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Hamiltonian gadgets with reduced resource requirements
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Application of the adiabatic model of quantum computation requires efficient encoding of the solution to
computational problems into the lowest eigenstate of a Hamiltonian that supports universal adiabatic quantum
computation. Experimental systems are typically limited to restricted forms of two-body interactions. Therefore,
universal adiabatic quantum computation requires a method for approximating quantum many-body Hamiltonians
up to arbitrary spectral error using at most two-body interactions. Hamiltonian gadgets, introduced around a
decade ago, offer the only current means to address this requirement. Although the applications of Hamiltonian
gadgets have steadily grown since their introduction, little progress has been made in overcoming the limitations
of the gadgets themselves. In this experimentally motivated theoretical study, we introduce several gadgets
which require significantly more realistic control parameters than similar gadgets in the literature. We employ
analytical techniques which result in a reduction of the resource scaling as a function of spectral error for the
commonly used subdivision, three- to two-body and k-body gadgets. Accordingly, our improvements reduce the
resource requirements of all proofs and experimental proposals making use of these common gadgets. Next, we
numerically optimize these gadgets to illustrate the tightness of our analytical bounds. Finally, we introduce a
gadget that simulates a YY interaction term using Hamiltonians containing only {X,Z,XX,ZZ} terms. Apart
from possible implications in a theoretical context, this work could also be useful for a first experimental
implementation of these key building blocks by requiring less control precision without introducing extra ancillary
qubits.
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Although adiabatic quantum computation is known to be a
universal model of quantum computation [1–5] and hence,
in principle equivalent to the circuit model, the mappings
between an adiabatic process and an arbitrary quantum circuit
require significant overhead. Currently, the approaches to
universal adiabatic quantum computation require implement-
ing multiple higher-order and noncommuting interactions by
means of perturbative gadgets [4]. Such gadgets arose in early
work on quantum complexity theory and the resources required
for their implementation are the subject of this study.

Early work by Kitaev et al. [6] established that an otherwise
arbitrary Hamiltonian restricted to have at most five-body
interactions has a ground-state energy problem which is
complete for the quantum analog of the complexity class NP

(QMA-COMPLETE). Reducing the locality of the Hamiltonians
from five-body down to two-body remained an open problem
for a number of years. In their 2004 proof that 2-LOCAL

HAMILTONIAN is QMA-COMPLETE, Kempe, Kitaev, and Regev
formalized the idea of a perturbative gadget, which finally
accomplished this task [7]. Oliveira and Terhal further reduced
the problem, showing completeness when otherwise arbitrary
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two-body Hamiltonians were restricted to act on a square
lattice [3]. The form of the simplest QMA-COMPLETE Hamilto-
nian is reduced to physically relevant models in Ref. [4] (see
also [8]), e.g.,

H =
∑

i

hiZi +
∑
i<j

JijZiZj +
∑
i<j

KijXiXj . (1)

Although this model contains only physically accessible
terms, programming problems into a universal adiabatic quan-
tum computer [4] or an adiabatic quantum simulator [9,10]
involves several types of k-body interactions (for bounded
k). To reduce from k-body interactions to two-body is
accomplished through the application of gadgets. Hamiltonian
gadgets were introduced as theorem-proving tools in the
context of quantum complexity theory yet their experimental
realization currently offers the only path towards universal
adiabatic quantum computation. In terms of experimental
constraints, an important parameter in the construction of
these gadgets is a large spectral gap introduced into the ancilla
space as part of a penalty Hamiltonian. This large spectral
gap often requires control precision well beyond current
experimental capabilities and must be improved for practical
physical realizations.

A perturbative gadget consists of an ancilla system acted
on by Hamiltonian H , characterized by the spectral gap �

between its ground-state subspace and excited-state subspace,
and a perturbation V which acts on both the ancilla and the
system. V perturbs the ground-state subspace of H such that
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the perturbed low-lying spectrum of the gadget Hamiltonian
H̃ = H + V captures the spectrum of the target Hamiltonian
Htarg up to error ε. The purpose of a gadget is dependent on
the form of the target Hamiltonian Htarg. For example, if the
target Hamiltonian is k-local with k � 3 while the gadget
Hamiltonian is 2-local, the gadget serves as a tool for reducing
locality. Also, if the target Hamiltonian involves interactions
that are hard to implement experimentally and the gadget
Hamiltonian contains only interactions that are physically
accessible, the gadget becomes a generator of physically
inaccessible terms from accessible ones. For example, the
gadget which we introduce in Sec. VI might fall into this
category. Apart from the physical relevance to quantum
computation, gadgets have been central to many results in
quantum complexity theory [4,8,11]. Hamiltonian gadgets
were also used to characterize the complexity of density
functional theory [12] and are required components in current
proposals related to error correction on an adiabatic quantum
computer [13] and the adiabatic and ground-state quantum
simulator [9,10]. Since these works employ known gadgets
which we provide improved constructions of here, our results
hence imply a reduction of the resources required in these past
works.

The first use of perturbative gadgets [7] relied on a two-body
gadget Hamiltonian to simulate a three-body Hamiltonian of
the form Htarg = Helse + αA ⊗ B ⊗ C with three auxiliary
spins in the ancilla space. Here, Helse is an arbitrary Hamilto-
nian that does not operate on the auxiliary spins. Further, A, B,
and C are unit-norm operators and α is the desired coupling.
For such a system, it is shown that it suffices to construct V

with ‖V ‖ < �/2 to guarantee that the perturbative self-energy
expansion approximates Htarg up to error ε [3,7,11]. Because
the gadget Hamiltonian is constructed such that in the perturba-
tive expansion (with respect to the low-energy subspace), only
virtual excitations that flip all three ancilla bits would have
nontrivial contributions in the first- through third-order terms.
In Ref. [14], Jordan and Farhi generalized the construction in
Ref. [7] to a general k-body to two-body reduction using a per-
turbative expansion due to Bloch [15]. They showed that one
can approximate the low-energy subspace of a Hamiltonian
containing r distinct k-local terms using a 2-local Hamiltonian.
Two important gadgets were introduced by Oliveira and Ter-
hal [3] in their proof that 2-local Hamiltonian on square lattice
is QMA-COMPLETE. In particular, they introduced an alternative
three- to two-body gadget which uses only one additional
spin for each three-body term as well as a “subdivision
gadget” that reduces a k-body term to a (�k/2� + 1)-body
term using only one additional spin [3]. These gadgets, which
we improve in this work, find their use as the de facto standard
whenever the use of gadgets is necessitated. For instance, the
gadgets from [3] were used by Bravyi, DiVincenzo, Loss, and
Terhal [11] to show that one can combine the use of subdivision
and three- to two-body gadgets to recursively reduce a k-body
Hamiltonian to two-body, which is useful for simulating
quantum many-body Hamiltonians. We note that these gadgets
solve a different problem than the type of many-body operator
simulations considered previously [16,17] for gate model
quantum computation, where the techniques developed therein
are not directly applicable to our situation.

While recent progress in the experimental implementation
of adiabatic quantum processors [18–21] suggests the ability
to perform sophisticated adiabatic quantum computing experi-
ments, the perturbative gadgets require very large values of �.
This places high demands on experimental control precision
by requiring that devices enforce very large couplings between
ancilla qubits while still being able to resolve couplings from
the original problem, even though those fields may be orders
of magnitude smaller than �. Accordingly, if perturbative
gadgets are to be used, it is necessary to find gadgets which
can efficiently approximate their target Hamiltonians with
significantly lower values of �.

RESULTS SUMMARY AND MANUSCRIPT STRUCTURE

Previous works in the literature [3,4,7,11] choose � to
be a polynomial function of ε−1 which is sufficient for
yielding a spectral error O(ε) between the gadget and the
target Hamiltonian. Experimental realizations, however, will
require a recipe for assigning the minimum � that guarantees
error within specified ε, which we consider here. This recipe
will need to depend on three parameters: (i) the desired
coupling α; (ii) the magnitude of the nonproblematic part of the
Hamiltonian ‖Helse‖; and (iii) the specified error tolerance ε.
For simulating a target Hamiltonian up to error ε, previous
constructions [3,11] use � = �(ε−2) for the subdivision
gadget and � = �(ε−3) for the three- to two-body gadget. We
will provide analytical results and numerics which indicate that
� = �(ε−1) is sufficient for the subdivision gadget (Secs. II
and III) and � = �(ε−2) for the three- to two-body gadget
(Sec. IV and Appendix A), showing that the physical resources
required to realize the gadgets are less than previously assumed
elsewhere in the literature.

In our derivation of the � scalings, we use an analytical
approach that involves bounding the infinite series in the
perturbative expansion. For the three- to two-body reduction,
in Appendix A we show that complications arise when there
are multiple three-body terms in the target Hamiltonian that
are to be reduced concurrently and bounding the infinite series
in the multiple-bit perturbative expansion requires separate
treatments of odd and even order terms. Furthermore, in
the case where � = �(ε−2) is used, additional terms which
are dependent on the commutation relationship among the
three-body target terms are added to the gadget in order to
compensate for the perturbative error due to cross-gadget
contributions (Appendix B).

The next result of this paper, described in Sec. V, is a three-
to two-body gadget construction that uses a two-body Ising
Hamiltonian with a local transverse field. This opens the door
to use existing flux-qubit hardware [18] to simulate Htarg =
Helse + αZiZjZk where Helse is not necessarily diagonal. One
drawback of this construction is that it requires � = �(ε−5),
rendering it challenging to realize in practice. For cases where
the target Hamiltonian is diagonal, there are nonperturbative
gadgets [22–24] that can reduce a k-body Hamiltonian to two-
body. In this work, however, we focus on perturbative gadgets.

The final result of this paper in Sec. VI is to propose a
gadget which is capable of reducing arbitrary real-valued
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Hamiltonians to a Hamiltonian with only XX and ZZ cou-
plings. In order to accomplish this, we go to fourth order in per-
turbation theory to find an XXZZ Hamiltonian which serves
as an effective Hamiltonian dominated by YY coupling terms.
Because YY terms are especially difficult to realize in some
experimental architectures, this result is useful for those
wishing to encode arbitrary QMA-HARD problems on existing
hardware. This gadget in fact now opens the door to solve
electronic-structure problems on an adiabatic quantum
computer.

To achieve both fast readability and completeness in
presentation, each section from Sec. II to VI consists of a
Summary section and an Analysis section. The former is
mainly intended to provide a high-level synopsis of the main
results in the corresponding section. Readers could only refer
to the Summary sections on their own for an introduction to the
results of the paper. The Analysis subsections contain detailed
derivations of the results in the Summary.

I. PERTURBATION THEORY

In our notation, the spin- 1
2 Pauli operators will be rep-

resented as {X,Y,Z} with subscript indicating which spin- 1
2

particle (qubit) it acts on. For example, X2 is a Pauli operator
X = |0〉〈1| + |1〉〈0| acting on the qubit labeled as 2.

In the literature there are different formulations of the
perturbation theory that are adopted when constructing and
analyzing the gadgets. This adds to the challenge faced in
comparing the physical resources required among the various
proposed constructions. For example, Jordan and Farhi [14]
use a formulation due to Bloch, while Bravyi et al. use a formu-
lation based on the Schrieffer-Wolff transformation [11]. Here,
we employ the formulation used in Refs. [3,7]. For a review
on various formulations of perturbation theory, refer to [25].

A gadget Hamiltonian H̃ = H + V consists of a penalty
Hamiltonian H , which applies an energy gap onto an ancilla
space, and a perturbation V . To explain in further detail how the
low-lying sector of the gadget Hamiltonian H̃ approximates
the entire spectrum of a certain target Hamiltonian Htarg with
error ε, we set up the following notations: let λj and |ψj 〉 be the
j th eigenvalue and eigenvector of H and similarly define λ̃j

and |ψ̃j 〉 as those of H̃ , assuming all the eigenvalues are labeled
in a weakly increasing order (λ1 � λ2 � . . ., same for λ̃j ).
Using a cutoff value λ∗, letL− = span{|ψj 〉| ∀ j : λj � λ∗} be
the low-energy subspace and L+ = span{|ψj 〉| ∀ j : λj > λ∗}
be the high-energy subspace. Let �− and �+ be the orthogonal
projectors onto the subspaces L− and L+, respectively. For an
operator O we define the partitions of O into the subspaces
as O− = �−O�−, O+ = �+O�+, O−+ = �−O�+, and
O+− = �+O�−.

With the definitions above, one can turn to perturbation
theory to approximate H̃− using H and V . We now
consider the operator-valued resolvent G̃(z) = (z1 − H̃ )−1.
Similarly, one would define G(z) = (z1 − H )−1. Note that
G̃−1(z) − G−1(z) = −V so that this allows an expansion in
powers of V as

G̃ = (G−1 − V )−1 = G(1 − V G)−1

= G + GV G + GV GV G + GV GV GV G + · · · . (2)

It is then standard to define the self-energy 	−(z) =
z1 − [G̃−(z)]−1. The self-energy is important because the
spectrum of 	−(z) gives an approximation to the spectrum
of H̃− since by definition H̃− = z1 − �−[G̃−1(z)]�− while
	−(z) = z1 − [�−G̃(z)�−]−1. As is explained by Oliveira
and Terhal [3], loosely speaking, if 	−(z) is roughly constant
in some range of z (defined in Theorem I.1), then 	−(z) is
playing the role of H̃−. This was formalized in Ref. [7] and
improved in Ref. [3] where the following theorem is proven
(as in Ref. [3] we state the case where H has zero as its lowest
eigenvalue and a spectral gap of �. We use operator norm
‖ . . . ‖ which is defined as ‖M‖ ≡ max|ψ〉∈M |〈ψ |M|ψ〉| for
an operator M acting on a Hilbert space M).

Theorem I.1 (Gadget theorem [3,7]). Let ‖V ‖ � �/2
where � is the spectral gap of H and let the low and high
spectrum of H be separated by a cutoff λ∗ = �/2. Now,
let there be an effective Hamiltonian Heff with a spectrum
contained in [a,b]. If for some real constant ε > 0 and
∀ z ∈ [a − ε,b + ε] with a < b < �/2 − ε, the self-energy
	−(z) has the property that ‖	−(z) − Heff‖ � ε, then each
eigenvalue λ̃j of H̃− differs to the j th eigenvalue of Heff , λj ,
by at most ε. In other words |λ̃j − λj | � ε, ∀ j .

To apply Theorem I.1, a series expansion for 	−(z) is
truncated at low order for which Heff is approximated. The
two-body terms in H and V by construction can give rise to
higher-order terms in Heff . For this reason, it is possible to
engineer Heff from 	−(z) to approximate Htarg up to error ε

in the range of z considered in Theorem I.1 by introducing
auxiliary spins and a suitable selection of two-body H and
V . Using the series expansion of G̃ in Eq. (2), the self-energy
	−(z) = z1 − G̃−1

− (z) can be expanded as (for further details
see [7])

	−(z) = H− + V− + V−+G+(z)V+−
+V−+G+(z)V+G+(z)V+− + · · · . (3)

The terms of second order and higher in this expansion give
rise to the effective many-body interactions.

II. IMPROVED OLIVEIRA AND TERHAL
SUBDIVISION GADGET

A. Summary

The subdivision gadget is introduced by Oliveira and
Terhal [3] in their proof that 2-local Hamiltonian on square
lattice is QMA-COMPLETE. Here, we show an improved lower
bound for the spectral gap � needed on the ancilla of the
gadget. A subdivision gadget simulates a many-body target
Hamiltonian Htarg = Helse + αA ⊗ B (Helse is a Hamiltonian
of arbitrary norm, ‖A‖ = 1 and ‖B‖ = 1) by introducing an
ancilla spin w and applying onto it a penalty Hamiltonian H =
�|1〉〈1|w so that its ground-state subspace L− = span{|0〉w}
and its excited subspace L+ = span{|1〉w} are separated by
energy gap �. In addition to the penalty Hamiltonian H , we
add a perturbation V of the form

V = Helse + |α||0〉〈0|w +
√

|α|�
2

[sgn(α)A − B] ⊗ Xw. (4)

Hence, if the target term A ⊗ B is k-local, the gadget Hamilto-
nian H̃ = H + V is at most (�k/2� + 1)-local, accomplishing
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FIG. 1. Comparison between our subdivision gadget with that of Oliveira and Terhal [3]. The data labeled as “numerical” represent the �

values obtained from the numerical search such that the spectral error between Htarg and H̃− is ε. The data obtained from the calculation using
Eq. (5) are labeled as “analytical.”. “[OT06]” refers to values of � calculated according to the assignment by Oliveira and Terhal [3]. In this
example, we consider Htarg = Helse + αZ1Z2. (a) Gap scaling with respect to ε−1. Here, ‖Helse‖ = 0 and α = 1. (b) The gap � as a function
of the desired coupling α. Here,‖Helse‖ = 0, ε = 0.05.

the locality reduction. Assume Htarg acts on n qubits. Prior
work [3] shows that � = �(ε−2) is a sufficient condition for
the lowest 2n levels of the gadget Hamiltonian H̃ to be ε close
to the corresponding spectrum of Htarg. However, by bounding
the infinite series of error terms in the perturbative expansion,
we are able to obtain a tighter lower bound for � for error ε.
Hence, we arrive at our first result (details will be presented
later in this section), that it suffices to let

� �
(

2|α|
ε

+ 1

)
(2‖Helse‖ + |α| + ε). (5)

In Fig. 1, we show numerics indicating the minimum �

required as a function of α and ε. In Fig. 1(a), the numerical
results and the analytical lower bound in Eq. (5) show that for
our subdivision gadgets, � can scale as favorably as �(ε−1).
For the subdivision gadget presented in Ref. [3], � scales
as �(ε−2). Although much less than the original assignment
in Ref. [3], the lower bound of � in Eq. (5) still satisfies
the condition of Theorem I.1. In Fig. 1, we numerically find
the minimum value of such � that yields a spectral error of
exactly ε.

B. Analysis

The currently known subdivision gadgets in the literature
assume that the gap in the penalty Hamiltonian � scales as
�(ε−2) (see, for example, [3,11]). Here, we employ a method
which uses infinite series to find the upper bound to the
norm of the high-order terms in the perturbative expansion.
We find that in fact � = �(ε−1) is sufficient for the error
to be within ε. A variation of this idea will also be used to
reduce the gap � needed in the three- to two-body gadget (see
Sec. IV).

The key aspect of developing the gadget is that given H =
�|1〉〈1|w, we need to determine a perturbation V to perturb

the low-energy subspace

L− = span{|ψ〉 ⊗ |0〉w,|ψ〉 is any state of

the system excluding the ancilla spin w}

such that the low-energy subspace of the gadget Hamiltonian
H̃ = H + V approximates the spectrum of the entire operator
Htarg ⊗ |0〉〈0|w up to error ε. Here, we will define V and
work backwards to show that it satisfies Theorem I.1. We
let

V = Helse + 1

�
(κ2A2 + λ2B2) ⊗ |0〉〈0|w

+ (κA + λB) ⊗ Xw, (6)

where κ , λ are constants which will be determined such that
the dominant contribution to the perturbative expansion which
approximates H̃− gives rise to the target Hamiltonian Htarg =
Helse + αA ⊗ B. In Eq. (6) and the remainder of the section, by
slight abuse of notation, we use κA + λB to represent κ(A ⊗
1B) + λ(1A ⊗ B) for economy. Here, 1A and 1B are identity
operators acting on the subspaces A and B, respectively. The
partitions of V in the subspaces, as defined in Sec. I, are

V+ = Helse ⊗ |1〉〈1|w,

V− =
[
Helse + 1

�
(κ2A2 + λ2B2)1

]
⊗ |0〉〈0|w,

(7)
V−+ = (κA + λB) ⊗ |0〉〈1|w,

V+− = (κA + λB) ⊗ |1〉〈0|w.

We would like to approximate the target Hamiltonian Htarg

and so expand the self-energy in Eq. (3) up to second order.
Note that H− = 0 and G+(z) = (z − �)−1|1〉〈1|w. Therefore,
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the self-energy 	−(z) can be expanded as

	−(z) = V− + 1

z − �
V−+V+− +

∞∑
k=1

V−+V k
+V+−

(z − �)k+1

=
(

Helse − 2κλ

�
A ⊗ B

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+ z

�(z − �)
(κA + λB)2 ⊗ |0〉〈0|w +

∞∑
k=1

V−+V k
+V+−

(z − �)k+1︸ ︷︷ ︸
error term

. (8)

By selecting κ = sgn(α)(|α|�/2)1/2 and λ = −(|α|�/2)1/2, the leading-order term in 	−(z) becomes Heff = Htarg ⊗ |0〉〈0|w.
We must now show that the condition of Theorem I.1 is satisfied, i.e., for a small real number ε > 0, ‖	−(z) − Heff‖ � ε, ∀ z ∈
[min z, max z] where max z = ‖Helse‖ + |α| + ε = − min z. Essentially, this amounts to choosing a value of � to cause the error
term in Eq. (8) to be � ε. In order to derive a tighter lower bound for �, we bound the norm of the error term in Eq. (8) by letting
z 
→ max z and from the triangle inequality for operator norms:∥∥∥∥ z

�(z − �)
(κA + λB)2 ⊗ |0〉〈0|w

∥∥∥∥ � max z

�(� − max z)
4κ2 = 2|α| max z

� − max z
,

(9)∥∥∥∥∥
∞∑

k=1

V−+V k
+V+−

(z − �)k+1

∥∥∥∥∥ �
∞∑

k=1

‖V−+‖‖V+‖k‖V+−‖
(� − max z)k+1

�
∞∑

k=1

2|κ|‖Helse‖k2|κ|
(� − max z)k+1

=
∞∑

k=1

2|α|�‖Helse‖k

(� − max z)k+1
.

Using Heff = Htarg ⊗ |0〉〈0|w, from (8) we see that

‖	−(z) − Htarg ⊗ |0〉〈0|w‖ � 2|α| max z

� − max z
+

∞∑
k=1

2|α|�‖Helse‖k

(� − max z)k+1
(10)

= 2|α| max z

� − max z
+ 2|α|�

� − max z

‖Helse‖
� − max z − ‖Helse‖ . (11)

Here, going from Eqs. (10) to (11) we have assumed the
convergence of the infinite series in Eq. (10), which adds
the reasonable constraint that � > |α| + ε + 2‖Helse‖. To
ensure that ‖	−(z) − Htarg ⊗ |0〉〈0|w‖ � ε it is sufficient to
let expression (11) be �ε, which implies that

� �
(

2|α|
ε

+ 1

)
(|α| + ε + 2‖Helse‖), (12)

which is �(ε−1), a tighter bound than �(ε−2) in the liter-
ature [3,7,11]. This bound is illustrated with a numerical
example (Fig. 2). From the data labeled as “analytical” in
Fig. 2(a) we see that the error norm ‖	−(z) − Heff‖ is within
ε for all z considered in the range, which satisfies the condition
of the theorem for the chosen example. In Fig. 2(b), the
data labeled “analytical” show that the spectral difference
between H̃− and Heff = Htarg ⊗ |0〉〈0|w is indeed within ε as
the theorem promises. Furthermore, note that the condition of
Theorem I.1 is only sufficient, which justifies why in Fig. 2(b)
for α values at max α and min α the spectral error is strictly
below ε. This indicates that an even smaller �, although below
the bound we found in Eq. (12) to satisfy the theorem, could
still yield the spectral error within ε for all α values in the
range. The smallest value � can take would be one such that
the spectral error is exactly ε when α is at its extrema. We
numerically find this � (up to numerical error which is less
than 10−5ε) and as demonstrated in Fig. 2(b), the data labeled
“numerical” show that the spectral error is indeed ε at max(α)
and min(α), yet in Fig. 2(a) the data labeled “numerical” show
that for some z in the range the condition of the Theorem I.1,

‖	−(z) − Htarg ⊗ |0〉〈0|w‖ � ε, no longer holds. In Fig. 2,
we assume that ε is kept constant. In Fig. 1(a), we compute
both analytical and numerical � values for different values
of ε.

Comparison with Oliveira and Terhal [3]

We also compare our � assignment with the subdivision
gadget by Oliveira and Terhal [3], where given a target
Hamiltonian Htarg = Helse + Q ⊗ R it is assumed that Q and
R are operators with finite norm operating on two separate
spaces A and B. The construction of the subdivision gadget
in Ref. [3] is the same as the construction presented earlier:
introduce an ancillary qubit w with energy gap �, then
the unperturbed Hamiltonian is H = �|1〉〈1|w. In Ref. [3],
they add a perturbation V that takes the form of [3],
Eq. (15)

V = H ′
else +

√
�

2
(−Q + R) ⊗ Xw, (13)

where H ′
else = Helse + Q2/2 + R2/2. Comparing the form of

Eqs. (13) and (6), we can see that if we redefine Q = √|α|A
and R = √|α|B, the gadget formulation is identical to our
subdivision gadget approximating Htarg = Helse + αA ⊗ B

with α > 0. In the original work � is chosen as [3], Eq. (20)

� = (‖H ′
else‖ + C2r)6

ε2
,
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FIG. 2. Numerical illustration of gadget theorem using a subdivision gadget. Here, we use a subdivision gadget to approximate Htarg =
Helse + αZ1Z2 with ‖Helse‖ = 0 and α ∈ [−1,1]. ε = 0.05. “Analytical” stands for the case where the value of � is calculated using Eq. (12)
when |α| = 1. “Numerical” represents the case where � takes the value that yields the spectral error to be ε. In (a) we let α = 1. z ∈
[− max z, max z] with max z = ‖Helse‖ + max α + ε. The operator 	−(z) is computed up to the third order. Subplot (b) shows for every value
of α in its range, the maximum difference between the eigenvalues λ̃j in the low-lying spectrum of H̃ and the corresponding eigenvalues λj in
the spectrum of Htarg ⊗ |0〉〈0|w.

where C2 �
√

2 and r = max{‖Q‖,‖R‖}. In the context of
our subdivision gadget, this choice of � translates to a lower
bound

� � (‖Helse + |α|1‖ + √
2|α|)6

ε2
. (14)

In Fig. 1(a), we compare the lower bound in Eq. (14) with
our lower bound in Eq. (12) and the numerically optimized �

described earlier.

III. PARALLEL SUBDIVISION AND k- TO
THREE-BODY REDUCTION

A. Summary

Applying subdivision gadgets iteratively one can reduce a
k-body Hamiltonian Htarg = Helse + α

⊗k
i=1 σi to three-body.

Here, each σi is a single spin Pauli operator. Initially,
the term

⊗k
i=1 σi can be broken down into A ⊗ B where

A = ⊗r
i=1 σi and B = ⊗k

i=r+1 σi . Let r = k/2 for even k

and r = (k + 1)/2 for odd k. The gadget Hamiltonian will
be (�k/2� + 1)-body, which can be further reduced to a
(��k/2� + 1�/2 + 1)-body Hamiltonian in the same fashion.
Iteratively applying this procedure, we can reduce a k-body
Hamiltonian to three-body, with the ith iteration introducing
the same number of ancilla qubits as that of the many-body
term to be subdivided. Applying the previous analysis on
the improved subdivision gadget construction, we find that
�i = �(ε−1�

3/2
i−1) is sufficient such that during each iteration

the spectral difference between H̃i and H̃i−1 is within ε. From
the recurrence relation �i = �(ε−1�

3/2
i−1), we hence were

able to show a quadratic improvement over previous k-body
constructions [11].

B. Analysis

The concept of parallel application of gadgets has been
introduced in Refs. [3,7]. The idea of using subdivision gadgets
for iteratively reducing a k-body Hamiltonian to three-body
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has been mentioned in Refs. [3,11]. Here, we elaborate
the idea by a detailed analytical and numerical study. We
provide explicit expressions of all parallel subdivision gadget
parameters which guarantee that during each reduction the
error between the target Hamiltonian and the low-lying sector
of the gadget Hamiltonian is within ε. For the purpose of
presentation, let us define the notions of “parallel” and “series”
gadgets in the following remarks.

Remark III.1 (Parallel gadgets). Parallel application of
gadgets refers to using gadgets on multiple terms Htarg,i in the
target Hamiltonian Htarg = Helse +∑m

i=1 Htarg,i concurrently.
Here, one will introduce m ancilla spins w1, . . . ,wm and the
parallel gadget Hamiltonian takes the form of H̃ = ∑m

i=1 Hi +
V where Hi = �|1〉〈1|wi

and V = Helse +∑m
i=1 Vi . Vi is the

perturbation term of the gadget applied to Htarg,i.
Remark III.2 (Serial gadgets). Serial application of gadgets

refers to using gadgets sequentially. Suppose the target
Hamiltonian Htarg is approximated by a gadget Hamiltonian
H̃ (1) such that H̃

(1)
− approximates the spectrum of Htarg up to

error ε. If one further applies onto H̃ (1) another gadget and
obtains a new Hamiltonian H̃ (2) whose low-lying spectrum
captures the spectrum of H̃ (1), we say that the two gadgets are
applied in series to reduce Htarg to H̃ (2).

Based on Remark III.1, a parallel subdivision gadget
deals with the case where Htarg,i = αiAi ⊗ Bi . αi is a con-
stant, and Ai , Bi are unit norm Hermitian operators that
act on separate spaces Ai and Bi . Note that with Hi =
�|1〉〈1|wi

for every i ∈ {1,2, . . . ,m} we have the total penalty
Hamiltonian H = ∑m

i=1 Hi = ∑
x∈{0,1}m h(x)�|x〉〈x| where

h(x) is the Hamming weight of the m-bit string x. This
penalty Hamiltonian ensures that the ground-state subspace
is L− = span{|0〉⊗m} while all the states in the subspace L+ =
span{|x〉|x ∈ {0,1}m,x �= 00 . . . 0} receive an energy penalty
of at least �. The operator-valued resolvent G for the penalty
Hamiltonian is (by definition in Sec. I)

G(z) =
∑

x∈{0,1}m

1

z − h(x)�
|x〉〈x|. (15)

The perturbation Hamiltonian V is defined as

V = Helse + 1

�

m∑
i=1

(
κ2

i A2
i + λ2

i B
2
i

)
+

m∑
i=1

(κiAi + λiBi) ⊗ Xui
, (16)

where the coefficients κi and λi are defined as
κi = sgn(αi)

√|αi |�/2, λi = −√|αi |�/2. Define P− =
|0〉⊗m〈0|⊗m and P+ = 1 − P−. Then, if Htarg acts on the
Hilbert space M, �− = 1M ⊗ P− and �+ = 1M ⊗ P+.
Comparing Eq. (16) with (6) we see that the projector to
the low-lying subspace |0〉〈0|w in Eq. (6) is replaced by an
identity 1 in Eq. (16). This is because in the case of m parallel
gadgets P− cannot be realized with only two-body terms
when m � 3.

The partitions of V in the subspaces are

V− =
[
Helse + 1

�

m∑
i=1

(
κ2

i A2
i + λ2

i B
2
i

)]⊗ P−,

V+ =
[
Helse + 1

�

m∑
i=1

(
κ2

i A2
i + λ2

i B
2
i

)]⊗ P+,

(17)

V−+ =
m∑

i=1

(κiAi + λiBi) ⊗ P−Xui
P+,

V+− =
m∑

i=1

(κiAi + λiBi) ⊗ P+Xui
P−.

The self-energy expansion in Eq. (3) then becomes

	−(z) =
[
Helse + 1

�

m∑
i=1

(
κ2

i A2
i + λ2

i B
2
i

)]⊗ P−

+ 1

z − �

m∑
i=1

(κiAi + λiBi)
2 ⊗ P−

+
∞∑

k=1

V−+(G+V+)kG+V+−. (18)

Rearranging the terms we have

	−(z) =
[
Helse +

m∑
i=1

(
− 2κiλi

�
Ai ⊗ Bi

)]
⊗ P−︸ ︷︷ ︸

Heff

+
(

1

�
+ 1

z − �

) m∑
i=1

(
κ2

i A2
i + λ2

i B
2
i

)⊗ P−︸ ︷︷ ︸
E1

+
(

1

�
+ 1

z − �

) m∑
i=1

2κiλiAi ⊗ Bi ⊗ P−︸ ︷︷ ︸
E2

+
∞∑

k=1

V−+(G+V+)kG+V+−︸ ︷︷ ︸
E3

, (19)

where the term Heff = Htarg ⊗ P− is the effective Hamiltonian
that we would like to obtain from the perturbative expansion
and E1, E2, and E3 are error terms. Theorem I.1 states
that for z ∈ [− max(z), max(z)], if ‖	−(z) − Htarg ⊗ P−‖ � ε

then H̃− approximates the spectrum of Htarg ⊗ P− by error at
most ε. Similar to the triangle inequality derivation shown
in Eq. (9), to derive a lower bound for �, let z 
→ max(z) =
‖Helse‖ +∑m

i=1 |αi | + ε and the upper bounds of the error
terms E1 and E2 can be found as

‖E1‖ � max(z)

� − max(z)

m∑
i=1

|αi | � max(z)

� − max(z)

(
m∑

i=1

|αi |1/2

)2

,

‖E2‖ � max(z)

� − max(z)

(
m∑

i=1

|αi |1/2

)2

. (20)
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From the definition in Eq. (15) we see that ‖G+(z)‖ � 1
�−max(z) . Hence, the norm of E3 can be bounded by

‖E3‖ �
∞∑

k=1

∥∥∑m
i=1(κiAi + λiBi)

∥∥2∥∥Helse + 1
�

∑m
i=1

(
κ2

i A2
i + λ2

i B
2
i

)
1
∥∥k

[� − max(z)]k+1

�
∞∑

k=1

2�
(∑m

i=1 |αi |1/2
)2(‖Helse‖ +∑m

i=1 |αi |
)k

[� − max(z)]k+1
= 2�

(∑m
i=1 |αi |1/2

)2

� − max(z)

‖Helse

∥∥+∑m
i=1 |αi |

� − max(z) − (‖Helse‖ +∑m
i=1 |αi |

) . (21)

Similar to the discussion in Sec. II, to ensure that ‖	−(z) − Htarg ⊗ P−‖ � ε, which is the condition of Theorem I.1, it is sufficient
to let ‖E1‖ + ‖E2‖ + ‖E3‖ � ε:

‖E1‖ + ‖E2‖ + ‖E3‖ � 2 max(z)

� − max(z)

(
m∑

i=1

|αi |1/2

)2

+ 2�
(∑m

i=1 |αi |1/2
)2

� − max(z)

‖Helse‖ +∑m
i=1 |αi |

� − max(z) − (‖Helse‖ +∑m
i=1 |αi |

)
= 2

(∑m
i=1 |αi |1/2

)2[
max(z) + ‖Helse‖ +∑m

i=1 |αi |
]

� − max(z) − (‖Helse‖ +∑m
i=1 |αi |

) � ε, (22)

where we find the lower bound of � for parallel subdivision
gadget

� �
[

2
(∑m

i=1 |αi |1/2
)2

ε
+ 1

](
2‖Helse‖ + 2

m∑
i=1

|αi | + ε

)
.

(23)

Note that if one substitutes m = 1 into Eq. (23), the resulting
expression is a lower bound that is less tight than that in
Eq. (12). This is because of the difference in the perturbation
V between Eqs. (16) and (6) which is explained in the text
preceding Eq. (17). Also, we observe that the scaling of this
lower bound for � is O[poly(m)/ε] for m parallel applications
of subdivision gadgets, assuming |αi | = O[poly(m)] for every

i ∈ {1,2, . . . ,m}. This confirms the statement in Refs. [3,7,11]
that subdivision gadgets can be applied to multiple terms
in parallel and the scaling of the gap � in the case of m

parallel subdivision gadgets will only differ to that of a single
subdivision gadget by a polynomial in m.

1. Iterative scheme for k- to three-body reduction

The following iterative scheme summarizes how to use
parallel subdivision gadgets for reducing a k-body Ising
Hamiltonian to three-body [here we use superscript (i) to
represent the ith iteration and subscript i for labeling objects
within the same iteration]:

H̃ (0) = Htarg; Htarg acts on the Hilbert space M(0)

while H̃ (i) is more than 3-body:

Step 1: Find all the terms that are no more than three-body (including Helse from H̃ (0)) in H̃ (i−1)

and let their sum be H
(i)
else.

Step 2: Partition the rest of the terms in H̃ (i−1) into α
(i)
1 A

(i)
1 ⊗ B

(i)
1 ,

α
(i)
2 A

(i)
2 ⊗ B

(i)
2 , . . . ,α(i)

m A(i)
m ⊗ B(i)

m . Here, α
(i)
j are coefficients.

Step 3: Introduce m ancilla qubits w
(i)
1 ,w

(i)
2 , . . . ,w(i)

m and construct H̃ (i) using the

parallel subdivision gadget. Let P
(i)
− = |0 . . . 0〉〈0 . . . 0|

w
(i)
1 ···w(i)

m
. Define �

(i)
− = 1M(i) ⊗ P

(i)
− .

3.1: Apply the penalty Hamiltonian H (i) =
m∑

x∈{0,1}
h(x)�(i)|x〉〈x|. (24)

Here, �(i) is calculated by the lower bound in Eq. (23).

3.2: Apply the perturbation V (i) = H
(i)
else +

m∑
j=1

√∣∣α(i)
j

∣∣�(i)

2

[
sgn
(
α

(i)
j

)
A

(i)
j − B

(i)
j

]⊗ X
w

(i)
j

+
m∑

j=1

∣∣α(i)
j

∣∣1.
3.3 : H̃ (i) = H (i) + V (i) acts on the space M(i) and the maximum spectral difference

between H̃
(i)
− = �

(i)
− H̃ (i)�

(i)
− and H̃ (i−1) ⊗ P

(i)
− is at most ε.

i → i + 1.

We could show that after s iterations, the maximum spectral
error between �

(s)
− H̃ (s)�

(s)
− and H̃ (0)⊗s

i=1 P
(s)
− is guaranteed

to be within sε. Suppose we would like to make target
Hamiltonian H̃0, we construct a gadget H̃ = H (1) + V (1)
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according to algorithm (24), such that |λ(H̃ (1)) − λ(H̃ (0))| � ε

for low-lying eigenvalues λ(. . .). Note that in a precise sense
we should write |λ(�(1)

− H̃ (1)�
(1)
− ) − λ(H̃ (0) ⊗ P

(0)
− )|. Since the

projectors �
(i)
− and P

(i)
− do not affect the low-lying spectrum of

H̃ (i) and H̃ (i−1), for simplicity and clarity we write only H̃ (i−1)

and H̃ (i). After H̃ (1) is introduced, according to algorithm (24)
the second gadget H̃ (2) is then constructed by considering the
entire H̃ (1) as the new target Hamiltonian and introducing
ancilla particles with unperturbed Hamiltonian H (2) and
perturbation V (2) such that the low-energy spectrum of H̃ (2)

approximates the spectrum of H̃ (1) up to error ε. In other
words, |λ(H̃ (1)) − λ(H̃ (2))| � ε. With the serial application of
gadgets we have produced a sequence of Hamiltonians H̃ (0) →
H̃ (1) → H̃ (2) → · · · → H̃ (s) where H̃ (0) is the target Hamilto-
nian and each subsequent gadget Hamiltonian H̃ (i) captures
the entire previous gadget H̃ (i−1) in its low-energy sector
with |λ(H̃ (i)) − λ(H̃ (i−1))| � ε. Hence, to bound the spectral
error between the last gadget H̃ (s) and the target Hamiltonian
H̃ (0) we could use triangle inequality |λ(H̃ (s)) − λ(H̃ (0))| �
|λ(H̃ (s)) − λ(H̃ (s−1))| + · · · + |λ(H̃ (1)) − λ(H̃ (0))| � sε.

2. Total number of iterations for a k- to three-body reduction

In general, given a k-body Hamiltonian, we apply the
following parallel reduction scheme at each iteration until
every term is three-body: if k is even, this reduces it to two
(k/2 + 1)-body terms; if k is odd, this reduces it to a ( k+1

2 + 1)-
and a ( k−1

2 + 1)-body term. Define a function f such that a
k-body term needs f (k) iterations to be reduced to three-body.
Then, we have the recurrence

f (k) =
{

f
(

k
2 + 1

)+ 1, k even

f
(

k+1
2 + 1

)+ 1, k odd
(25)

with f (3) = 0 and f (4) = 1. One can check that f (k) =
�log2(k − 2)�, k � 4, satisfies this recurrence. Therefore,
using subdivision gadgets, one can reduce a k-body interaction
to three-body in s = �log2(k − 2)� iterations and the spectral
error between H̃ (s) and H̃ (0) is within �log2(k − 2)�ε.

3. Gap scaling

From the iterative scheme shown previously, one can con-
clude that �(i+1) = �(ε−1(�(i))3/2) for the (i + 1)th iteration,
which implies that for a total of s iterations,

�(s) = �[ε−2[(3/2)s−1−1](�(1))(3/2)s−1
]. (26)

Since s = �log2(k − 2)� and �(1) = �(ε−1) we have

�(s) = �(ε−3( 1
2 �k−2�)log2(3/2)−2) = �(ε−poly(k)) (27)

accumulating exponentially as a function of k. The exponential
nature of the scaling with respect to k agrees with results by
Bravyi et al. [11]. However, in our construction, due to the
improvement of gap scaling in a single subdivision gadget
from � = �(ε−2) to �(ε−1), the scaling exponents in �(i+1) =

�(ε−1(�(i))3/2) are also improved quadratically over those in
Ref. [11], which is �(i+1) = �(ε−2(�(i))3).

4. Qubit cost

Based on the reduction scheme described in Eq. (24)
[illustrated in Fig. 3(a) for seven-body], the number of ancilla
qubits needed for reducing a k-body term to three-body is
k − 3. Suppose we are given a k-body target term S1S2 . . . Sk

(where all of the operators Si act on separate spaces) and
we would like to reduce it to three-body using the iterative
scheme (24). At each iteration, if we describe every individual
subdivision gadget by a vertical line (|) at the location where
the partition is made, for example S1S2S3S4|S5S6S7 in the
case of the first iteration in Fig. 3(a), then after �log2(k − 2)�
iterations all the partitions made to the k-body term can be
described as S1S2|S3|S4| . . . |Sk−2|Sk−1Sk . Note that there are
k − 3 vertical lines in total, each corresponding to an ancilla
qubit needed for a subdivision gadget. Therefore, in total
k − 3 ancilla qubits are needed for reducing a k-body term
to three-body.

5. Example: Reducing seven-body to three-body

We have used numerics to test the reduction algorithm (24)
on a target Hamiltonian Htarg = αS1S2S3S4S5S6S7. Here, we
let Si = Xi , ∀ i ∈ {1,2, . . . ,7}, ε = 5 × 10−4, and α = 5 ×
10−3. During each iteration, the values of �(i) are assigned
according to the lower bound in Eq. (23). From Fig. 3(c)
we can see that the lower bounds are sufficient for keeping
the total spectral error between H̃

(3)
− and H̃ (0)⊗3

i=1 P
(i)
−

within 3ε. Furthermore, numerical search is also used at
each iteration to find the minimum value of �(i) so that the
spectral error between �

(i)
− H̃ (i)�

(i)
− and H̃ (i−1)⊗i

j=1 P
(j )
− is ε.

The numerically found gaps �(i) are much smaller than their
analytical counterparts at each iteration [Fig. 3(b)], at the price
that the error is larger [Fig. 3(c)]. In both the numerical and
the analytical cases, the error appears to accumulate linearly
as the iteration proceeds.

IV. IMPROVED OLIVEIRA AND TERHAL THREE- TO
TWO-BODY GADGET

A. Summary

Subdivision gadgets cannot be used for reducing from
three- to two-body; accordingly, the final reduction requires
a different type of gadget [3,7,11]. Consider three-body
target Hamiltonian of the form Htarg = Helse + αA ⊗ B ⊗ C.
Here, A, B, and C are unit-norm Hermitian operators acting
on separate spaces A, B, and C. Here, we focus on the
gadget construction introduced in Oliveira and Terhal [3] and
also used in Bravyi, DiVincenzo, Loss, and Terhal [11]. To
accomplish the three- to two-body reduction, we introduce an
ancilla spin w and apply a penalty Hamiltonian H = �|1〉〈1|w.
We then add a perturbation V of form

V = Helse + μC ⊗ |1〉〈1|w + (κA + λB) ⊗ Xw + V1 + V2,

(28)

012315-9



CAO, BABBUSH, BIAMONTE, AND KAIS PHYSICAL REVIEW A 91, 012315 (2015)

FIG. 3. (a) Reduction tree diagram for reducing a seven-body term to three-body using parallel subdivision gadgets. Each Si is a single-qubit
Pauli operator acting on qubit i. The vertical lines (|) show where the subdivisions are made at each iteration to each term. (b) An example
where we consider the target Hamiltonian Htarg = αS1S2S3S4S5S6S7 with α = 5 × 10−3, Si = Xi , ∀ i ∈ {1,2, . . . ,7}, and reduce it to three-body
according to (a) up to error ε = 5 × 10−4. This plot shows the energy gap applied onto the ancilla qubits introduced at each iteration. (c) The
spectral error between the gadget Hamiltonian at each iteration H̃ (i) and the target Hamiltonian Htarg. For both (b) and (c), the data labeled
as “numerical” correspond to the case where during each iteration �(i) is optimized such that the maximum spectral difference between
�

(i)
− H̃ (i)�

(i)
− and H̃ (i−1) ⊗ P

(i)
− is ε. For definitions of �(i), H̃ (i), �

(i)
− , and P

(i)
− , see Eq. (24). Those labeled as analytical correspond to cases

where each iteration uses the gap bound derived in Eq. (23).

where V1 and V2 are 2-local compensation terms (details
presented later in this section)

V1 = 1

�
(κ2 + λ2)|0〉〈0|w + 2κλ

�
A ⊗ B

− 1

�2
(κ2 + λ2)μC ⊗ |0〉〈0|w, (29)

V2 = −2κλ

�3
sgn(α)[(κ2 + λ2)|0〉〈0|w + 2κλA ⊗ B].

Here, we let κ = sgn(α) (α/2)1/3 �3/4, λ = (α/2)1/3 �3/4, and
μ = (α/2)1/3 �1/2.

For sufficiently large �, the low-lying spectrum of the
gadget Hamiltonian H̃ captures the entire spectrum of Htarg

up to arbitrary error ε. In the construction of [11] it is
shown that � = �(ε−3) is sufficient. In Ref. [7], � = �(ε−3)
is also assumed, although the construction of V is slightly
different from Eq. (28). By adding terms in V to compensate
for the perturbative error due to the modification, we find
that � = �(ε−2) is sufficient for accomplishing the three- to

two-body reduction:

� � 1
4 (−b +

√
b2 − 4c)2, (30)

where b and c are defined as

b = −
[
ξ + 24/3α2/3

ε
(max z + η + ξ 2)

]
,

(31)

c = −
(

1 + 24/3α2/3

ε
ξ

)
(max z + η)

with max z = ‖Helse‖ + |α| + ε, η = ‖Helse‖ + 22/3α4/3, and
ξ = 2−1/3α1/3 + 21/3α2/3. From Eq. (30) we can see the lower
bound to � is �(ε−2). Our improvement results in a power of
ε−1 reduction in the gap. For the dependence of � on ‖Helse‖,
α and ε−1 for both the original [3] and the optimized case, see
Fig. 4. Results show that the bound in Eq. (30) is tight with
respect to the minimum � numerically found that yields the
spectral error between H̃− and Htarg ⊗ |0〉〈0|w to be ε.
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FIG. 4. Comparison between our three- to two-body gadget with that of Oliveira and Terhal [3]. As � is not explicitly assigned as a function
of α, ‖Helse‖, and ε in Ref. [3], we numerically find the optimal � values for their constructions (marked as “[OT06]”). (a) Shows the scaling
of the gap � as a function of error tolerance ε. (b) Shows the gap � as a function of the desired coupling α. For the meanings of the labels in
the legend, see Fig. 1. The fixed parameters in each subplot are (a) ‖Helse‖ = 0, α = 1; (b) ε = 0.01, ‖Helse‖ = 0. Note that our constructions
have improved the � scaling for the ranges of α and ε considered.

B. Analysis

We will proceed by first presenting the improved construc-
tion of the three- to two-body gadget and then show that
� = �(ε−2) is sufficient for the spectral error to be �ε.
Then, we present the construction in the literature [3,11]
and argue that � = �(ε−3) is required for yielding a
spectral error between H̃ and Heff within ε using this
construction.

In the improved construction, we define the perturbation
V as in Eq. (28). Here, the coefficients are chosen to be κ =
�(�3/4), λ = �(�3/4), and μ = �(�1/2). In order to show
that the assigned powers of � in the coefficients are optimal,

we introduce a parameter r such that

κ = sgn(α)

(
α

2

)1/3

�r, λ =
(

α

2

)1/3

�r,

(32)

μ =
(

α

2

)1/3

�2−2r .

It is required that ‖V ‖ � �/2 (Theorem I.1) for the con-
vergence of the perturbative series. Therefore, let r < 1 and
2 − 2r < 1, which gives 1/2 < r < 1. With the definitionsL−
and L+ being the ground- and excited-state subspaces, respec-
tively, V−, V+, V−+, V+− can be calculated as the following:

V− =
[
Helse + 1

�
(κA + λB)2 − 1

�
(κ2 + λ2)μC − 2κλ

�3
sgn(α)(κA + λB)2

]
⊗ |0〉〈0|w,

V+ =
[
Helse + μC + 2κλ

�
A ⊗ B − 4κ2λ2

�3
sgn(α)A ⊗ B

]
⊗ |1〉〈1|w,

(33)
V−+ = (κA + λB) ⊗ |0〉〈1|w,

V+− = (κA + λB) ⊗ |1〉〈0|w.

The self-energy expansion, referring to Eq. (3), becomes

	−(z) = V− + 1

z − �
V−+V+− + 1

(z − �)2
V−+V+V+− +

∞∑
k=2

V−+V k
+V+−

(z − �)k+1

= Helse︸︷︷︸
(a)

+ 1

�
(κA + λB)2︸ ︷︷ ︸

(b)

− 1

�
(κ2 + λ2)μC︸ ︷︷ ︸

(c)

−2κλ

�3
sgn(α)(κA + λB)2︸ ︷︷ ︸

(d)

+ 1

z − �
(κA + λB)2︸ ︷︷ ︸

(e)

+ 1

(z − �)2
(κA + λB)

⎡⎢⎢⎣Helse︸︷︷︸
(f )

+ μC︸︷︷︸
(g)

+ 2κλ

�
A ⊗ B︸ ︷︷ ︸
(h)

−4κ2λ2

�3
sgn(α)A ⊗ B︸ ︷︷ ︸

(i)

⎤⎥⎥⎦ (κA + λB) +
∞∑

k=2

V−+V k
+V+−

(z − �)k+1︸ ︷︷ ︸
(j )

. (34)
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Now, we rearrange the terms in the self-energy expansion so that the target Hamiltonian arising from the leading-order terms can
be separated from the rest, which are error terms. Observe that term (g) combined with the factors outside the bracket could give
rise to a three-body A ⊗ B ⊗ C term:

1

(z − �)2
(κA + λB)2μC = 2κλμ

�2
A ⊗ B ⊗ C︸ ︷︷ ︸

(g1)

+
[ 1

(z − �)2
− 1

�2

]
2κλμA ⊗ B ⊗ C︸ ︷︷ ︸

(g2)

+ 1

(z − �)2
(κ2 + λ2)μC︸ ︷︷ ︸
(g3)

. (35)

Here, (g1) combined with term (a) in Eq. (34) gives Htarg. (g2) and (g3) are error terms. Now, we further rearrange the error terms
as the following. We combine terms (b) and (e) to form E1, terms (c) and (g3) to form E2, term (f ) and the factors outside the
bracket to be E3. Rename (g2) to be E4. Using the identity (κA + λB)(A ⊗ B)(κA + λB) = sgn(α)(κA + λB)2 we combine
term (d) and (h) along with the factors outside the bracket to be E5. Rename (i) to be E6 and (j ) to be E7. The rearranged
self-energy expansion reads as

	−(z) =
{

Helse + 2κλμ

�2
A ⊗ B ⊗ C︸ ︷︷ ︸

Htarg

+
(

1

�
+ 1

z − �

)
(κA + λB)2︸ ︷︷ ︸

E1

+
[

1

(z − �)2
− 1

�2

]
(κ2 + λ2)μC︸ ︷︷ ︸

E2

+ 1

(z − �)2
(κA + λB)Helse(κA + λB)︸ ︷︷ ︸

E3

+
[

1

(z − �)2
− 1

�2

]
2κλμA ⊗ B ⊗ C︸ ︷︷ ︸

E4

+
[

1

(z − �)2
− 1

�2

]
2κλ

�
sgn(α)(κA + λB)2︸ ︷︷ ︸

E5

− 1

(z − �)2

4κ2λ2

�3
(κA + λB)2︸ ︷︷ ︸

E6

}
⊗ |0〉〈0|w +

∞∑
k=2

V−+V k
+V+−

(z − �)k+1︸ ︷︷ ︸
E7

. (36)

We bound the norm of each error term in the self-energy expansion (36) by substituting the definitions of κ , λ, and μ in Eq. (32)
and letting z be the maximum value permitted by Theorem I.1 which is max z = |α| + ε + ‖Helse‖:

‖E1‖ � max z 24/3α2/3�2r−1

� − max z
= �(�2r−2), ‖E2‖ � (2� − max z) max z

(� − max z)2
α = �(�−1), (37)

‖E3‖ � 24/3α2/3�2r‖Helse‖
(� − max z)2

= �(�2r−2), ‖E4‖ � (2� − max z) max z

(� − max z)2
α = �(�−1), (38)

‖E5‖ � (2� − max z) max z

(� − max z)2
25/3α4/3�4r−3 = �(�4r−4), ‖E6‖ � 4α2�6r−3

(� − max z)2
= �(�6r−5), (39)

‖E7‖ �
∞∑

k=2

∥∥∥∥∥ (κA + λB)
[
Helse + μC + 2κλ

�

(
1 + 2κλ

�2

)
A ⊗ B

]k
(κA + λB)

(� − max z)k+1

∥∥∥∥∥
� 24/3α2/3�2r

(� − max z)

∞∑
k=2

(‖Helse‖ + 2−1/3α1/3�2−2r + 21/3α2/3�2r−1 + 22/3α4/3�4r−3
)k

(� − max z)k
= �(�max{1−2r,6r−5,10r−9}). (40)

Now, the self-energy expansion can be written as

	−(z) = Htarg ⊗ |0〉〈0|w + �(�f (r)),

where the function f (r) < 0 determines the dominant power
in � from ‖E1‖ through ‖E6‖:

f (r) = max{1 − 2r,6r − 5}, 1
2 < r < 1. (41)

In order to keep the error O(ε), it is required that
� = �(ε1/f (r)). To optimize the gap scaling as a function of ε,
f (r) must take the minimum value. As is shown in Fig. 5(b),
when r = 3

4 , the minimum value f (r) = − 1
2 is obtained,

which corresponds to � = �(ε−2). We have hence shown
that the powers of � in the assignments of κ , λ, and μ in
Eq. (32) are optimal for the improved gadget construction. The
optimal scaling of �(ε−2) is also numerically confirmed in
Fig. 4(a). As one can see, the optimized slope d ln �/d ln ε−1

is approximately 2 for small ε.
One natural question to ask next is whether it is possible to

further improve the gap scaling as a function of ε. This turns out
to be difficult. Observe that the 6r − 5 component of f (r) in
Eq. (41) comes from E6 and E7 in Eq. (36). In E7, the �(�6r−5)
contribution is attributed to the term 1

�
(κA + λB)2 in V1 of
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FIG. 5. The function f (r) shows the dominant power of � in the error terms in the perturbative expansion. (a) When the error term E4 in
Eq. (49), which contributes to the 4r − 3 component of f (r) in Eq. (51), is not compensated in the original construction by Oliveira and Terhal,
the dominant power of � in the error term f (r) takes minimum value of −1/3, indicating that � = �(ε−3) is required. (b) In the improved
construction, minr∈(1/2,1) f (r) = − 1

2 indicating that � = �(ε−2).

Eq. (29), which is intended for compensating the second-order
perturbative term and therefore cannot be removed from the
construction.

We now let r = 3
4 be a fixed constant and derive the lower

bound for � such that for given α, Helse, and ε, the spectral error
between the effective Hamiltonian Heff = Htarg ⊗ |0〉〈0|w and
H̃− is within ε. This amounts to satisfying the condition of
Theorem I.1:

‖	−(z) − Heff‖ � ε. (42)

Define the total error E = 	−(z) − Heff = E1 + · · · + E7.
For convenience, we also define η = ‖Helse‖ + 22/3α4/3 and
ξ = 2−1/3α1/3 + 21/3α2/3. Then,

‖E7‖ � 24/3α2/3�3/2

� − max z

∞∑
k=2

(η + ξ�1/2)k

(� − max z)k

= 24/3α2/3�3/2

� − max z − (η + ξ�1/2)

(
η + ξ�1/2

� − max z

)2

. (43)

The upper bound for ‖E‖ is then found by summing over
Eqs. (37)–(39), and (43):

‖E‖ � max z 24/3α2/3�1/2

� − max z
+ (2� − max z) max z

(� − max z)2
24/3α3/2ξ

+ 24/3α2/3�3/2η

(� − max z)2

+ 24/3α2/3�3/2

� − max z − (η + ξ�1/2)

(
η + ξ�1/2

� − max z

)2

. (44)

By rearranging the terms in Eq. (44) we arrive at a simplified
expression for the upper bound presented below. Requiring the
upper bound of ‖E‖ to be within ε gives

‖E‖ � 24/3α2/3 (max z + η + ξ 2)�1/2 + ξ (max z + η)

� − ξ�1/2 − (max z + η)
� ε.

(45)

Equation (45) is a quadratic constraint with respect to �1/2.
Solving the inequality gives the lower bound of � given in
Eq. (30). Note here that � = �(ε−2), which improves over
the previously assumed � = �(ε−3) in the literature [3,7,11].
This bound is shown in Fig. 4(b) as the “analytical lower
bound.” Comparison between the analytical lower bound and
the numerically optimized gap in Fig. 4(b) indicates that the
lower bound is relatively tight when ‖Helse‖ = 0.

Comparison with Oliveira and Terhal [3]

Given operators Q, R, and T acting on separate spaces
A, B, and C, respectively, the three- to two-body con-
struction in Refs. [3,7] approximates the target Hamiltonian
Htarg = Helse + Q ⊗ R ⊗ T . In order to compare with their
construction, however, we let α = ‖Q‖‖R‖‖T ‖ and define
Q = α1/3A, R = α1/3B, and T = α1/3C. Hence, the target
Hamiltonian Htarg = Helse + αA ⊗ B ⊗ C with A, B, and C

being unit-norm Hermitian operators. Introduce an ancilla
qubit w and apply the penalty Hamiltonian H = �|1〉〈1|w.
In the construction by Oliveira and Terhal [3], the perturbation
V is defined as

V = Helse ⊗ 1w + μC ⊗ |1〉〈1|w + (κA + λB) ⊗ Xw + V ′
1,

(46)

where the compensation term V ′
1 is

V ′
1 = 1

�
(κA + λB)2 − 1

�2
(κ2A2 + λ2B2)μC. (47)

Comparing Eq. (47) with the expression for V1 in Eq. (29),
one observes that V1 slightly improves over V ′

1 by projecting
1-local terms to L− so that V will have less contribution to V+,
which reduces the high-order error terms in the perturbative
expansion. However, this modification comes at a cost of
requiring more 2-local terms in the perturbation V .
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From the gadget construction shown in Ref. [3, Eq. (26)], the equivalent choices of the coefficients κ , λ, and μ are

κ = −
(

α

2

)1/3 1√
2
�r, λ =

(
α

2

)1/3 1√
2
�r, μ = −

(
α

2

)1/3

�2−2r , (48)

where r = 2
3 in the constructions used in Refs. [3,11]. In fact, this value of r is optimal for the construction in the sense that it leads

to the optimal gap scaling � = �(ε−3). Expanding the self-energy to third order, following a similar procedure as in Eq. (34), we
have

	−(z) =
{

Helse + 2κλμ

�2
A ⊗ B ⊗ C︸ ︷︷ ︸

Htarg

+
(

1

�
+ 1

z − �

)
(κA + λB)2︸ ︷︷ ︸

E1

+
[

1

(z − �)2
− 1

�2

]
(κ2A2 + λ2B2)μC︸ ︷︷ ︸

E2

+ 1

(z − �)2
(κA + λB)Helse(κA + λB)︸ ︷︷ ︸

E3

+ 1

(z − �)2

1

�
(κA + λB)4︸ ︷︷ ︸

E4

− 1

(z − �)2

1

�2
(κ2A2 + λ2B2)μ(κA + λB)2 ⊗ C︸ ︷︷ ︸

E5

}
⊗ |0〉〈0|w +

∞∑
k=2

V−+V k
+V+−

(z − �)k+1︸ ︷︷ ︸
E6

. (49)

Similar to the derivation of Eqs. (37)–(39) by letting z 
→ max z, where max z = |α| + ε + ‖Helse‖ is the largest value of z

permitted by the Theorem I.1, and using the triangle inequality to bound the norm, we can bound the norm of the error terms E1

through E6. For example,

‖E1‖ �
(

1

� − max z
− 1

�

)
22

(
α

2

)2/3

�2r = �(�2r−2).

Applying the same calculation to E2,E3, . . . we find that ‖E2‖ = �(�−1), ‖E3‖ = �(�2r−2), ‖E4‖ = �(�4r−3), ‖E5‖ =
�(�4r−4). The norm of the high-order terms E6 can be bounded as

‖E6‖ �
∞∑

k=2

‖V−+‖‖V+‖k‖V+−‖
[� − max(z)]k+1

�
4
(

α
2

)1/3
�2r

� − max(z)

∞∑
k=2

(
ρ

� − max(z)

)k

= 24/3α2/3�2r

� − max(z) − ρ

(
ρ

� − max(z)

)2

= �(�2r−1+2 max{1−2r,2r−2}) = �(�max{1−2r,6r−5}), (50)

where ρ = ‖Helse‖ + 2−1/3α1/3�2−2r + 21/3α2/3�2r−1. If we
again write the self-energy expansion (49) as

	−(z) = Htarg ⊗ |0〉〈0|w + �(�f (r)),

the function f (r) < 0, which determines the dominant power
in � among E1 through E6, can be found as

f (r) = max{1 − 2r,2r − 2,4r − 3,6r − 5}, 1
2 < r < 1.

(51)

Similar to the discussion after Eq. (41), the optimal scaling of
� = �(ε1/f (r)) gives r = argminf (r) = 2

3 , when f (r) = − 1
3

and � = �(ε−3), as is shown in Fig. 5(a). Note that the
4r − 3 component in f (r) [Eq. (51)] comes from the error
term E4 in Eq. (49). The idea for improving the gadget
construction comes from the observation in Fig. 5(a) that when
we add a term in V to compensate for E4, the dominant
power of � in the perturbation series f (r) could admit
a lower minimum as shown in Fig. 5(b). In the previous
calculation, we have shown that this is indeed the case and
the minimum value of f (r) becomes − 1

2 in the improved case,

indicating that � = �(ε−2) is sufficient for keeping the error
terms O(ε).

V. CREATING THREE-BODY GADGET FROM LOCAL X

A. Summary

In general, terms in perturbative gadgets involve mixed
couplings (e.g., XiZj ). Although such couplings can be
realized by certain gadget constructions [4], physical couplings
of this type are difficult to realize in an experimental setting.
However, there has been significant progress towards experi-
mentally implementing Ising models with transverse fields of
the type [18]

HZZ =
∑

i

δiXi +
∑

i

hiZi +
∑
i,j

JijZiZj . (52)

Accordingly, an interesting question is whether we can
approximate three-body terms such as αZi ⊗ Zj ⊗ Zk using
a Hamiltonian of this form. This turns out to be possible by
employing a perturbative calculation which considers terms
up to fifth order.
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Similar to the three- to two-body reduction discussed pre-
viously, we introduce an ancilla w and apply the Hamiltonian
H = �|1〉〈1|w. We apply the perturbation

V = Helse + μ(Zi + Zj + Zk) ⊗ |1〉〈1|w
+ μ1 ⊗ Xw + Vcomp, (53)

where μ = (α�4/6)1/5 and Vcomp is

Vcomp = μ2

�
|0〉〈0|w−

(
μ3

�2
+ 7

μ5

�4

)
(Zi + Zj + Zk) ⊗ |0〉〈0|w

+ μ4

�3
(31 + 2ZiZj + 2ZiZk + 2ZjZk).

(54)

To illustrate the basic idea of the fifth-order gadget, define
subspaces L− and L+ in the usual way and define P− and
P+ as projectors into these respective subspaces. Then, the
second term in Eq. (53) with ⊗|1〉〈1|w contributes a linear
combination μZi + μZj + μZk to V+ = P+V P+. The third
term in Eq. (53) induces a transition between L− and L+ yet
since it operates trivially on qubits 1–3, it only contributes
a constant μ to the projections V−+ = P−V P+ and V+− =
P+V P−. In the perturbative expansion, the fifth order contains
a term

V−+V+V+V+V+−
(z − �)4

= μ5(Zi + Zj + Zk)3

(z − �)4
(55)

due to the combined contribution of the second and third terms
in Eq. (53). This yields a term proportional to αZi ⊗ Zj ⊗ Zk

along with some 2-local error terms. These error terms,
combined with the unwanted terms that arise at first- through
fourth-order perturbation, are compensated by Vcomp. Note that
terms at sixth order and higher are �(�−1/5). This means
in order to satisfy the gadget theorem of Kempe et al. ([7,
Theorem 3], or Theorem I.1) � needs to be �(ε−5). This
is the first perturbative gadget that simulates a three-body
target Hamiltonian using the Hamiltonian (52). By rotating
the ancilla space, subdivision gadgets can also be implemented
using this Hamiltonian: in the X basis, Z terms will induce
a transition between the two energy levels of X. Therefore,
ZiZj coupling could be used for a perturbation of the form in
Eq. (4) in the rotated basis. In principle, using the transverse
Ising model in Eq. (52), one can reduce some diagonal
k-body Hamiltonian to three-body by iteratively applying
the subdivision gadget and then to two-body by using the
three-body reduction gadget.

B. Analysis

Similar to the gadgets we have presented so far, we
introduce an ancilla spin w. Applying an energy gap � on the
ancilla spin gives the unperturbed Hamiltonian H = �|1〉〈1|w.
We then perturb the Hamiltonian H using a perturbation V

described in Eq. (53). Using the same definitions of subspaces
L+ and L− as the previous three-body gadget, the projections
of V into these subspaces can be written as

V+ =
{
Helse + μ(Z1 + Z2 + Z3) + μ4

�3
[31 + 2(Z1Z2 + Z1Z3 + Z2Z3)]

}
⊗ |1〉〈1|w,

V− =
{
Helse + μ2

�
1 − μ3

�2
(Z1 + Z2 + Z3)1 + μ4

�3
[31 + 2(Z1Z2 + Z1Z3 + Z2Z3)] − 7μ5

�4
(Z1 + Z2 + Z3)

}
⊗ |0〉〈0|w,

V−+ = μ1 ⊗ |0〉〈1|w, V+− = μ1 ⊗ |1〉〈0|w. (56)

The low-lying spectrum of H̃ is approximated by the self-energy expansion 	−(z) below with z ∈ [−max z, max z] where
max z = ‖Helse‖ + |α| + ε. With the choice of μ above the expression of V+ in Eq. (56) can be written as

V+ = [Helse + μ(Z1 + Z2 + Z3) + O(�1/5)] ⊗ |1〉〈1|w. (57)

Because we are looking for the fifth-order term in the perturbation expansion that gives a term proportional to Z1Z2Z3, expand
the self-energy in Eq. (3) up to fifth order:

	−(z) = V− ⊗ |0〉〈0|w + V−+V+−
z − �

⊗ |0〉〈0|w + V−+V+V+−
(z − �)2

⊗ |0〉〈0|w + V−+V+V+V+−
(z − �)3

⊗ |0〉〈0|w

+ V−+V+V+V+V+−
(z − �)4

⊗ |0〉〈0|w +
∞∑

k=4

V−+V k
+V+−

(z − �)k+1
⊗ |0〉〈0|w. (58)

Using this simplification as well as the expressions for V−, V−+, and V+− in Eq. (56), the self-energy expansion (58) up to fifth
order becomes

	−(z) =
(

Helse + 6μ5

�4
Z1Z2Z3

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+
(

1

�
+ 1

z − �

)
μ21 ⊗ |0〉〈0|w︸ ︷︷ ︸

E1

+
[

1

(z − �)2
− 1

�2

]
μ3(Z1 + Z2 + Z3) ⊗ |0〉〈0|w︸ ︷︷ ︸

E2

+
[

1

�3
+ 1

(z − �)3

]
μ4(Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E3
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FIG. 6. (a) The scaling of minimum � needed to ensure ‖	−(z) − Heff‖ � ε as a function of ε−1. Here, we choose ‖Helse‖ = 0, α = 0.1,
and ε ranging from 10−0.7 to 10−2.3. The values of minimum � are numerically optimized [26]. The slope of the line at large ε−1 is 4.97 ≈ 5,
which provides evidence that with the assignments of μ = (α�4/6)1/5, the optimal scaling of � is �(ε−5). (b) The numerically optimized [26]
gap versus the desired coupling α in the target Hamiltonian. Here, ε = 0.01 and ‖Helse‖ = 0.

+
[

1

(z − �)4
− 1

�4

]
7μ5(Z1 + Z2 + Z3) ⊗ |0〉〈0|w︸ ︷︷ ︸

E4

+ μ2

(z − �)2

μ4

�3
(Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E6

+ O(�−2/5) + O(‖Helse‖�−2/5) + O(‖Helse‖2�−7/5) + O(‖Helse‖3�−12/5) +
∞∑

k=4

V−+V k
+V+−

(z − �)k+1
⊗ |0〉〈0|w︸ ︷︷ ︸

E7

. (59)

Similar to what we have done in the previous sections, the
norm of the error terms E1 through E7 can be bounded from
above by letting z 
→ max z. Then, we find that

‖	−(z) − Htarg ⊗ |0〉〈0|w‖ � �(�−1/5) (60)

if we only consider the dominant dependence on � and
regard ‖Helse‖ as a given constant. To guarantee that ‖	−(z) −
Htarg ⊗ |0〉〈0|w‖ � ε, we let the right-hand side of Eq. (60) to
be �ε, which translates to � = �(ε−5).

This �(ε−5) scaling is numerically illustrated [Fig. 6(a)].
Although in principle the fifth-order gadget can be imple-
mented on a Hamiltonian of form Eq. (52), for a small range
of α, the minimum � needed is already large [Fig. 6(b)],
rendering it challenging to demonstrate the gadget experimen-
tally with current resources. However, this is the only currently
known gadget realizable with a transverse Ising model that is
able to address the case where Helse is not necessarily diagonal.

VI. YY GADGET

A. Summary

The gadgets which we have presented so far are intended to
reduce the locality of the target Hamiltonian. Here, we present
another type of gadget, called “creation” gadgets [4], which
simulate the type of effective couplings that are not present

in the gadget Hamiltonian. Many creation gadgets proposed
so far are modifications of existing reduction gadgets. For
example, the ZZXX gadget in Ref. [4], which is intended to
simulate ZiXj terms using Hamiltonians of the form

HZZXX =
∑

i

�iXi +
∑

i

hiZi +
∑
i,j

JijZiZj

+
∑
i,j

KijXiXj , (61)

is essentially a three- to two-body gadget with the target term
A ⊗ B ⊗ C being such that the operators A, B, and C are
X, Z, and identity, respectively. Therefore, the analyses on
three- to two-body reduction gadgets that we have presented
for finding the lower bound for the gap � are also applicable
to this ZZXX creation gadget.

Note that YY terms can be easily realized via bases rotation
if single-qubit Y terms are present in the Hamiltonian in
Eq. (61). Otherwise, it is not a priori clear how to realize
YY terms using HZZXX in Eq. (61). We will now present the
first YY gadget which starts with a universal Hamiltonian of
the form (61) and simulates the target Hamiltonian Htarg =
Helse + αYiYj . The basic idea is to use the identity XiZi = ιYi

where ι = √−1 and induce a term of the form XiZiZjXj =
YiYj at the fourth order. Introduce ancilla qubit w and apply

012315-16



HAMILTONIAN GADGETS WITH REDUCED RESOURCE . . . PHYSICAL REVIEW A 91, 012315 (2015)

a penalty H = �|1〉〈1|w. With a perturbation V we could
perform the same perturbative expansion as previously. Given
that the fourth-order perturbation is V−+V+V+V+− up to a
scaling constant, we could let single Xi and Xj be coupled with
Xw, which causes both Xi and Xj to appear in V−+ and V+−.
Furthermore, we couple single Zi and Zj terms with Zw. Then,
1
2 (1 + Zw) projects single Zi and Zj onto the + subspace and
causes them to appear in V+. For Htarg = Helse + αY1Y2, the
full expressions for the gadget Hamiltonian is the following:
the penalty Hamiltonian H = �|1〉〈1|w acts on the ancilla
qubit. The perturbation V = V0 + V1 + V2 where V0, V1, and
V2 are defined as

V0 = Helse+μ(Z1+Z2) ⊗ |1〉〈1|w+μ[X1 − sgn(α)X2] ⊗ Xw,

V1 = 2μ2

�
(1 ⊗ |0〉〈0|w + X1X2), (62)

V2 = −2μ4

�3
Z1Z2

with μ = (|α|�3/4)1/4. For a specified error tolerance ε, we
have constructed a YY gadget Hamiltonian of gap scaling � =
O(ε−4) and the low-lying spectrum of the gadget Hamiltonian
captures the spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The YY gadget implies that a wider class of Hamiltonians
such as

HZZYY =
∑

i

hiXi +
∑

i

�iZi +
∑
i,j

JijZiZj +
∑
i,j

KijYiYj

(63)

and

HXXYY =
∑

i

hiXi +
∑

i

�iZi +
∑
i,j

JijXiXj

+
∑
i,j

KijYiYj (64)

can be simulated using the Hamiltonian of the form in Eq. (61).
Therefore, using the Hamiltonian in Eq. (61) one can in
principle simulate any finite-norm real-valued Hamiltonian
on qubits. Although by the QMA-COMPLETENESS of HZZXX

one could already simulate such Hamiltonian via suitable
embedding, our YY gadget provides a more direct alternative
for the simulation.

B. Analysis

The results in Ref. [4] show that Hamiltonians of the form
in Eq. (61) support universal adiabatic quantum computation
and finding the ground state of such a Hamiltonian is QMA-
COMPLETE. This form of Hamiltonian is also interesting
because of its relevance to experimental implementation [18].
Here, we show that with a Hamiltonian of the form in Eq. (61)
we could simulate a target Hamiltonian Htarg = Helse + αY1Y2.
Introduce an ancilla w and define the penalty Hamiltonian as
H = �|1〉〈1|w. Let the perturbation V = V0 + V1 + V2 be

V0 = Helse + κ(Z1 + Z2) ⊗ |1〉〈1|w
+ κ[X1 − sgn(α)X2] ⊗ Xw,

(65)
V1 = 2κ2�−1[|0〉〈0|w − sgn(α)X1X2],

V2 = −4κ4�−3Z1Z2.

Then, the gadget Hamiltonian H̃ = H + V is of the
form in Eq. (61). Here, we choose the parameter κ =
(|α|�3/4)1/4. In order to show that the low-lying spec-
trum of H̃ captures that of the target Hamiltonian, de-
fine L− = span{|ψ〉 such that H̃ |ψ〉 = λ|ψ〉,λ < �/2} as the
low-energy subspace of H̃ and L+ = 1 − L−. Define �− and
�+ as the projectors onto L− and L+, respectively.

With these notations in place, here we show that the
spectrum of H̃− = �−H̃�− approximates the spectrum of
Htarg ⊗ |0〉〈0|w with error ε. To begin with, the projections of
V into the subspaces L− and L+ can be written as

V− =
{
Helse + κ2

�
[X1 − sgn(α)X2]2︸ ︷︷ ︸

(a)

−4κ4

�3
Z1Z2︸ ︷︷ ︸

(b)

}
⊗ |0〉〈0|w,

V+ =
[
Helse + κ(Z1 + Z2) − 2κ2

�
sgn(α)X1X2 − 4κ4

�3
Z1Z2

]
⊗ |1〉〈1|w,

(66)
V−+ = κ[X1 − sgn(α)X2] ⊗ |0〉〈1|w,

V+− = κ[X1 − sgn(α)X2] ⊗ |1〉〈0|w.

Given the penalty Hamiltonian H , we have the operator-valued resolvent G(z) = (z1 − H )−1 that satisfies G+(z) =
�+G(z)�+ = (z − �)−1|1〉〈1|w. Then, the low-lying sector of the gadget Hamiltonian H̃ can be approximated by the perturbative
expansion Eq. (3). For our purposes, we will consider terms up to the fourth order:

	−(z) = V− + 1

z − �
V−+V+− + 1

(z − �)2
V−+V+V+− + 1

(z − �)3
V−+V+V+V+− +

∞∑
k=3

V−+V k
+V+−

(z − �)k+1
. (67)

Now, we explain the perturbative terms that arise at each order. The first order is the same as V− in Eq. (66). The second-order
term gives

1

z − �
V−+V+− = 1

z − �
κ2[X1 − sgn(α)X2]2︸ ︷︷ ︸

(c)

⊗|0〉〈0|w. (68)
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At the third order, we have

1

(z − �)2
V−+V+V+− =

{
1

(z − �)2
κ2[X1 − sgn(α)X2]Helse[X1 − sgn(α)X2]

+ 1

(z − �)2

4κ4

�
[X1X2 − sgn(α)1]︸ ︷︷ ︸

(d)

}
⊗ |0〉〈0|w + O(�−1/4). (69)

The fourth order contains the desired YY term

1

(z − �)3
V−+V+V+V+− =

{
1

(z − �)3
2κ4[X1 − sgn(α)X2]2︸ ︷︷ ︸

(e)

− 1

(z − �)3
4κ4Z1Z2︸ ︷︷ ︸

(f )

+4κ4sgn(α)

(z − �)3
Y1Y2

}

⊗ |0〉〈0|w + O(‖Helse‖�−3/4) + O(‖Helse‖2�−1/2). (70)

Note that with the choice of κ = (|α|�3/4)1/4, all terms of
fifth order and higher are of norm O(�−1/4). In the first-order
through fourth-order perturbations, the unwanted terms are
labeled as (a) through (f ) in Eqs. (66) and (68)–(70). Note how
they compensate in pairs: the sum of (a) and (c) is O(�−1/4).
The same holds for (d) and (e), (b) and (f ). Then, the self-
energy is then

	−(z) = (Helse + αY1Y2) ⊗ |0〉〈0|w + O(�−1/4). (71)

Let � = �(ε−4), then by the gadget theorem (I.1), the
low-lying sector of the gadget Hamiltonian H̃− captures the
spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The fact that the gadget relies on fourth-order perturbation
renders the gap scaling relatively larger than it is in the case of
subdivision or three- to two-body reduction gadgets. However,
this does not diminish its usefulness in various applications.

VII. CONCLUSION

We have presented improved constructions for the most
commonly used gadgets, which in turn implies a reduction
in the resources for the many works which employ these
current constructions. We presented a comparison between the
known gadget constructions and the numerical optimizations
of gadget parameters. Our analytical results are found to
agree with the optimized solutions. The introduction of our
gadget which simulates YY interactions opens many prospects
for universal adiabatic quantum computation, particularly
the simulation of physics feasible on currently realizable
Hamiltonians.
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APPENDIX A: PARALLEL THREE- TO TWO-BODY
GADGET

1. Summary

In Sec. III, we have shown that by using parallel subdivision
gadgets iteratively, one can reduce a k-body target term to
three-body. We now turn our attention to considering Htarg =
Helse +∑m

i=1 αiAi ⊗ Bi ⊗ Ci , which is a sum of m three-body
terms. A straightforward approach to the reduction is to deal
with the three-body terms in series, i.e., one at a time: apply a
three-body gadget on one term, and include the entire gadget
in the Helse of the target Hamiltonian in reducing the next
three-body term. In this construction, � scales exponentially
as a function of m. In order to avoid that overhead, we apply
all gadgets in parallel, which means introducing m ancilla
spins, one for each three-body term and applying the same �

onto it. This poses additional challenges as the operator-valued
resolvent G(z) now has multiple poles. Enumerating high-
order terms in the perturbation series requires consideration
of the combinatorial properties of the bit flipping processes
(Fig. 7).

If we apply the current construction [3,11] of three-
body gadgets in parallel, which requires � = �(ε−3), it
can be shown [11] that the cross-gadget contribution is
O(ε). However, if we apply our improved construction of
the three- to two-body gadget in parallel, the perturbation
expansion will contain �(1) cross-gadget terms that are
dependent on the commutation relations between Ai , Bi and
Aj , Bj . Compensation terms are designed to ensure that
these error terms are suppressed in the perturbative expansion.
With our improved parallel three-body construction, � =
�(ε−2poly(m)) is sufficient.

The combination of parallel subdivision with the parallel
three- to two-body reduction allows us to reduce an arbitrary
k-body target Hamiltonian Htarg = Helse + ασ1σ2 . . . σk to
two-body [11]. In this paper, we have improved both parallel
two-body and three- to two-body gadgets. When numerically
optimized at each iteration, our construction requires a smaller
gap than the original construction [11] for the range of k

concerned.
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FIG. 7. Diagrams illustrating the transitions that occur at fourth
order. The two diagrams each represent a type of transition that occurs
at fourth order. Each diagram is divided by a horizontal line where
below the line is L− space and above is L+ subspace. Each diagram
deals with a fixed pair of ancilla qubits labeled i and j . The diagram (a)
has three horizontal layers connected with vertically going arrows. Vf

and Vs are both components of V+. In fact, V+ = Vf + Vs where Vf

is responsible for the flipping and Vs contributes when the transition
does not have flipping. At the left of each horizontal layer lies the
expression for G+(z), which is different for states inL+ with different
Hamming weights. The diagram (b) is constructed in a similar fashion
except that we are dealing with the type of fourth-order transition
where the state stays the same for two transitions in L+, hence the Vs

symbols and the arrows going from one state to itself. The diagram (a)
reflects the type of fourth-order transition that induces cross-gadget
contribution and given our gadget parameter setting, this contribution
could be O(1) when otherwise compensated. The diagram (b) shows
two paths that do not interfere with each other and thus have no
cross-gadget contributions.

2. Analysis

In Sec. III, we have shown that with subdivision gadgets
one can reduce a k-body interaction term down to three-body.
To complete the discussion on reducing a k-body term to
two-body, now we deal with reducing a three-body target
Hamiltonian of form

Htarg = Helse +
m∑

i=1

αiAi ⊗ Bi ⊗ Ci,

where Helse is a finite-norm Hamiltonian and all of Ai , Bi ,
Ci are single-qubit Pauli operators acting on one of the n

qubits that Htarg acts on. Here, without loss of generality, we
assume Ai , Bi , and Ci are single-qubit Pauli operators as our
construction depends on the commutation relationships among
these operators. The Pauli operator assumption ensures that
the commutative relationship can be determined efficiently a
priori.

We label the n qubits by integers from 1 to n. We assume
that in each three-body term of the target Hamiltonian, Ai ,
Bi , and Ci act on three different qubits whose labels are in
increasing order, i.e., if we label the qubits with integers from
1 to n, Ai acts on qubit ai , Bi acts on bi , Ci on ci , we assume
that 1 � ai < bi < ci � n must hold for all values of i from 1
to m.

One important feature of this gadget is that the gap � scales
as �(ε−2) instead of the common �(ε−3) scaling assumed by
the other three-body constructions in the literature [3,7,11]. To
reduce the Htarg to two-body, introduce m qubits labeled as u1,
u2, . . ., um and apply an energy penalty � onto the excited
subspace of each qubit, as in the case of parallel subdivision
gadgets presented previously. Then, we have

H =
m∑

i=1

�|1〉〈1|ui
=

∑
x∈{0,1}m

h(x)�|x〉〈x|, (A1)

where h(x) is the Hamming weight of the m-bit string x. In
this construction the perturbation V is defined as

V = Helse +
m∑

i=1

μiCi ⊗ |1〉〈1|ui

+
m∑

i=1

(κiAi + λiBi) ⊗ Xui
+ V1 + V2 + V3, (A2)

where V1 is defined as

V1 = 1

�

m∑
i=1

(κiAi + λiBi)
2 − 1

�2

m∑
i=1

(
κ2

i + λ2
i

)
μiCi (A3)

and V2 is defined as

V2 = − 1

�3

m∑
i=1

(κiAi + λiBi)
4. (A4)

V3 will be explained later. Following the discussion in Sec. IV,
the coefficients κi , λi , and μi are defined as

κi = sgn(αi)

( |αi |
2

) 1
3

�
3
4 ,

λi =
( |αi |

2

) 1
3

�
3
4 , (A5)

μi =
( |αi |

2

) 1
3

�
1
2 .

However, as we will show in detail later in this section, a close
examination of the perturbation expansion based on the V in
Eq. (A2) shows that with assignments of κi , λi , and μi in
Eq. (A5) if V has only V1 and V2 as compensation terms, the
cross-gadget contribution in the expansion causes �(1) error
terms to arise. In order to compensate for the �(1) error terms,
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we introduce the compensation

V3 =
m∑

i=1

m∑
j=1,j �=i

V̄ij

into V and V̄ij is the compensation term for cross-gadget
contribution [27]. Before presenting the detailed form of V̄ij ,
let s

(i,j )
1 = s

(i,j )
11 + s

(i,j )
12 where

s
(i,j )
11 =

⎧⎪⎨⎪⎩1 if

{
[Ai,Aj ] �= 0

[Bi,Bj ] = 0
or

{
[Bi,Bj ] �= 0

[Ai,Aj ] = 0
,

0 otherwise,

(A6)

s
(i,j )
12 =

{
1 if [Ai,Bj ] �= 0 or [Bi,Aj ] �= 0,

0 otherwise
(A7)

and further define s
(i,j )
2 as

s
(i,j )
2 =

{
1 if [Ai,Aj ] �= 0 and [Bi,Bj ] �= 0,

0 otherwise.
(A8)

Then, we define V̄ij as
V̄ij = −s

(i,j )
1

1

�3
(κiκj )21

− s
(i,j )
2

[
2

�3
(κiκj )21 − 2

�3
κiκjλiλjAiAjBiBj

]
, (A9)

where s
(i,j )
1 and s

(i,j )
2 are coefficients that depend on the

commuting relations between the operators in the ith and the
j th terms. Note that in Eq. (A9), although the term AiAjBiBj

is 4-local, it arises only in cases where s
(i,j )
2 = 1. In this case,

an additional gadget with a new ancilla uij can be introduced
to generate the 4-local term. For succinctness, we present the
details of this construction in Appendix B. With the penalty
Hamiltonian H defined in Eq. (A1), the operator-valued
resolvent (or the Green’s function) can be written as

G(z) =
∑

x∈{0,1}m

1

z − h(x)�
|x〉〈x|. (A10)

Define subspaces of the ancilla register L− = span{|00 . . . 0〉}
and L+ = span{|x〉|x �= 00 . . . 0}. Define P− and P+ as the
projectors onto L− and L+. Then, the projections of V onto
the subspaces can be written as

V+ =
⎡⎣Helse + 1

�

m∑
i=1

(κiAi + λiBi)
2 − 1

�2

m∑
i=1

(
κ2

i + λ2
i

)
μiCi − 1

�3

m∑
i=1

(κiAi + λiBi)
4 +

m∑
i=1

m∑
j=1,j �=i

V̄ij

⎤⎦⊗ P+

+
m∑

i=1

μiCi ⊗ P+|1〉〈1|ui
P+ +

m∑
i=1

(κiAi + λiBi) ⊗ P+Xui
P+︸ ︷︷ ︸

Vf

= Vs + Vf ,

(A11)

V−+ =
m∑

i=1

(κiAi + λiBi) ⊗ P−Xui
P+, V+− =

m∑
i=1

(κiAi + λiBi) ⊗ P+Xui
P−,

V− =
⎡⎣Helse + 1

�

m∑
i=1

(κiAi + λiBi)
2 − 1

�2

m∑
i=1

(
κ2

i + λ2
i

)
μiCi − 1

�3

m∑
i=1

(κiAi + λiBi)
4 +

m∑
i=1

m∑
j=1,j �=i

V̄ij

⎤⎦⊗ P−.

Here, the V+ projection is intentionally divided up into Vf and Vs components. Vf is the component of V+ that contributes
to the perturbative expansion only when the perturbative term corresponds to flipping processes in the L+ subspace. Vs is the
component that contributes only when the perturbative term corresponds to transitions that involve the state of the m-qubit ancilla
register staying the same.

The projection of the Green’s function G(z) onto L+ can be written as

G+(z) =
∑

x �=0...00

1

z − h(x)�
|x〉〈x|. (A12)

We now explain the self-energy expansion

	−(z) = V− + V−+G+V+− + V−+G+V+G+V+− + V−+(G+V+)2G+V+− + V−+(G+V+)3G+V+− + · · · (A13)

in detail term by term. The first-order term is simply V− from Eq. (A11). The second-order term corresponds to processes of
starting from an all-zero state of the m ancilla qubits, flipping one qubit and then flipping it back:

V−+G+V+− = 1

z − �

m∑
i=1

(κiAi + λiBi)
2. (A14)

The third-order term corresponds to processes of starting from an all-zero state of the ancilla register, flipping one qubit, staying
at the same state for V+, and then flipping the same qubit back. Therefore, only the Vf component in V+ in Eq. (A11) will
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contribute to the perturbative expansion:

V−+G+V+G+V+− = 1

(z − �)2

m∑
i=1

(κiAi + λiBi)

⎧⎨⎩Helse + μiCi + 1

�

m∑
j=1

(κjAj + λjBj )2

+ 1

�2

m∑
j=1

(
κ2

j + λ2
j

)
μjCj − 1

�3

m∑
j=1

(κjAj + λjBj )4 +
m∑

j=1

m∑
l=1,l �=j

V̄j l

⎫⎬⎭ (κiAi + λiBi). (A15)

The fourth-order term is more involved. Here, we consider two
types of transition processes (for diagrammatic illustration,
refer to Fig. 7):

(1) Starting from the all-zero state, flipping one of the
qubits, flipping another qubit, then using the remaining V+
and V+− to flip both qubits back one after the other [there are
two different possible sequences, see Fig. 7(a)].

(2) Starting from the all-zero state of the ancilla register,
flipping one of the qubits, staying twice for the two V+
components, and finally flipping back the qubit during V+−
[Fig. 7(b)].

Therefore, in the transition processes of type 1, V+ will
only contribute its Vf component and the detailed form

of its contribution depends on which qubit in the ancilla register
is flipped. The two possibilities of flipping the two qubits back
explains why the second term in Eq. (A16) takes the form of a
summation of two components. Because two qubits are flipped
during the transition, G+ will contribute a 1

z−2�
factor and two

1
z−�

factors to the perturbative term.
In the transition processes of type 2, V+ will only contribute

its Vs component to the fourth-order term since the states stay
the same during both V+ operators in the perturbative term.
G+ will only contribute a factor of 1

z−�
because the Hamming

weight of the bit string represented by the state of the ancilla
register is always 1. This explains the form of the first term in
Eq. (A16):

V−+(G+V+)2G+V+− = 1

(z − �)3

m∑
i=1

(κiAi + λiBi)

⎡⎣Helse + μiCi + 1

�

m∑
j=1

(κjAj + λjBj )2

− 1

�2

m∑
j=1

(
κ2

j + λ2
j

)
μjCj − 1

�3

m∑
j=1

(κjAj + λjBj )4 +
m∑

j=1

m∑
l=1,l �=j

V̄j l

⎤⎦2

(κiAi + λiBi)

+ 1

(z − �)2(z − 2�)

m∑
i=1

m∑
j=1,j �=i

[(κiAi + λiBi)(κjAj + λjBj )(κiAi + λiBi)(κjAj + λjBj )

+ (κiAi + λiBi)(κjAj + λjBj )(κjAj + λjBj )(κiAi + λiBi)]. (A16)

Although the fourth order does not contain terms that are useful for simulating the three-body target Hamiltonian, our
assignments of κi , λi , and μi values in Eq. (A5) imply that some of the terms at this order can be �(1). Indeed, the
entire second term in Eq. (A16) is of order �(1) based on Eq. (A5). Therefore, it is necessary to study in detail what
error terms arise at this order and how to compensate for them in the perturbation V . A detailed analysis on how to
compensate the �(1) errors is presented in Appendix B. The fifth-order and higher terms are errors that can be reduced by
increasing �:

∞∑
k=3

V−+(G+V+)kG+V+−. (A17)

At first glance, with assignments of κi , λi , and μi in Eq. (A5), it would appear that this error term is �(�−1/4) since ‖V−+‖ =
�(�3/4), ‖V+−‖ = �(�3/4), ‖V+‖ = �(�3/4), and ‖G+‖ = �(�−1),

∞∑
k=3

V−+(G+V+)kG+V+− �
∞∑

k=3

‖V−+‖‖G+V+‖k‖G+‖‖V+−‖

= ‖V−+(G+V+)3G+V+−‖
∞∑

k=0

‖G+V+‖k

= O(�−1/4) (A18)
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as
∑∞

k=0 ‖G+V+‖k = O(1). However, here we show that
in fact this term in Eq. (A17) is �(�−1/2). Note that the
entire term (A17) consists of contributions from the transition
processes where one starts with a transition from the all-zero
state to a state |x〉 with x ∈ {0,1}m and h(x) = 1. If we focus
on the perturbative term of order k + 2,

V−+(G+V+)kG+V+−,

after k steps. During every step, one can choose to either flip
one of the ancilla qubits or stay in the same state of the ancilla
register, the state of the ancilla register will go back to a state
|y〉 with y ∈ {0,1}m and h(y) = 1. Finally, the |1〉 qubit in |y〉
is flipped back to |0〉 and we are back to the all-zero state which
spans the ground-state subspace L−. Define the total number
of flipping steps to be kf . Then, for a given k, kf takes only
values from

K(k) =
{

{k,k − 2, . . . ,2} if k is even,

{k − 1,k − 3, . . . ,2} if k is odd.
(A19)

For the term of order k + 2, all the transition processes that
contribute nontrivially to the term can be categorized into two
types:

(1) If x = y, the minimum number of flipping steps is 0.
The contribution of all such processes to the (k + 2)th-order
perturbative term is bounded by

�mkf

(
k

kf

)
‖Vf ‖kf ‖Vs‖k−kf

‖V−+‖‖V+−‖
[� − max(z)]k+1

, (A20)

where the factor mkf is the number of all possible ways of
flipping kf times, each time one of the m ancilla qubits. This
serves as an upper bound for the number of transition processes
that contribute nontrivially to the perturbative term. The factor
( k

kf
) describes the number of possible ways to choose which

(k − kf ) steps among the total k steps involve the state of the
ancilla register staying the same. ‖G+‖ � 1

�−max(z) is used in
the upper bound.

(2) If x �= y, the minimum number of flipping steps is 2.
The contribution of all such processes to the (k + 2)th-order
perturbative term is bounded by

�
(

k

kf

)(
kf

2

)
2!‖Vf ‖kf ‖Vs‖k−kf mkf −2 ‖V−+‖‖V+−‖

[� − max(z)]k+1
,

(A21)

FIG. 8. Numerical verification for the upper bound to the norm
of the (k + 2)th-order perturbative term in Eq. (A22). Here, we use
the parallel three-body gadget for reducing Htarg = 0.1X1Z2Z3 −
0.2X1X2Z3 up to error ε = 0.01. The gap in the gadget con-
struction is numerically optimized [26]. Here, the calculation of
the analytical upper bound uses the result in Eq. (A22). The
calculation is then compared with the norm of the corresponding
perturbative term numerically calculated according to the self-energy
expansion.

where the factor ( k

kf
) is the number of all possible ways to

choose which (k − kf ) steps among the k steps should the

state remain the same. (kf

2 ) is the number of possible ways to
choose from the kf flipping steps the two minimum flips. 2! is
for taking into account the ordering of the two flipping steps.
‖G+‖ � 1

�−max(z) is used in the upper bound.
For a general m-qubit ancilla register, there are in total

m different cases of the first type of transition processes and
(m2) different cases of the second type of transition processes.
Therefore, we have the upper bound to the norm of the
(k + 2)th term (Fig. 8)

‖V−+(G+V+)kG+V+−‖ � m
∑

kf ∈K(k)

mkf

(
k

kf

)
‖Vf ‖kf ‖Vs‖k−kf

‖V−+‖‖V+−‖
[� − max(z)]k+1

+
(

m

2

) ∞∑
k=3

(
k

kf

)(
kf

2

)
2!‖Vf ‖kf ‖Vs‖k−kf mkf −2 ‖V−+‖‖V+−‖

[� − max(z)]k+1

=
∑

kf ∈K(k)

(
m + m − 1

m

)
2k ‖V−+‖(m‖Vf ‖)kf ‖Vs‖k−kf ‖V+−‖

[� − max(z)]k+1

� ‖V−+‖‖V+−‖
� − max(z)

(m + 1)
∞∑

k=3

[ ‖Vs‖
� − max(z)

]k ∑
kf ∈K(k)

(
m

‖Vf ‖
‖Vs‖

)kf

. (A22)
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Since ‖∑m
i=1

∑m
j=1,j �=i V̄ij‖ is bounded by 1

�3

∑m
i=1

∑m
j=1,j �=i 8(κiκj )21, from Eq. (A11) we see that

‖Vs‖ � ‖Helse‖ + 2−1/3�1/2
m∑

i=1

|αi |1/3 + 24/3�1/2
m∑

i=1

|αi |2/3 +
m∑

i=1

|αi |

+ 28/3
m∑

i=1

|αi |4/3 +
m∑

i=1

m∑
j=1,j �=i

8 × 2−4/3|αi |2/3|αj |2/3 ≡ vs, (A23)

‖Vf ‖ � 22/3�3/4
m∑

i=1

|αi |1/3 ≡ vf .

With bounds of ‖Vs‖ and ‖Vf ‖ in Eq. (A11), the summation in Eq. (A22) can be written as∥∥∥∥∥
∞∑

k=3

V−+(G+V+)kG+V+−

∥∥∥∥∥
� ‖V−+‖‖V+−‖

� − max(z)
(m + 1)

{ ∞∑
r=1

[
2vs

� − max(z)

]2r+1 r∑
s=1

(
m

vf

vs

)2s

+
∞∑

r=2

[
2vs

� − max(z)

]2r r∑
s=1

(
m

vf

vs

)2s
}

. (A24)

To guarantee convergence of the summation in Eq. (A24) we require that � satisfies

2mvf

� − max(z)
< 1, (A25)

m

(
vf

vs

)
> 1, (A26)

both of which are in general satisfied. The summation in Eq. (A24) can then be written as∥∥∥∥∥
∞∑

k=3

V−+(G+V+)kG+V+−

∥∥∥∥∥
� ‖V−+‖‖V+−‖

� − max(z)
·

(
m

vf

vs

)2(
m

vf

vs

)2 − 1

[ 2mvf

�−max(z)

]2
1 − [ 2mvf

�−max(z)

]2 (m + 1)

{[
2mvf

� − max(z)

]2

+ 2vs

� − max(z)

}
= �(�−1/2), (A27)

which shows that the high-order terms are �(�−1/2). This is
tighter than the crude bound �(�−1/4) shown in Eq. (A18).
The self-energy expansion (A13) then satisfies

‖	−(z) − Htarg ⊗ P−‖ � �(�−1/2), (A28)

which indicates that � = �(ε−2) is sufficient for the parallel
three-body gadget to capture the entire spectrum of Htarg ⊗ P−
up to error ε.

We have used numerics to verify the �(ε−2) scaling, as
shown in Fig. 8. Furthermore, for a range of specified ε,
the minimum � needed for the spectral error between the
gadget Hamiltonian and the target Hamiltonian is numerically
found. In the optimized cases, the slope d ln �/d ln ε−1 for
the construction in Ref. [11] is approximately 3, showing
that � = �(ε−3) is the optimal scaling for the construc-
tion in Ref. [11]. For our construction, both the analyt-

ical bound and the optimized � scale as �(ε−2) (see
Fig. 9).

APPENDIX B: COMPENSATION FOR THE 4-LOCAL
ERROR TERMS IN PARALLEL THREE- TO

TWO-BODY GADGET

Continuing from the discussion in Appendix A, here we
deal with �(1) error terms that arise in the third- and fourth-
order perturbative expansions when V in Eq. (A2) is without
V3 and in so doing explain the construction of V̄ij in Eq. (A9).
From the previous description of the third- and fourth-order
terms, for each pair of terms (i) and (j ) where i and j are
integers between 1 and m, let

M1 = (κiAi + λiBi)(κjAj + λjBj ),

M2 = (κjAj + λjBj )(κiAi + λiBi),
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FIG. 9. Scaling of the spectral gap � as a function of error ε

for the parallel three-body example that is intended to reduce the
target Hamiltonian Htarg = Z1Z2Z3 − X1X2X3 to two-body. Here,
ε = 0.01. We show both numerically optimized values (“numerical”)
in our construction and the construction in Ref. [11], which is referred
to as “[BDLT08].”

and then the �(1) error term arising from the third- and fourth-
order perturbative expansions can be written as

1

(z − �)2

[
1

z − 2�

(
M2

1 + M2
2

)+
(

1

�
+ 1

z − 2�

)
× (M1M2 + M2M1)

]
. (B1)

Based on the number of noncommuting pairs among Ai ,
Aj , Bi , and Bj , all possible cases can be enumerated as the
following:

case 0 : [Ai,Aj ] = 0, [Bi,Bj ] = 0, [Ai,Bj ] = 0,

[Bi,Aj ] = 0,

case 1 : 1.1 : [Ai,Aj ] = 0, [Bi,Bj ] = 0, [Aj,Bi] �= 0,

1.2 : [Ai,Aj ] = 0, [Bi,Bj ] = 0, [Ai,Bj ] �= 0,

1.3 : [Ai,Aj ] = 0, [Bi,Bj ] �= 0,

1.4 : [Ai,Aj ] �= 0, [Bi,Bj ] = 0,

case 2 : [Ai,Aj ] �= 0, [Bi,Bj ] �= 0. (B2)

In case 0, clearly M1 = M2. Then, the �(1) error becomes

1

(z − �)2

(
1

�
+ 2

z − 2�

)
2M2

1 = �(�−1)

which does not need any compensation. In case 1, for example
in the subcase 1.1, Aj does not commute with Bi . Then, M1

and M2 can be written as

M1 = K + κjλiBiAj ,

M2 = K + κjλiAjBi,

where K contains the rest of the terms in M1 and M2.
Furthermore,

M2
1 + M2

2 = 2K2 − 2(κjλi)
21,

M1M2 + M2M1 = 2K2 + 2(κjλi)
21.

Hence, the �(1) term in this case becomes

1

(z − �)2

[(
1

�
+ 2

z − 2�

)
2K2 + 1

�
2(κjλi)

21

]
, (B3)

where the first term is �(�−1) and the second term is
�(1), which needs to be compensated. Similar calculations
for cases 1.2, 1.3, and 1.4 will yield �(1) error with the
same norm. In case 2, define R = κiλjAiBj + λiκjBiAj and
T = κiκjAiAi + λiλjBiBi . Then,

M2
1 + M2

2 = 2(R2 + T 2),

M1M2 + M2M1 = 2(R2 − T 2).

The �(1) error terms in the third- and fourth-order perturbative
expansions become

1

(z − �)2

[(
1

�
+ 2

z − 2�

)
2R2 − 1

�
2T 2

]
, (B4)

where the first term is �(�−1) and hence needs no compensa-
tion. The second term is �(1). Define

s
(i,j )
0 =

{
1 if case 0,

0 otherwise.
(B5)

With the definitions of s
(i,j )
1 and s

(i,j )
2 in Eqs. (A6)–(A8), the

contribution of the ith and the j th target terms to the �(1)
error in the perturbative expansion 	−(z) becomes

s
(i,j )
0

1

(z − �)2

(
1

�
+ 2

z − 2�

)
2(κiAi+λiBi)

2(κjAj+λjBj )2

+ s
(i,j )
1

1

(z − �)2

[(
1

�
+ 2

z − 2�

)
2K2

ij + 1

�
2(κiκj )21

]
+ s

(i,j )
2

1

(z − �)2

[(
1

�
+ 2

z − 2�

)
2R2

ij

+ 1

�
2{[(κiκj )2 + (λiλj )2]1 − 2κiκjλiλjAiAjBiBj }

]
.

(B6)

The term proportional to s
(i,j )
0 in Eq. (B6) does not need com-

pensation since it is already �(�−1). The term proportional to
s

(i,j )
1 can be compensated by the corresponding term in V̄ij in

Eq. (A9) that is proportional to s
(i,j )
1 . Similarly, the �(1) error

term proportional to s
(i,j )
2 can be compensated by the term in

V̄ij in Eq. (A9) that is proportional to s
(i,j )
2 .

Now, we deal with generating the 4-local term in V̄ij .
Introduce an ancilla uij and construct a gadget H̃ij = Hij + Vij

such that Hij = �|1〉〈1|uij
and the perturbation Vij becomes

Vij = (κiAi + λjBj ) ⊗ Xuij

+ (κjAj + λiBi) ⊗ |1〉〈1|uij
+ V ′

ij , (B7)

where V ′
ij is defined as

V ′
ij = 1

�
(κiAi + λjBj )2 + 1

�3

[(
κ2

j + λ2
i

)
(κiAi + λjBj )2

− 2κjλi

(
κ2

j + λ2
j

)
AjBi

]
. (B8)
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The self-energy expansion 	−(z) is now

	−(z) = 1

(z − �)3
4κiκjλiλjAiAjBiBj + O(�−1/2),

which is O(�−1/2) close to the 4-local compensation term
in V̄ij . We apply the the gadget H̃ij for every pair of

qubits with s
(i,j )
2 = 1. The cross-gadget contribution be-

tween the H̃ij gadgets as well as the cross-gadget contri-
bution between H̃ij gadgets and gadgets based on ancilla
qubits u1 through um both belong to the case 1 of the
Eq. (B2) and hence are easy to deal with using two-body
terms.
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