expressed as the
following SDP [16]:

argmax
�∈M

Tr(ρ0�0),

subjectto Tr(ρm�m) = Tr(ρ0�0),∀m ∈ IM. (73)

Since � must satisfy Eq. (1) (i.e., � ∈ M), the number of
scalar equality constraints is also N2. This means that CSDP
has the same order of time and memory complexity as that in
the minimal measuring strategy. Similarly, our algorithm takes
O(N3) time for a single iteration since the major computational
cost is to compute [G(r)]−1/2. Our algorithm also requires
O(N2) storage. Table I summarizes the above arguments.

We should mention the total complexity. We here consider
that the permissible error of the correct probability is 10−9.
We can see from numerical observations that the number
of iterations required by CSDP is typically less than 30. In
contrast, our algorithm sometimes needs thousands of itera-

TABLE I. Time and memory complexity for finding an optimal
POVM.

Time complexity Storage
Strategy Method per iteration requirements

Minimum CSDP O(N6) O(N 4)
measuring Proposed O(N3) O(N 2)
Minimax CSDP O(N6) O(N 4)

Proposed O(N 3) O(N 2)

tions as shown in Fig. 2. However, since the time complexity
required by our algorithm and CSDP for a single iteration are
respectively O(N3) and O(N6), it is expected that the total time
complexity of our algorithm is much less than that of CSDP.
We did numerical experiments on an Intel Core i7-4600M
machine with 4 GB memory to compare the processing time.
Both CSDP and our algorithm are implemented in C language.
In the case of ASK coherent state set with |α|2 = 0.1 (this is the
same condition as in Figs. 2 and 3) and M = 15, the processing
time for CSDP and our algorithm in the minimal measuring
strategy was 50 and 1 s, and that in the minimax strategy was
80 and 0.03 s, respectively.

We now compare our algorithm in the minimal measuring
strategy with that of Ježek et al.. First, we consider the case of
d = 1. If we naively implement Ježek et al.’s algorithm, then
it involves several multiplications of N -dimensional square
matrices, which requires additional O(N3) time for a single
iteration and O(N2) storage in practice. Thus, it requires
much computation time and memory, although it has the
same order of computational complexity as our algorithm.
However, if we optimize the implementation of Ježek et al.’s
algorithm by representing ρm and �m as ρm = ψmψ

†
m and

�m = πmπ
†
m, respectively (ψm and πm are N × Rm matrices

for each m ∈ IM ), then it can have the almost same time and
memory requirements as our method. Next, we consider the
case of d > 1. As described in Sec. IV A, the acceleration
technique of our method is difficult to apply to Ježek et al.’s
algorithm. In contrast, our algorithm can accelerate with only
a small additional computational cost. Note that the optimal
acceleration parameter d is different for each state set. The
issue of how to optimize d is remained for future study.

It is worth discussing the parallel computing. SDP with
matrix size of N × N and L constraints can be solved in
polylog(N )polylog(L) time (for a given permissible error),
using poly(N )poly(L) processors [46], where poly(a) and
polylog(b) respectively denote the polynomial of a and
polylogarithm of b. This is because operations for Hermitian
matrices such as matrix multiplication and eigendecomposi-
tion take polylog time using polynomial number of processors.
For the same reason, our algorithm can obtain a solution in
polylog(N )polylog(L) time using poly(N )poly(L) processors.
Even if parallel processors are used, our method usually must
achieve sufficient accuracy with lower time complexity than
SDP-based algorithms since our method has a lower total
computational complexity in many cases.

If ρ is symmetric, then using the symmetry we can often
reduce the time complexity of both SDP-based and our
algorithms. For example, we consider a cyclic state set ρ,
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which can be expressed as ρ = {ρm = Umρ0U
−m : m ∈ IM}

with a unitary matrix U . Since there exists a matrix X � 0
satisfying Eqs. (18) and (19) such that X commutes with
U , we can simplify the SDP expression [43]. Similarly, G(r)

commutes with U , which indicates that we can reduce the
computational cost of computing [G(r)]−1/2 in our algorithm.

VIII. CONCLUSION

We investigated the problem of computing a minimum-
error measurement and a minimax solution by optimizing the
weights of the BWSRM. We derived necessary and sufficient
conditions for the BWSRM to be a minimax measurement,
which indicates that the trace of each optimal weight of the
BWSRM is proportional to the square of the corresponding
minimax probability. We also showed an extension of the
iterative algorithm developed by Ježek et al. [24] for a
minimum-error measurement. For a linearly independent pure
state set, the algorithm of Ježek et al. converges to an optimal
measurement. Then, we proposed an iterative algorithm for
a minimax solution. For a pure state set, our algorithm
monotonically decreases an upper bound of minimax value.
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APPENDIX A: REMARKS ON MATRICES

We give some remarks for providing our main results.
Remark 10. For any positive semidefinite matrices A and B

and any positive real number d, AdBAd = B and AB = B are
identical. In particular, if B is strictly positive, AdBAd = B if
and only if A is the identity matrix.

Proof. First, assume that AdBAd = B. Let a Schatten
decomposition of A be A = ∑

k ak |ak〉 〈ak|. Premultiplying
and postmultiplying both sides of AdBAd = B by 〈ak| and
|ak〉, respectively, yield

a2d
k 〈ak| B |ak〉 = 〈ak| B |ak〉 . (A1)

Let K = {k : 〈ak| B |ak〉 > 0}. From Eq. (A1), ak = 1 holds
for any k ∈ K. Therefore, AB = B holds.

Next, assume that AB = B. Each column of B is an eigen-
vector of A with eigenvalue 1, and also an eigenvector of Ad

with eigenvalue 1. Therefore, AdBAd = BAd = (AdB)† = B

holds.
If B is strictly positive, i.e., B−1 exists, then it is obvious

that AB = B if and only if A is the identity matrix. �
Remark 11. Let I ′

t be the t-dimensional identity matrix.
For any n × k matrix �, any n-dimensional strictly positive
semidefinite matrix B, and any real number c, c�†B� � I ′

k

and B−1 � c��† are identical.
Proof. If c � 0, then this remark is obvious, since in

this case I ′
k − c�†B� and B−1 − c��† are always positive

semidefinite. Assume c > 0. Let A = c1/2�†B1/2. Then,
c�†B� � I ′

k is identical to AA† � I ′
k . In contrast, B−1 �

c��† is identical to

I ′
n � cB1/2��†B1/2 = A†A. (A2)

Now we will show that AA† � I ′
k and A†A � I ′

n are
identical. AA† � I ′

k holds if and only if all eigenvalues of
AA† are less than or equal to 1. Since AA† and A†A have the
same nonzero eigenvalues [47], this means that all eigenvalues
of A†A are less than or equal to 1, that is, A†A � I ′

n. �

APPENDIX B: REMARKS ON BWSRMs

Remark 12. We consider a state set ρ = {ρm = ψmψ
†
m :

m ∈ IM} with prior probabilities ξ = {ξm : m ∈ IM}. Let w ∈
W .

If w satisfies Eqs. (14) and (15) with a certain c (i.e.,
the BWSRM �(w) is a minimum-error measurement from
Remark 1), then we have

c[G(w)]1/2 =
M−1∑
k=0

ξkρk�
(w)
k . (B1)

Proof. We have

c[G(w)]1/2 = cG(w)[G(w)]−1/2

= c

M−1∑
k=0

ψkwkψ
†
k [G(w)]−1/2

= c

M−1∑
k=0

ξkψkY
(w)
k wkψ

†
k [G(w)]−1/2

=
M−1∑
k=0

ξkψkψ
†
k [G(w)]−1/2ψkwkψ

†
k [G(w)]−1/2

=
M−1∑
k=0

ξkρk�
(w)
k , (B2)

where the second to fifth lines follow from Eqs. (6), (15), (9),
and (5), respectively. �

Remark 13 (Theorem 5 of Ref. [35]). We consider a pure
state set ρ = {|ψm〉 〈ψm| : m ∈ IM}. Let 
(w) = {
m(w) :
m ∈ IM}, where w ∈ W and


m(w) = 1

Y
(w)
m

(
M−1∑
k=0

1

Y
(w)
k

)−1

. (B3)

Note that 
m(w) > 0 and
∑M−1

m=0 
m(w) = 1 hold, and thus

(w) can be interpreted as prior probabilities. For any w ∈ W ,
the BWSRM �(w) is a minimum-error measurement for ρ with
prior probabilities 
(w).

From Remark 13, we can obtain the prior probabilities ξ

such that �(w) is a minimum-error measurement for a given
w, that is, ξ = 
(w). However, it is often difficult to obtain w

such that �(w) is a minimum-error measurement for a given ξ .
Note that Remark 13 can be generalized to a mixed state

set as follows.
Remark 14. We consider a state set ρ = {ρm = ψmψ

†
m :

m ∈ IM} with prior probabilities ξ = {ξm : m ∈ IM}. Let
Rm = rankρm. We also consider a BWSRM �(w) = {�(w)

m :
m ∈ IM}, where w = {wm ∈ SRm : m ∈ IM} ∈ W . Assume
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wm > 0 for any m ∈ IM . If �(w) is a minimum-error mea-
surement for ρ with ξ , then we have that for any m ∈ IM ,

ξm = Rm

TrY (w)
m

(
M−1∑
k=0

Rk

TrY (w)
k

)−1

. (B4)

Proof. Assume that �(w) is a minimum-error measurement
for ρ with ξ . Postmultiplying both sides of Eq. (15) by w−1

m

yields ξmY (w)
m = cIm. Taking the trace on both sides we have

ξmTrY (w)
m = cRm. Therefore, ξm ∝ Rm/TrY (w)

m , i.e., Eq. (B4)
holds. �

APPENDIX C: PROOF OF THEOREM 5

1. Outline

First, we derive that ξmY (r)
m converges to 1 as r tends to

infinity. Next, using this property, we prove that the correct
probability of the BWSRM �(w(r)), denoted as P

(r)
C , converges

to the maximum correct probability P
opt
C . Finally, we show that

�(w(r)) converges to a minimum-error measurement, denoted
as �•.

2. Proof that ξmY (r)
m converges to 1

Let E(r)
m be an N -dimensional square matrix satisfying

�(w(r))
m = [E(r)

m ]†E(r)
m . Also let

S(r) =
M−1∑
m=0

Tr
[
E(r+1)

m − E(r)
m

]†[
E(r+1)

m − E(r)
m

]
ξmρm. (C1)

We exploit the fact that S(r) converges to 0 as r tends to infinity,
which is proved by Tyson [see Eq. (16) of Ref. [25]]. E(r)

m can
be expressed as

E(r)
m = |0〉 〈ψm|

√
w

(r)
m [G(r)]−1/2, (C2)

where |0〉 is any normal vector in H. From Eq. (9), we have

E(r)
m |ψm〉 = |0〉

√
w

(r)
m Y (r)

m . (C3)

We obtain, for any m ∈ IM ,

S(r) � Tr
[
E(r+1)

m − E(r)
m

]†[
E(r+1)

m − E(r)
m

]
ξmρm

= ξm

∣∣√w
(r+1)
m Y (r+1)

m −
√

w
(r)
m Y (r)

m

∣∣2

= ξm

∣∣√w
(r)
m Y (r)

m [ξmY (r+1)
m − 1]

∣∣2
, (C4)

where the first to third lines follow from Eqs. (C1), (C3),
and (29), respectively. Since S(r) converges to 0, the right-hand
side of last line of Eq. (C4) also converges to 0. Therefore,
to prove that ξmY (r)

m converges to 1, it suffices to show that√
w

(r)
m Y (r)

m has a positive lower bound.
Let |ψ⊥

m 〉 ∈ H (m ∈ IM ) be a unit vector such that
〈ψ⊥

m |ψk〉 = 0 for any k ∈ IM with k �= m. Then, we obtain

a lower bound of
√

w
(r)
m Y (r)

m as follows:√
w

(r)
m Y (r)

m =
√

w
(r)
m 〈ψm|[G(r)]−1/2|ψm〉

�

√
w

(r)
m | 〈ψ⊥

m |ψm〉 |2
〈ψ⊥

m |[G(r)]1/2|ψ⊥
m 〉

�

√
w

(r)
m | 〈ψ⊥

m |ψm〉 |2√〈ψ⊥
m |G(r)|ψ⊥

m 〉

=
√

w
(r)
m | 〈ψ⊥

m |ψm〉 |2√
〈ψ⊥

m |ψm〉 w
(r)
m 〈ψm|ψ⊥

m 〉
= | 〈ψ⊥

m |ψm〉 |, (C5)

where the second line follows from Remark 11 (with B =
[G(r)]1/2,c = 〈ψ⊥

m |[G(r)]1/2|ψ⊥
m 〉−1

, and � = |ψ⊥
m 〉). The third

line follows from

〈ψ⊥
m |[G(r)]1/2|ψ⊥

m 〉2 � 〈ψ⊥
m |G(r)|ψ⊥

m 〉 , (C6)

which is derived from the fact that A†BA � A†A holds for
any matrices A and B satisfying B � I (in this case, A =
[G(r)]1/2 |ψ⊥

m 〉 and B = |ψ⊥
m 〉 〈ψ⊥

m |). The fourth line follows
from Eq. (6). Since {|ψm〉 : m ∈ IM} is linearly independent,
| 〈ψ⊥

m |ψm〉 | is positive.

3. Proof that P (r)
C converges to Popt

C

Since ξmY (r)
m converges to 1, for any ε′ > 0,r0 > 0 exists

such that ξmY (r+1)
m � 1 + ε′ for any r > r0. Let ε = 1 − (1 +

ε′)−1 (note that ε converges to 0 if ε′ converges to 0). Then,
we have

(1 − ε)ξmY (r+1)
m � 1. (C7)

Substituting Eq. (9) into Eq. (C7) and using Remark 11
[with c = (1 − ε)ξm,� = |ψm〉, and B = [G(r+1)]−1/2] yield

[G(r+1)]1/2 � (1 − ε)ξm |ψm〉 〈ψm| . (C8)

Hence, we have

Tr[G(r+1)]1/2 − (1 − ε)P opt
C

= Tr
M−1∑
m=0

{[G(r+1)]1/2 − (1 − ε)ξm |ψm〉 〈ψm|}�•
m

� 0, (C9)

where the last inequality follows from the fact that TrAB � 0
for any matrices A � 0 and B � 0. In contrast, we can obtain

P
(r)
C =

M−1∑
m=0

ξm 〈ψm|�(w(r))
m |ψm〉

=
M−1∑
m=0

ξ−1
m w(r+1)

m

� (1 − ε)
M−1∑
m=0

Y (r+1)
m w(r+1)

m
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= (1 − ε)Tr
M−1∑
m=0

[G(r+1)]−1/2w(r+1)
m |ψm〉 〈ψm|

= (1 − ε)Tr[G(r+1)]1/2. (C10)

The second line follows from

w(r+1)
m = ξ 2

mw(r)
m

[
Y (r)

m

]2 = ξ 2
m 〈ψm| �(w(r))

m |ψm〉 , (C11)

which is given by Eqs. (8) and (29). The third and fourth lines
of Eq. (C10) follow from Eqs. (C7) and (9), respectively. From
Eqs. (C9) and (C10), we obtain

P
(r)
C � (1 − ε)2P

opt
C . (C12)

Therefore, for any ε > 0, r0 > 0 exists such that P
(r)
C � (1 −

ε)2P
opt
C for any r > r0, which implies that P

(r)
C converges to

P
opt
C as r tends to infinity.

4. Proof that �(w(r)) converges to �•

The entire set of POVMs M can be regarded as a closed
convex set, and PC(ξ,�) is a concave function with respect to
�. P

opt
C is the maximum value of PC(ξ,�) over all � ∈ M.

In contrast, the minimum-error measurement �• is uniquely
determined for a linearly independent pure state set [48]. Thus,
since PC[ξ,�(w(r))] converges to P

opt
C , it is obvious that �(w(r))

converges to �•. �

[1] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[2] A. S. Holevo, J. Multivariate Anal. 3, 337 (1973).
[3] H. P. Yuen, R. S. Kennedy, and M. Lax, IEEE Trans. Inf. Theory

21, 125 (1975).
[4] V. P. Belavkin, Radio Eng. Electron. Phys. 20, 39 (1975).
[5] M. Ban, K. Kurokawa, R. Momose, and O. Hirota, Int. J. Theor.

Phys. 36, 1269 (1997).
[6] T. S. Usuda, I. Takumi, M. Hata, and O. Hirota, Phys. Lett. A

256, 104 (1999).
[7] S. M. Barnett, Phys. Rev. A 64, 030303 (2001).
[8] Y. C. Eldar and G. D. Forney Jr., IEEE Trans. Inf. Theory 47,

858 (2001).
[9] E. Andersson, S. M. Barnett, C. R. Gilson, and K. Hunter, Phys.

Rev. A 65, 052308 (2002).
[10] K. Kato and O. Hirota, IEEE Trans. Inf. Theory 49, 3312 (2003).
[11] C. L. Chou and L. Y. Hsu, Phys. Rev. A 68, 042305 (2003).
[12] O. Hirota and S. Ikehara, Trans. IECE Jpn. E65, 627 (1982).
[13] M. Osaki, M. Ban, and O. Hirota, Phys. Rev. A 54, 1691

(1996).
[14] G. M. D’Ariano, M. F. Sacchi, and J. Kahn, Phys. Rev. A 72,

032310 (2005).
[15] K. Kato, in Proceedings of the IEEE International Symposium

on Information Theory, Cambridge, New York (IEEE, New York,
2012), pp. 1077–1081.

[16] K. Nakahira, K. Kato, and T. S. Usuda, Phys. Rev. A 88, 032314
(2013).

[17] A. S. Holevo, Prob. Inf. Transmission 10, 317 (1974).
[18] Y. C. Eldar, A. Megretski, and G. C. Verghese, IEEE Trans. Inf.

Theory 49, 1007 (2003).
[19] M. Zibulevsky and M. Elad, IEEE Signal Process. Mag. 27, 76

(2010).
[20] I. Daubechies, M. Defrise, and C. De-Mol, Commun. Pure Appl.

Math. 57, 1413 (2004).
[21] Y. Boykov and V. Kolmogorov, IEEE Trans. Patt. Anal. Mach.

Intell. 26, 1124 (2004).
[22] T. Blumensath and M. E. Davies, J. Fourier Anal. Applicat. 14,

629 (2008).
[23] A. Beck and M. Teboulle, SIAM J. Imaging Sci. 2, 183 (2009).
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