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for real-time quantum dynamics
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In quantum information theory, there is an explicit mapping between general unitary dynamics and Hermitian
ground-state eigenvalue problems known as the Feynman-Kitaev clock Hamiltonian. A prominent family of
methods for the study of quantum ground states is quantum Monte Carlo methods, and recently the full
configuration interaction quantum Monte Carlo (FCIQMC) method has demonstrated great promise for practical
systems. We combine the Feynman-Kitaev clock Hamiltonian with FCIQMC to formulate a technique for the
study of quantum dynamics problems. Numerical examples using quantum circuits are provided as well as a
technique to further mitigate the sign problem through time-dependent basis rotations. Moreover, this method
allows one to combine the parallelism of Monte Carlo techniques with the locality of time to yield an effective
parallel-in-time simulation technique.
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I. INTRODUCTION

Understanding the evolution of quantum systems is a
central problem in physics and the design of emerging
quantum technologies. However, exact simulations of quantum
dynamics suffer from the so-called curse of dimensionality [1].
That is, the dimension of the Hilbert space grows exponentially
with the size of the physical system. An effective remedy
for the curse of dimensionality in some classical systems
has been the use of Monte Carlo methods, which in many
cases have an error with respect to the number of samples
that is independent of the dimension of the simulated sys-
tem [2]. Unfortunately, this favorable scaling is often lost
in quantum systems of interest due to the emergence of the
famous sign problem. In particular, it has hindered the use
of Monte Carlo methods for fermionic systems, where it is
sometimes called “the fermion sign problem,” and for real-time
dynamics of general quantum systems, where it is known
as “the dynamical sign problem.” The generic sign problem
has been proven to belong to the computational complexity
class NP-complete [3], and recent studies of complexity
have refined the knowledge about the computational power
of sign-problem-free (or “stoquastic”) Hamiltonians [4,5].
However, these results do not preclude the effective use
of these methods on many interesting instances of physical
problems.

In particular, despite the generic challenges of the sign prob-
lem, Monte Carlo methods have been used with great success
in the study of electronic systems, providing a standard of
accuracy in quantum chemistry and condensed matter [6–10].
In some of these methods, such as fixed node diffusion
Monte Carlo, the use of a trial wave function allows one to
approximately remove the complications of the sign problem at
the cost of a small bias in the resulting energy. One alternative
to such an approximation is the use of interacting walker
methods [11], which attempt to solve the problem exactly
without the bias introduced by a trial function. Recently, Booth
et al. introduced an interacting walker method in the discrete
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basis of Slater determinants called full configuration interac-
tion quantum Monte Carlo (FCIQMC) [12]. The sign problem
in the context of this algorithm has been studied in some de-
tail [13–15] and it has been successfully applied to both small
molecular systems of chemical interest and extended bulk
systems [16,17].

The use of Monte Carlo methods to study the real-time
dynamics of generic quantum systems has been comparatively
less prevalent [18]. The dynamical sign problem may become
more severe both with the size of the system and the duration
for which it is simulated [19–21]. Despite these challenges,
advances are being made in the treatment of these problems,
including hybridization of Monte Carlo techniques with other
methods [22–26].

The sign problem has been studied in the context of
quantum computation, where it is known that a sufficient
condition for efficient probabilistic classical simulation of
the adiabatic evolution of a quantum system using Monte
Carlo methods is that the Hamiltonian governing the quantum
system is sign-problem free (also known as stoquastic)
and frustration free [4,5,27]. Projector Monte Carlo algo-
rithms have been developed specifically for this type of
problem [4,28]. Moreover, the use of tools from quantum
information allows any generic unitary evolution of a quantum
system to be written as the ground-state eigenvalue problem
of a Hermitian Hamiltonian [29–31]. In this work, we exploit
this equivalence to adapt the interacting walker method
introduced by Booth et al. [12] to treat the dynamical
sign problem with a method designed for the fermion sign
problem.

The paper is organized as follows. First, we review the time-
embedded discrete variational principle [31] and derive from it
the clock Hamiltonian [29–31], which are the essential tools for
writing a general unitary evolution as a ground-state eigenvalue
problem of a Hermitian Hamiltonian. We then review the
FCIQMC method and adapt it for application to the clock
Hamiltonian. A discussion of the theoretical and practical
manifestation of the dynamical sign problem in this setting
follows with numerical examples from quantum computation.
Finally, we introduce a general framework of basis rotations

1050-2947/2015/91(1)/012311(8) 012311-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.012311
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which can be used to ameliorate the sign problem and
study the performance of this method when used in parallel
computation.

II. DYNAMICS AS A GROUND-STATE PROBLEM

It has been shown that any unitary quantum evolution
may be formulated as a ground-state eigenvalue problem with
applications to classical simulation of quantum systems [31].
We briefly review the relevant results here so that this work
remains self-contained.

Consider a quantum system that is described at discrete time
steps t by a normalized wave function |�t 〉. The dynamics of
this system is described by a sequence of unitary operators
{Ut } such that Ut |�t 〉 = |�t+1〉 and U

†
t |�t+1〉 = |�t 〉. In the

case of simulating Hamiltonian dynamics, these Ut could
be obtained from a Suzuki-Trotter factorization of the total
evolution [32,33]. However, we stress that explicit construction
of a full unitary operator Ut is never required, only the ability to
efficiently evaluate matrix elements between different physical
states, as detailed in a previous work [31]. From the properties
of unitary evolution, the following is clear:

2 − 〈�t+1| Ut |�t 〉 − 〈�t | U †
t |�t+1〉 = 0. (1)

Moreover, if the wave functions at each point in time are
only approximately known (but normalized), then∑

t

(2 − 〈�t+1| Ut |�t 〉 − 〈�t | U †
t |�t+1〉) � 0, (2)

where equality holds only in the case where the wave function
represents an exact, valid evolution of the quantum system.
To consider all moments in time simultaneously, we extend
the physical Hilbert space with an ancillary quantum system
to denote time. This ancillary time register takes on integer
values t and is orthonormal such that 〈t ′|t〉 = δt,t ′ . With this
construction, we see that by defining

H′ = 1

2

(∑
t

I ⊗ |t〉 〈t | − Ut ⊗ |t + 1〉 〈t |

− U
†
t ⊗ |t〉 〈t + 1| + I |t + 1〉 〈t + 1|

)
, (3)

which acts on the composite system-time Hilbert space, all
valid time evolutions minimize

S =
∑
t,t ′

〈t ′| 〈�t ′ |H′ |�t 〉 |t〉. (4)

Note that we have adopted the convention of script letters for
operators acting in the system-time Hilbert space such as H′
as opposed to operators only acting on the system such as Ut .
The time-embedded discrete variational principle immediately
follows, which simply states that this quantity is stationary
under variations of the wave function δ |�t 〉 for all valid time
evolutions, or

δS = δ
∑
t,t ′

〈t ′| 〈�t ′ |H′ |�t 〉 |t〉 = 0. (5)

To select a particular evolution of interest, one may
introduce a penalty operator that fixes the state of the system

at a given time. Typically, this might represent a known initial
state, and this operator in the system-time Hilbert space is
given by

C0 = (I − |�0〉 〈�0|) ⊗ |0〉 〈0|. (6)

The minimization of a Hermitian quadratic form con-
strained to have unit norm is equivalent to the eigenvalue
problem for the corresponding Hamiltonian. We introduce the
Lagrange multiplier λ to enforce normalization. As both S and
C0 are Hermitian by construction, minimization of

L =
∑
t,t ′

〈t ′| 〈�t ′ |H′ + C0 |�t 〉 |t〉

− λ

(∑
t,t ′

〈t ′| 〈�t ′ |�t 〉 |t〉 − 1

)
(7)

is equivalent to solving for the eigenvector corresponding to
the smallest eigenvalue of the Hermitian operator,

H = H′ + C0, (8)

which we refer to as the clock Hamiltonian. This Hamiltonian
has a unique ground state with eigenvalue 0 given by the history
state,

|�〉 = 1√
T

∑
t

|�t 〉 ⊗ |t〉, (9)

which encodes the entire evolution of the quantum system.
Thus, the quantum dynamics of the physical system can be
obtained by finding the ground-state eigenvector of H.

III. FCIQMC FOR THE CLOCK HAMILTONIAN

The full configuration interaction quantum Monte Carlo
(FCIQMC) method was introduced by Booth et al. as a method
to accurately find the ground state for electronic structure
problems in a basis of Slater determinants without appealing
to the fixed node approximation to eliminate the fermion sign
problem [12]. We review the basics of the theory behind
this method and show how it can be adapted for the clock
Hamiltonian H, such that it simulates the full time evolution
of a quantum system.

Let |�i〉 and λi be the eigenvectors and corresponding
eigenvalues of H. Any vector |�〉 in the system-time Hilbert
space acted upon by H can be decomposed in terms of the
eigenvectors of H such that

|�〉 =
∑

i

ci |�i〉. (10)

It follows that for any |�〉 not orthogonal to the ground state
of the clock Hamiltonian, |�0〉,

lim
τ→∞ e−τH |�〉 = lim

τ→∞

∑
i

e−τλi ci |�i〉 ∝ |�0〉. (11)

Because H trivially commutes with itself, we may break this
operator into the successive application of many operators,
such that for a large number of slices N of a finite τ ,

e−τH = (
e− τ

N
H)N ≈ (1 − δτH)N, (12)
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where δτ = τ/N . Note that the linearized time propagator
used here is both simple to implement for discrete systems
as well as unbiased in the final (τ → ∞) result, given
some restrictions on δτ [34]. Thus with a prescription to
stochastically apply the operator

G = (1 − δτH) (13)

repeatedly to any vector in the system-time Hilbert space, we
can simulate the quantum dynamics of the physical system.
τ is sometimes interpreted as imaginary time by analogy
to the Wick-rotated time-dependent Schrödinger equation;
however, we will only refer to τ as “simulation time” here,
to avoid confusion with the simultaneous presence of real and
imaginary time.

To represent a vector in the system-time Hilbert space, we
introduce discrete walkers represented by {i,t} with associated
real and imaginary integer weightsR({i,t}) and I({i,t}). These
walkers correspond to a single system-time configuration. The
indices correspond to a system state |i〉 at time t with a complex
integer weight defined by its real and imaginary components,
W ({k,t}) = R({k,t}) + iI({k,t}). Given a collection set of
these walkers, the corresponding normalized vector is given
by

|�〉 = 1

K

∑
{i,t}

W ({i,t}) |i〉 ⊗ |t〉, (14)

where K is the normalization constant given by the sum of the
absolute value of all the complex integer walker weights,

K =
∑
{i,t}

|W ({i,t})|. (15)

We also use this notation to define matrix elements for an
operator O between a state |i〉 |t〉 and |j 〉 |t ′〉 as

O{j,t ′},{i,t} = 〈j | 〈t ′|O |i〉 |t〉. (16)

To stochastically apply the operator G to a vector repre-
sented by a set of such walkers, the following three steps
are used, adapted from the original implementation by Booth
et al.:

(1) Spawning: This step addresses the off-diagonal elements
of G. For each walker {i,t}, we consider Nr = R({i,t}) real
parents and Ni = I({i,t}) imaginary parents, both with the
correct associated sign. For each of the real parents Ni , we
select a coupled state at an adjacent time and attempt to spawn
a real child and imaginary child {j,t ′} with probabilities

pR
s ({j,t ′}|{i,t}) = δτ |R(H{j,t ′},{i,t})|

pgt
(t ′,t)pgs

({j,t ′}|{i,t}) , (17)

pI
s ({j,t ′}|{i,t}) = δτ |I(H{j,t ′},{i,t})|

pgt
(t ′,t)pgs

({j,t ′}|{i,t}) , (18)

with corresponding signs

SR = −sign[R(H{j,t ′},{i,t})], (19)

SI = −sign[I(H{j,t ′},{i,t})], (20)

and for each of the imaginary parents Ni we select a coupled
state at an adjacent time and attempt to spawn a real child and
imaginary child {j,t ′} with probabilities

pR
s ({j,t ′}|{i,t}) = δτ |I(H{j,t ′},{i,t})|

pgt
(t ′,t)pgs

({j,t ′}|{i,t}) , (21)

pI
s ({j,t ′}|{i,t}) = δτ |R(H{j,t ′},{i,t})|

pgt
(t ′,t)pgs

({j,t ′}|{i,t}) , (22)

with corresponding signs

SR = sign[I(H{j,t ′},{i,t})], (23)

SI = −sign[R(H{j,t ′},{i,t})], (24)

where probabilities ps > 1 are handled by deterministically
spawning �ps� walkers and spawning an additional walker
with probability ps − �ps�. δτ is the simulation time step
and may be used to control the rate of walker spawning. The
functions pgt

(t ′,t) and pgs
({j,t ′}|{i,t}) are the probability of

suggesting a walker at the new time t ′ and of the particular
state j , respectively. For the clock Hamiltonian, an efficient
choice of the time generation function, pgt

(t ′,t) is t ′ = t ± 1
with equal probability unless the walker is at a time boundary,
in which case it should move inward with unit probability.
The state generation probability pgs

({j,t ′}|{i,t}) should be
chosen based on knowledge of the structure of Ut such that
connected states may reach each other. In this work, we use a
uniform distribution where states connected by Ut are selected
randomly with equal probability; however, this can be refined
using knowledge of Ut .

In this case, where {j,t ′} = {i,t}, the matrix elements
H{j,t ′},{i,t} may be written more explicitly as

H{j,t ′},{i,t} =
⎧⎨
⎩

− 1
2 〈j | Ut |i〉, t ′ = t + 1

− 1
2 〈j | U †

t |i〉, t ′ = t − 1
0 otherwise.

(25)

(2) Diagonal death or cloning: This step addresses the
application of the diagonal of G. In this step, for each parent
walker {i,t} (not yet including child walkers spawned in the
last step), calculate

pd ({i,t}) = δτ (H{i,t},{i,t} − S), (26)

where S is a shift that is used to control the population in the
simulation. Now for each real and imaginary parent Nr and
Ni associated with {i,t}, if pd > 0, the parent is destroyed. If
pd < 0, the parent is cloned with a probability |pd |, handling
instances of greater than unit probabilities as in the previous
step.

In the case of the clock Hamiltonian, the diagonal matrix
elements take on a simple form,

H{i,t},{i,t} =
⎧⎨
⎩

1/2 + (1 − |〈i|�0〉|2), t = 0
1/2, t = T − 1
1 otherwise.

(27)

(3) Annihilation: In this step, all previously existing and
newly spawned walkers are searched, and any which match are
combined such that both their real and imaginary components
are summed. In the event that any walker ends up with 0 total
weight, it is removed entirely from the simulation. In the case
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FIG. 1. (Color online) A schematic representation of a single
iteration of the FCIQMC algorithm for the clock Hamiltonian.
The larger squares represent real time, and subsquares represent the
possible quantum states occupied by either positive (blue) or negative
(red) walkers. In each iteration, the set of parents spawns potential
children to adjacent times, with parentage being indicated by dotted
lines. Simultaneously, the set of parent walkers is considered for
diagonal death. Finally, the remaining set of parents and spawned
children is combined, allowing walkers with opposing signs at the
same state and time to annihilate.

of the clock Hamiltonian, it is advantageous to store walkers
grouped by time, such that in parallel implementations the
simulation can be easily split along this dimension. This will
be elaborated upon later. Within each group, it is advisable
to use any natural ordering present on the basis states to
enable binary search that can locate identical walkers in
a time that is logarithmic in the number of walkers at a
given time. Alternatively, one can use hash tables to facilitate
annihilation [35].

A single iteration of the above algorithm is cartooned in
Fig. 1. By using this procedure, the operator G is iteratively
applied until the state of walkers is equilibrated at some
simulation time τ > τeq, with a number of walkers Nw. The
average of some observable O may be estimated at simulation
time τ according to

〈O〉 (τ ) = 〈�(τ )| O |�(τ )〉
〈�(τ )|�(τ )〉 . (28)

By averaging over the simulation time τ and correcting for the
autocorrelation time of the quantity 〈O〉 using standard statis-
tical procedures, the average may be converged to the desired
precision. In general, however, the simulation time-averaged
quantity 〈O〉τ may be biased due to the sign problem [13–15].
This bias may be removed to an arbitrary degree by increasing
the number of walkers Nw such that the state remains sign
coherent between steps. The number of walkers required
to remove the bias to a given precision depends both on
the severity of the sign problem and the amount of Hilbert
space that the physical problem occupies [13–15]. To this
end, we define a problem-dependent number nc such that
when Nw > nc, the time-averaged quantity 〈O〉τ is accurate
to the desired precision. Because this is an NP-complete
problem, one must expect that in general, nc is on the order

of the dimension of the Hilbert space D, that is, it grows
exponentially with the size of the system and linearly with real
time. However, for many systems of interest in ground-state
problems, it has been found that nc � D [15–17], and one
might expect the same to be true for some dynamical problems.
We now turn our attention to the scaling and properties of nc

for dynamical systems.

IV. MANIFESTATION OF THE SIGN PROBLEM

The conditions for the efficient simulation of a Hamiltonian
on a classical computer have been studied in the context of
quantum complexity theory. It is known that if a Hamiltonian is
frustration free and has real, nonpositive off-diagonal elements
in a standard basis (stoquastic), it may be probabilistically
simulated to a set precision in a time that is polynomial in the
size of the system [4,5].

For practical purposes, there are limitations on the system
operators one may simulate. In particular, the system operators
must be the sum of a polynomial number of terms. This simply
originates from the need to be able to efficiently evaluate
matrix elements of a given state. The interaction of, at most,
k particles, or k-local interactions, in the physical system is
a sufficient but not necessary condition for this to be true.
The clock Hamiltonian construction has also been recently
generalized to open quantum systems [36], where even in this
case a 2-local construction is generally possible with the use of
gadgets. Alternatively, if the clock Hamiltonian is constructed
from a sequence of unitary gates that acts on, at most, k qubits
in quantum computation, then the clock Hamiltonian will also
satisfy this requirement.

The presence of frustration in interacting systems can cause
the autocorrelation time of measured observables to diverge
exponentially, rendering their efficient simulation intractable
even in cases where the Hamiltonian is bosonic or sign-
problem free [3,37]. It has been proven generally that the clock
Hamiltonian is frustration free, with a unique ground state
separated from the first excited state with a gap of O(1/T 2),
where T is the number of discrete time steps being considered
at once.

If an operator is stoquastic (or sign-problem free), then
the off-diagonal elements that correspond to transitions in a
Monte Carlo simulation are all nonpositive. The operator G
will contain only positive transition probabilities in this case
and have a ground state corresponding to a classical probability
distribution by the Perron-Frobenius theorem [4,5]. In the
context of the FCIQMC method introduced, this means that
walkers will never change signs throughout the simulation, and
all averages will be sign coherent and unbiased, independent
of the number of walkers Nw. In the clock Hamiltonian,
the off-diagonal elements correspond to the set of unitary
operators with their adjoints {Ut,U

†
t }, and the penalty term

C0. For the standard computational initial state (|0〉⊗N ), the
penalty termC0 has a fixed sign, and thus the clock Hamiltonian
is stoquastic if {Ut,U

†
t } represented in the standard basis has all

real positive entries, yielding nonpositive off-diagonal entries
in the clock Hamiltonian.

Given the ubiquity of k-local interactions in physical
problems and the rigorous proof that the clock Hamiltonian
is frustration free, we will take these two conditions as
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given and consider more carefully the stoquastic condi-
tion. Consider a simple example of a unitary evolution
that may be simulated on a classical computer efficiently,
namely, reversible classical computational. All reversible
classical circuits may be expressed in terms of Toffoli
gate sequences, which are unitary and act to switch a
target bit conditional on the state of two control bits. In
the standard computational basis, it has a representation
given by

Tof =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

The clock Hamiltonian when constructed with unitary Toffoli
gates is stoquastic and nc ≈ 1. More explicitly, each Ut is
a Toffoli gate acting on different qubits for all times t .
Although a stoquastic Hamiltonian is sufficient for this to be
the case, it is not a necessary condition. To see this, consider a
slightly different set of unitary operators, namely, the standard
Pauli group gates, Xi , Yi , and Zi , in combination with the
controlled-NOT (CNOT) gate. These gates have the following
unitary representations in the standard computational basis:

X =
(

0 1
1 0

)
, (30)

Y =
(

0 −i

i 0

)
, (31)

Z =
(

1 0
0 −1

)
, (32)

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (33)

Considering for now only the computational basis that we
simulate in (a restriction we later lift), it is clear that given the
complex entries and varying signs of the off-diagonals, a clock
Hamiltonian built from this gate set will not be stoquastic if
even a single Y or Z gate is used. However, these gates also
have the property that they map single configurations to single
configurations, and as a result no interference occurs, yielding
all sign-coherent averages and nc ≈ 1. We call this type of
transformation, which is configuration number preserving,
“quasiclassical,” in contrast to classical, which we define as
configuration number preserving as well as phase preserving.
Thus, a stoquastic clock Hamiltonian is a sufficient but
not necessary condition for the simulation procedure to be
sign-problem free.

Consider a slightly more general local rotation R parame-
terized by an angle θ ,

R(θ ) =
(

cos θ sin θ

− sin θ cos θ

)
. (34)
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Mean number of walkers
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〈σ
z
〉

×105

FIG. 2. (Color online) Computed expectation value for σz for a
single qubit at the final time in the simulation as a function of the
average number of walkers kept in the simulation. There are 11 total
qubits in the simulation. It is apparent that the system exhibits a
sharp transition between a totally sign-incoherent sampling, where
all averages become zero, and a sign-coherent region, where the
averages begin to converge to the appropriate value.

In this case, the value of nc as a function of system size is more
complex. These represent the real-time evolutions of local spin
Hamiltonians for systems of spin- 1

2 particles.
In Fig. 2, we consider a single rotation R(θ ) with θ =

5π/32 applied uniformly to 11 qubits initialized to |0〉⊗N .
This sequence of rotations could be applied uniformly to all
qubits at once, as the individual operations trivially commute.
However, maintaining the locality of the operations, that is,
allowing each gate to act only on a single qubit, facilitates the
sampling procedure by restricting the number of connected
states for each walker to those that may be generated by local
transformations on each qubit. In contrast, the application of
all rotations simultaneously, in principle, connects each walker
to 2N states, which can make it difficult to take advantage of
structure present in the specific rotations.

As the clock Hamiltonian in this simulation is neither
stoquastic nor quasiclassical, one observes a sign-incoherent
region for a small number of walkers, where all averages tend
towards 0, until some critical threshold Nw > nc is reached
where a transition occurs to sign-coherent sampling, and
the average converges to the true value. We note that some
implementations of the FCIQMC algorithm have used the
diagonal shift S as a proxy for convergence [12], but we did not
observe a similar plateau trend here. The history state being
sampled in this case is given by

|�〉 =
∑

t

1√
T

(R(θ ) |0〉)⊗t |0〉⊗T −t |t〉. (35)

The formal structure of this evolution is quite similar for
all values of θ ; however, the states that result can exhibit
quite different features with respect to the sign problem in
the sampling. In Fig. 3, we examine the same circuit, but
include many different rotation angles. One sees that not only
does the value nc change as a function of rotation angle, but the
rate of the transition is quite different as well, favoring sharper,
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Mean number of walkers
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3π/16

FIG. 3. (Color online) Computed expectation value for σz for a
single qubit at the final time in the simulation as a function of the
average number of walkers kept in the simulation and the rotation
angle used in the simulation. The rotation angle θ is indicated by
the line label. The simulation contains 11 total qubits for all rotation
angles. One sees that the closer the rotation is to quasiclassical, the
sharper and earlier the transition to sign-coherent sampling.

earlier transitions for rotations that are closer to quasiclassical
(θ = 0).

V. MITIGATING THE SIGN PROBLEM

In the last section, we considered the impact of sign problem
as it related to local rotations (or the dynamics of distinguish-
able noninteracting particles). The apparent challenges in this
domain are unsettling given that trivial solutions are known for
this problem. Here we propose a simple scheme to mitigate
the sign problem to an arbitrary extent using preliminary
computation.

It is known that the sign problem is generically ba-
sis dependent. To this end, we propose an analogous ap-
proach to the interaction picture in quantum dynamics,
where the walkers at each point in time are expressed in
a rotated basis determined by a generic time-dependent
unitary rotation given by {Bt }. The evolution operators are
also dressed by this change such that in this basis, the
clock Hamiltonian is constructed from the rotated operators
given by

U ′
t = B†

t+1UtBt . (36)

Moreover, the computation of any Hermitian observable O

must also take into consideration this basis, such that

〈O〉 (τ ) = 〈�(τ )|B†
t OBt |�(τ )〉

〈�(τ )|�(τ )〉 . (37)

If one finds a set of {Bt } that renders the clock Hamiltonian
stoquastic or quasiclassical, the resulting Hamiltonian may be
sampled readily. One expects that in general, finding this basis
must be at least as difficult as exactly solving the problem
of the quantum evolution. In fact, it is easy to see that one
may choose the exact evolution as the set of basis rotations,
and that this renders the clock Hamiltonian stoquastic and
trivial, such that the evolution is dictated by the identity at all

|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ)

FIG. 4. The quantum circuit diagram for the circuit used to test
the efficacy of time-dependent local rotations in ameliorating the
sign problem. The angle used in this case is θ = 0.49. We compare
the results from this circuit as a function of the number of controls
that are removed from the NOT gates (crossed circle), and whether
time-dependent local basis rotations are utilized. The controls are
removed from the end of the circuit first.

times. Of course, the price one must pay for this is that the
computation of observables requires the full evolution to be
known.

However, as was seen above, it is not necessary for the clock
Hamiltonian to be rendered completely trivial. Even approach-
ing a quasiclassical Hamiltonian in an approximate sense
can greatly reduce the sampling costs. For some instances,
one may find an approximate set of rotations that makes the
clock Hamiltonian nearly stoquastic or quasiclassical, and the
remainder of the sign problem can be handled by maintaining
a reasonable number of walkers Nw in the simulation. As an
example of this procedure, we consider the simple case where
{Bt } are determined entirely by the local rotations in a quantum
circuit. Specifically, for local rotations, Bt = ∏0

t ′<t Ut ′ , where
Ut ′ is replaced by I for two- or more qubit operations. It is
clear that for circuits consisting of only local rotations, as
in the previous section, this is equivalent to exact evolution
and the resulting clock Hamiltonian becomes trivial (U ′

t =
I ∀ t ′). To study how this works in the nontrivial case, we
examine a similar circuit of local rotations, but now with
a variable number of CNOT gates included. This elucidates
to what extent the use of basis rotations can mitigate the
sign problem when they are not an exact solution to the
dynamics considered. A depiction of this circuit is given in
Fig. 4.

In Fig. 5, we consider a simple quantum circuit consisting
of a series of local rotations followed by NOT gates, with a
variable number of the NOT gates under control. With the given
rotation angle (θ = 0.49), these are entangling operations not
covered by the simple local basis rotation scheme we use
here. However, it is seen that even for eight controlled NOT

gates, the use of local basis rotations dramatically reduces the
number of walkers required to reach sign-coherent sampling,
indicating that this scheme can be computationally effective
even for simulations containing a considerable fraction of two-
qubit entangling operations. In this figure, the four and eight
CNOT simulations in the unrotated basis suffer similar biases
due to the fact that local rotations are capable of making the
sign problem difficult, independent of the number of CNOT

operations. The rotated basis is able to repair much of the
sign problem introduced by the local rotations, but is less
efficient on the eight CNOT problem in comparison with the four
CNOT problem. Further tests of more complex quantum circuits
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FIG. 5. (Color online) The mean value of a spin observable is
plotted as a function of the mean number of walkers labeled by
the number of CNOT gates, both with local basis rotation (-Rot) and
without. It is seen that even for a relatively high proportion of CNOT

gates, the rotated basis performs far better than the nonrotated basis,
requiring a lower number of walkers to reach sign-coherent sampling.

are needed to determine the efficiency of different rotation
schemes as a function of the structure of the quantum circuit.

VI. PARALLEL-IN-TIME SCALING

Monte Carlo methods are often championed as the ultimate
parallel algorithms, associated with the phrase “embarrass-
ingly parallel.” Given the evolution of modern computational
architectures towards many-core architectures with slower
clock speeds, Monte Carlo will continue to play a growing

FIG. 6. A schematic representation of the communication pat-
terns the annihilation step of interacting walker Monte Carlo schemes,
where the boxes represent different MPI processes and the ellipsis
represents the rest of the processes. (a) In the case of the clock
Hamiltonian, a time-domain decomposition allows one to restrict
communication to only nearest-neighbor processes, facilitating sim-
ple, constant time communication amenable to the architecture of
modern parallel computers. (b) In the more general case, a clear
partitioning may not be readily achievable, and all processes may
need to communicate with all other processes, creating a bottleneck.
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FIG. 7. (Color online) A scaling study of our method implemen-
tation with a fixed total problem size (strong scaling), showing parallel
efficiencies and speedups. The simulation consisted of 11 qubits
with 128 time points generated by consecutive local rotations with
θ ≈ 0.098. The simulation maintained on average 106 walkers in
each simulation time step and the wall clock time was measured to
the point of an equivalent number of statistical samples.

role in the numerical simulation of physics at the boundaries
of our computational capabilities. Interacting walker Monte
Carlo methods can be more difficult to parallelize effectively
due to the annihilation step where communication of walkers
is unavoidable.

In contrast to the most general interacting walker algo-
rithm, which may require heavy communication between
all processes, the FCIQMC method applied to the clock
Hamiltonian may take advantage of time locality to create an
efficient parallel-in-time algorithm using the standard method
of domain decomposition in time. Using this construction,
only processes or threads containing adjacent times need to
communicate their child walkers, which may be done simulta-
neously in a time that is constant for the number of processes
involved. This remains true so long as the number of time steps
under consideration is larger than the number of processes in
use, which is typically the case. In the case that the number
of processes is much greater than the number of time steps,
this scheme may still be used by blocking multiple processors
to each time, and utilizing an all-to-all communication pattern
within each block only. The difference between these two
communication patterns is highlighted in Fig. 6.

To demonstrate the scaling properties of this approach,
we consider the scaling as a function of the number of
processors for fixed total problem size, or strong scaling,
with our implementation. This benchmarking is done on a
standard Linux cluster composed of AMD Opteron 6376
processors. The parallel speedup with respect to single core
time as a function of the number of cores is given in Fig. 7.
Here, we see that we are able to combine the parallelism
of Monte Carlo with the locality of time decomposition to
achieve practical parallel efficiencies of over 95% with two
cores and 70% with eight cores using a simple message
passing interface (MPI) implementation on a commodity
cluster.
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VII. CONCLUSIONS

In this work, we reviewed the mapping between unitary
dynamics and ground-state eigenvalue problems. We then
showed how the FCIQMC method, a technique originally
designed to ameliorate the fermionic sign problem for ground-
state electronic systems, could be applied to quantum dynam-
ics problems as a direct result of this mapping. This establishes
a potential research direction for explicit connections between
the fermionic and dynamical sign problems that plague
quantum Monte Carlo simulations, and provides a pathway
for the transfer of tools between the two domains.

The numerical consequences of the dynamical sign problem
in this context were studied using a few basic quantum circuits.
It was found that even local rotations can exhibit a severe
sign problem depending on the form of the rotation and
how different it is from a quasiclassical operation. We then
introduced a general method analogous to the interaction
picture in dynamics or natural orbitals in the study of
eigenstates that uses basis rotations to mitigate the difficulty
of the problem. The costs and benefits of different types of
rotations require further research; however, we showed that
even local rotations can have a significant benefit for nontrivial

circuits. Finally, we discussed the structure of the problem in
the context of parallel-in-time dynamics, and showed high
parallel efficiencies with only a basic MPI implementation on
a commodity cluster.

Overall, we believe this is a promising method for the
simulation of quantum dynamics. It clarifies the bridge
between dynamics and ground-state problems and is capable
of effectively utilizing parallel computing architectures. While
we have only demonstrated it for quantum circuits, we
believe it will be generally useful for the study of quantum
dynamics.
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