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We study maximally entangled states and fully entangled fraction in general d ′ ⊗ d (d ′ � d) systems.
Necessary and sufficient conditions for maximally entangled pure and mixed states are presented. As a natural gen-
eralization of the usual fully entangled fraction for d ⊗ d systems, we define the maximal overlap between a given
quantum state and the maximally entangled states as the fully entangled fraction in d ′ ⊗ d systems. The properties
of this fully entangled fraction and its relations to quantum teleportation have been analyzed. The witness for
detecting maximally entangled states and quantum states that are useful for quantum teleportation is provided.
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I. INTRODUCTION

Entanglement is a vital resource in quantum information
processing. In particular, the maximally entangled states are
believed to be the ideal resource in many quantum information
processing tasks [1,2]. Much effort has been devoted to in-
crease the degree of entanglement in quantum states. Actually
it has been proved that all maximally entangled states are pure
in bipartite d ⊗ d systems [3]. However, in Ref. [4] a class
of mixed states that are also maximally entangled has been
introduced. This special class of mixed states is shown to be
the ideal resource for quantum teleportation.

One quantity tightly related to maximally entangled states
is the fully entangled fraction, which plays important role
in teleportation [5]. For instance, the fidelity of optimal
teleportation is given by the fully entangled fraction [6–8].
Additionally, the fully entangled fraction in a two-qubit system
acts as an index characterizing the nonlocal correlation [9] and
plays a significant role in deriving two bounds on the damping
rates of the dissipative channel [10].

Since the fully entangled fraction has clear experimental
and theoretical significance, an analytic formula for the fully
entangled fraction is of great importance. In Ref. [11] an
elegant formula for the fully entangled fraction in a two-qubit
system is derived analytically by using the method of Lagrange
multiplier. For high-dimensional quantum states the analytical
computation of the fully entangled fraction is formidably
difficult, and less results have been known. In Ref. [12] the
upper bound of the fully entangled fraction has been estimated.
In Ref. [13] some analytical results have been derived for some
special states. The monogamy relations in terms of the fully
entangled fraction have been proven for multiqubit pure states,
but this is not true for general mixed states [14].

Since the fully entangled fraction of d ⊗ d quantum states is
the maximal overlap with the maximally entangled pure states,
it is only well defined for bipartite systems with the subsystems
of the same dimensions. One question is whether there is
a similar quantity as the fully entangled fraction in general
bipartite systems, and what the theoretical or experimental
meanings of such quantities are. Fortunately, the existence of
maximally entangled mixed states in general bipartite systems
provides us insight to answer this question.

In this paper, we mainly investigate maximally entangled
states and the fully entangled fraction in general d ′⊗d (d ′ � d)
systems. Without loss of generality, we assume d ′ = Kd + r ,

0 � r < d, K � 1. First, we give necessary and sufficient
conditions of maximally entangled pure and mixed states.
Based on these results, we define the maximal overlap
between a given quantum state and the maximally entangled
states as the fully entangled fraction in d ′ ⊗ d systems,
which is a natural generalization of the usual fully entangled
fraction. The properties of this fully entangled fraction and
its relations to quantum teleportation are analyzed to show
that the fully entangled fraction is meaningful for general
bipartite systems. Finally, the witness for detecting maximally
entangled states and the quantum states that are useful for
quantum teleportation is provided.

II. MAXIMALLY ENTANGLED STATES

In Ref. [4], it has been shown that the maximally entangled
state can be either pure or mixed. In a d ′ ⊗ d system, if a pure
state is maximally entangled, then its Schmidt coefficients are
all equal to 1√

d
. If a mixed state is maximally entangled, then

it is a convex combination of maximally entangled pure states
that are pairwise orthogonal with each other.

Lemma 1. A d ′ ⊗ d bipartite mixed state ρ is maximally
entangled if and only if

ρ =
K∑

m=1

pm|ψm〉〈ψm|,
K∑

m=1

pm = 1, (1)

where

|ψm〉 = 1√
d

d−1∑
i=0

|fim〉 ⊗ |ei〉, (2)

with {|fim〉}im and {|ei〉}i satisfying 〈fi ′m′ |fim〉 = δii ′δmm′ and
〈ei ′ |ei〉 = δii ′ .

In the following, we will show two necessary and sufficient
conditions for maximally entangled states. We denote d-
dimensional vector |i〉 as the vector having only one nonzero
entry 1 in the (i − 1)th position, and d ′-dimensional vector
|i + (m − 1)d〉 as the vector having only one nonzero en-
try 1 in the i + (m − 1)d − 1th position, i = 0, . . . ,d − 1,
m = 1, . . . ,K . In this way, {|i〉} and {|i + (m − 1)d〉} are
orthonormal bases of the d-dimensional Hilbert space and
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Kd-dimensional Hilbert space respectively. Define

|χm〉 ≡ 1√
d

d−1∑
i=0

|i + (m − 1)d〉 ⊗ |i〉. (3)

{|χm〉} are maximally entangled pure states that are pairwise
orthogonal. Employing these maximally entangled states
{|χm〉}, we introduce the first necessary and sufficient condition
for the maximally entangled state.

Theorem 1. ρ is maximally entangled if and only if there
exists unitary operator U acting on the first subsystem such
that

(U ⊗ I ) ρ (U † ⊗ I ) =
K∑

m=1

pm|χm〉〈χm|, (4)

where pm is the eigenvalue of ρ, pm � 0,
∑K

m=1 pm = 1.
Proof. First, if a quantum state ρ satisfies Eq. (4), then it

is obvious that both
∑K

m=1 pm|χm〉〈χm| and ρ are maximally
entangled.

Second, suppose ρ is maximally entangled, i.e., ρ = ∑K
m=1

pm|ψm〉〈ψm|, ∑K
m=1 pm = 1, |ψm〉 = 1√

d

∑d−1
i=0 |fim〉 ⊗ |ei〉

with 〈fi ′m′ |fim〉 = δii ′δmm′ and 〈ei ′ |ei〉 = δii ′ . Since both {|i〉}
and {|ei〉} are orthonormal bases of the d-dimensional Hilbert
space, and both {|i + (m − 1)d〉} and {|fim〉} are orthonormal
bases of the Kd-dimensional Hilbert space, then there exist
unitary operators Ũ1 and Ũ2 acting on the two subsystems
respectively such that Ũ1|fim〉 = |i + (m − 1)d〉 and Ũ2|ei〉 =
|i〉 for all i and m, which implies

|χm〉 = Ũ1 ⊗ Ũ2|ψm〉, (5)

|ψm〉 = Ũ
†
1 ⊗ Ũ

†
2 |χm〉, (6)

for all m and

Ũ1 ⊗ Ũ2ρŨ
†
1 ⊗ Ũ

†
2 =

∑
m

pm|χm〉〈χm|. (7)

Note that I ⊗ A|χm〉 = BT ⊗ I |χm〉, where B is a block
diagonal matrix

B =

⎛
⎜⎜⎜⎜⎝

A

A

. . .
A

Id ′−Kd

⎞
⎟⎟⎟⎟⎠ .

Subsequently, |ψm〉 = Ũ
†
1GT ⊗ I |χm〉 with

G =

⎛
⎜⎜⎜⎜⎜⎝

Ũ
†
2

Ũ
†
2

. . .

Ũ
†
2

Id ′−Kd

⎞
⎟⎟⎟⎟⎟⎠

for all m. Denote U † = Ũ
†
1GT , then we have

|ψm〉 = U † ⊗ I |χm〉 (8)

for all m and U ⊗ IρU † ⊗ I = ∑K
m=1 pm|χm〉〈χm|. Therefore,

ρ is maximally entangled if and only if there exists a unitary

operator U acting on the first subsystem such that Eq. (4)
holds. �

Theorem 1 not only gives a necessary and sufficient
condition for maximally entangled states, but also provides a
canonical form for maximally entangled states. For example,
in a 2d ⊗ d system, the maximally entangled pure states can
be transformed into

1√
d

d−1∑
i=0

|ii〉 (9)

by unitary operations acting on the first subsystem. Also,
maximally entangled mixed states can be transformed into

1

d

⎛
⎝p1

d−1∑
i,j=0

|ii〉〈jj | + p2

d−1∑
i,j=0

|i + d,i〉〈j + d,j |
⎞
⎠ , (10)

p1,p2 > 0, p1 + p2 = 1.
Now we give another necessary and sufficient condition for

maximally entangled states.
Theorem 2. ρ is maximally entangled if and only if there

exists unitary operator U acting on the first subsystem such
that

K∑
m=1

〈χm|(U ⊗ I ) ρ (U † ⊗ I )|χm〉 = 1 (11)

with |χm〉 defined in Eq. (3).
Proof. For all maximally entangled states in Eq. (4), it

is easy to verify that
∑K

m=1〈χm|U ⊗ IρU † ⊗ I |χm〉 = ∑K
m=1

pm = 1.
On the other hand, if a quantum state ρ satisfies Eq. (11),

then we only need to prove that ρ ′ = U ⊗ IρU † ⊗ I is
maximally entangled. Let ρ ′ = ∑

k λk|φk〉〈φk|,
∑

k λk = 1,
λk > 0, be the spectral decomposition, then

K∑
m=1

〈χm|U ⊗ IρU † ⊗ I |χm〉

=
K∑

m=1

〈χm|ρ ′|χm〉

=
K∑

m=1

∑
k

λk|〈χm|φk〉|2

= 1.

Since
∑

k λk = 1 and λk > 0, one gets

K∑
m=1

|〈χm|φk〉|2 = 1 (12)

for all k. Since {|χm〉} are orthonormal, we can extend them into
a basis of d ′d-dimensional Hilbert space, {|χm〉, |χ ′

t 〉}m,t . Un-
der this basis, |φk〉 can be expressed as |φk〉 = ∑

m amk|χm〉 +∑
t btk|χ ′

t 〉 with
∑

m |amk|2 + ∑
t |btk|2 = 1 for all k. Taking

into account Eq. (12), which implies
∑

m |amk|2 = 1, we
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get

|φk〉 =
K∑

m=1

amk|χm〉

= 1√
d

d−1∑
i=0

|ξik〉 ⊗ |i〉 (13)

with |ξik〉 ≡ ∑
m amk|i + (m − 1)d〉 for all k. From the

orthonormality of the eigenvectors |φk〉, we have

〈φk′ |φk〉 =
∑
m,m′

a∗
m′k′amk〈χm′ |χm〉

=
∑
m

a∗
mk′amk

= δkk′ . (14)

Hence

〈ξi ′k′ |ξik〉 =
∑
m,m′

a∗
m′k′amk〈i ′ + (m′ − 1)d|i + (m − 1)d〉

=
∑
m

a∗
mk′amkδii ′

= δkk′δii ′ . (15)

Combining Eqs. (13) and (15), one gets easily that the quantum
state ρ ′ is maximally entangled by Lemma 1. Therefore ρ is
maximally entangled if and only if there exists unitary operator
U acting on the first subsystem such that Eq. (11) holds. �

III. FULLY ENTANGLED FRACTION

The fully entangled fraction for any quantum state ρ

in a d ⊗ d system is defined as the maximal overlap with
maximally entangled pure states,

F (ρ) = max
U, V

〈χ1|U ⊗ VρU † ⊗ V †|χ1〉

= max
U

〈χ1|U ⊗ IρU † ⊗ I |χ1〉. (16)

It measures how close a state is to maximally entangled
states. The fully entangled fraction can be used to characterize
whether a quantum state in a d ⊗ d system can be used to
teleport a d-dimensional quantum state faithfully. But one
shortcoming of this quantity is that it is only well defined
in a d ⊗ d system and it does not make sense in quantum
systems with different dimensional subsystems.

To deal with this matter, we propose the fully entangled
fraction of quantum state ρ in a d ′ ⊗ d system as

F (ρ) = max
U,V

K∑
m=1

〈χm|(U ⊗ V ) ρ (U † ⊗ V †)|χm〉

= max
U

K∑
m=1

〈χm|(U ⊗ I ) ρ (U † ⊗ I )|χm〉, (17)

where d ′ = Kd + r , 0 � r < d, K � 1.
F (ρ) has the following properties.
(i) F (ρ) is invariant under local unitary transformations.
(ii) F (ρ) is linear and convex.
(iii) F (ρ) = 1 if and only if ρ is maximally entangled.

(iv) K
d ′d � F (ρ) � 1 for all d ′ ⊗ d quantum states ρ.

Especially for a d ⊗ d mixed state ρ, 1
d2 � F (ρ) � 1.

(v) K
d ′d � F (ρ) � 1

d
for all d ′ ⊗ d separable states ρ.

Since the first three properties are easy to derive, here we
only prove the last two properties.

Proof of property (4). For any d ′ ⊗ d mixed state ρ,
we assume ρ = ∑d ′d

i=1 λi |φi〉〈φi | be the spectral decom-

position such that
∑d ′d

i=1 λi = 1, 0 � λi � 1 and {|φi〉}d ′d
i=1

are the normalized orthogonal eigenvectors in a d ′ ⊗ d

Hilbert space. Then F (ρ) = maxU

∑d ′d
i=1 λiai , with ai =∑K

m=1〈χm|U ⊗ I |φi〉〈φi |U † ⊗ I |χm〉, which satisfies 0�ai�1

and
∑d ′d

i=1 ai = K . One gets that
∑d ′d

i=1 λiai �
∑d ′d

i=1 λi = 1
becomes an equality if and only if ai = 1 for all i. Therefore
F (ρ) = 1 if and only if ρ is maximally entangled state.

On the other hand, the minimum of the function g(λi,ai) =∑d ′d
i=1 λiai is K

d ′d by Lagrange multiplier. It reaches its mini-
mum if and only if λi = 1

d ′d and ai = K
d ′d for i = 1, . . . ,d ′d.

This gives rise to ρ = 1
d ′d I . �

Proof of property (5). For a d ′ ⊗ d pure separable
state |00〉, F (|00〉) = maxU

∑K
m=1〈χm|U ⊗ I |00〉〈00|U † ⊗

I |χm〉 = 1
d

maxU

∑K
m=1 |U(m−1)d,0|2 � 1

d
. Notice that the fully

entangled fraction is local unitary invariant and convex, we
know F (ρ) � 1

d
for all d ′ ⊗ d separable states. �

One plausible weakness of the fully entangled fraction is
that for any given quantum state, its fully entangled fraction
may depend on the dimension of the Hilbert space associated
to the state. For example, F (|00〉〈00|) = 1

d
for |00〉〈00| in a

d ⊗ d Hilbert space. Therefore, the fully entangled fraction
of |00〉〈00| is 1

2 if we consider it as a 2 ⊗ 2 state and 1
3 if

we consider it as a 3 ⊗ 3 state. So before calculating the fully
entangled fraction, we first need to identify the associated
Hilbert space. This is also the problem that the usual fully
entangled fraction F (ρ) should be confronted with. However,
the problem is not so serious. The reason is that once we
say how much entanglement one quantum state has, we are
subconsciously comparing this state with others. If one state
is maximally entangled, F (ρ) = 1, then it means that it has
more entanglement than others with F (ρ) < 1 in the same
Hilbert space. So for ρ1 and ρ2 in the same Hilbert space, if
F (ρ1) > F (ρ2), it implies that ρ1 has more entanglement than
ρ2 and ρ1 may be more useful in some sense.

Now we show the roles played by F (ρ) in the following
quantum teleportation. Suppose Alice and Bob previously
share a pair of particles in an arbitrary d ′ ⊗ d quantum state ρ.
To transform an unknown d-dimensional state |ψ〉 from Alice
to Bob, Alice first performs a generalized joint Bell measure-
ment |φs,t,m〉〈φs,t,m| with |φs,t,m〉 = Ust ⊗ I ( 1√

d

∑
i |i〉|i +

(m − 1)d〉) on her parties, here Ust = htgs , h|j 〉 = |(j +
1) mod d〉, g|j 〉 = ωj |j 〉 with ω = exp{−2iπ/d}, s,t =
1,2, . . . ,d, m = 1, . . . ,K . According to the measurement
results s,t,m of Alice, Bob chooses particular unitary trans-
formations Ts,t,m to act on his particle. By lengthy calculation,
we find the transmission fidelity of the teleportation protocol
defined by Ts,t,m is given by

f (ρ) = 1

d + 1
+ 1

d(d + 1)

∑
s,t,m

〈χm|(I ⊗ U
†
stT

†
stm)

× ρ (I ⊗ TstmUst )|χm〉.
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So the optimal fidelity is

1

d + 1

[
1 + max

V

∑
m

〈χm|(I ⊗ V ) ρ (I ⊗ V †)|χm〉
]

, (18)

where V are arbitrary d×d unitary operators.
If we allow local unitary operations first before the above

quantum teleportation, then it gives raise to the relation
between the optimal fidelity of the teleportation and the fully
entangled fraction,

fmax(ρ) = 1

d + 1
+ dF (ρ)

d + 1
. (19)

For separable states ρ, F (ρ)� 1
d

, the optimal fidelity fmax(ρ)
of ρ in quantum teleportation is no more than 2

d+1 . However
if F (ρ) > 1

d
, then its optimal fidelity is not less than 2

d+1
and ρ is useful for quantum teleportation. In this sense, the
fully entangled fraction F (ρ) can be used to detect quantum
teleportation resource.

IV. ENTANGLEMENT WITNESS

To detect maximally entangled states and quantum tele-
portation resource in general bipartite system experimentally,
we construct the following entanglement witness. First, let us
define the Hermitian operators,

λi+(m−1)d = |(m − 1)d〉〈(m − 1)d|
− |i + (m − 1)d〉〈i + (m − 1)d|,

λk+(m−1)d, l+(m−1)d = |k + (m − 1)d〉〈l + (m − 1)d|
+ |l + (m − 1)d〉〈k + (m − 1)d|,

λ′
k+(m−1)d, l+(m−1)d = i(|k + (m − 1)d〉〈l + (m − 1)d|

− |l + (m − 1)d〉〈k + (m − 1)d|),
for the first subsystem, and

λi = |0〉〈0| − |i〉〈i|,
λkl = |k〉〈l| + |l〉〈k|,
λ′

kl = i(|k〉〈l| − |l〉〈k|),
for the second subsystem, with i = 1, . . . ,d − 1; k,

l = 0, . . . ,d − 1, k < l; m = 1, . . . ,K .
Furthermore, let

μi =
K∑

m=1

λi+(m−1)d ,

μkl =
K∑

m=1

λk+(m−1)d, l+(m−1)d ,

μ′
kl = i

K∑
m=1

λ′
k+(m−1)d, l+(m−1)d .

Set Ai = UμiU
†, Akl = UμklU

†, A′
kl = Uμ′

klU
†, with U any

d ′×d ′ unitary matrix. We define the linear witness operator to

be

� ≡ 1

d2

⎡
⎣Id ′ ⊗ Id + d

d−1∑
i=1

Ai ⊗ λi −
d−1∑
i=1

d−1∑
j=1

Ai ⊗ λj

⎤
⎦

+ 1

2d

∑
0�k<l�d−1

[Akl ⊗ λkl − A′
kl ⊗ λ′

kl]. (20)

Theorem 3. ρ is maximally entangled if and only if

〈�〉ρ = 1, (21)

and it is useful in quantum teleportation if and only if

〈�〉ρ >
1

d
(22)

for some unitary operator U acting on the first subsystem.
Proof. By expanding the operator |χm〉〈χm| in Eq. (3) in

terms of the Hermitian operators λi+(m−1)d , λk+(m−1)d, l+(m−1)d ,
λ′

k+(m−1)d, l+(m−1)d on the first subsystem, and λi , λkl , λ′
kl on

the second subsystem, i = 1, . . . ,d − 1; k,l = 0, . . . ,d − 1,
k < l; m = 1, . . . ,K , we have

|χm〉〈χm| = 1

d2

[
Idm−1 ⊗ Id + d

d−1∑
i=1

λi+(m−1)d ⊗ λi

−
d−1∑
i=1

d−1∑
j=1

λi+(m−1)d ⊗ λj

⎤
⎦

+ 1

2d

∑
0�k<l�d−1

[λk+(m−1)d, l+(m−1)d

⊗ λkl − λ′
k+(m−1)d, l+(m−1)d ⊗ λ′

kl]. (23)

Inserting Eq. (23) into
∑K

m=1 U ⊗ I |χm〉〈χm|U † ⊗ I , one gets
ρ is maximally entangled if and only if Eq. (21) holds for
some unitary operator U acting on the first subsystem by
Theorem 2, and ρ is useful for quantum teleportation if and
only if Eq. (22) holds for some unitary operator U acting on
the first subsystem, by the result in Sec. III. �

For example, in a 4 ⊗ 2 system, the witness given by
Eq. (20) is

� = 1
4 [I4 ⊗ I2 + Uλ1U

† ⊗ λ1 + Uλ3U
† ⊗ λ1

+Uλ01U
† ⊗ λ01 + Uλ23U

† ⊗ λ01

−Uλ′
01U

† ⊗ λ′
01 − Uλ′

23U
† ⊗ λ′

01]. (24)

Then any quantum state is maximally entangled if and only if
〈�〉ρ = 1, and the state is useful for quantum teleportation if
and only if 〈�〉ρ > 1

2 .

V. CONCLUSIONS

In summary, we have studied maximally entangled states
and the fully entangled fraction in general d ′ ⊗ d systems. We
have presented necessary and sufficient conditions of the max-
imally entangled states. The maximal overlap between a given
quantum state and the maximally entangled states has been
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characterized by the fully entangled fraction, analogous to the
case in d ⊗ d systems, as a natural generalization of the usual
fully entangled fraction. The properties of the fully entangled
fraction and its relation to quantum teleportation have been
analyzed. This investigation completes the previous results
for the fully entangled fraction. The witness for detecting
the maximally entangled states and the resource for quantum

teleportation has been provided, which may be helpful for
experimental detection.
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Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993); D. Bouwmeester, J. W. Pan, K. Mattle, M.
Eibl, H. Weinfurter, and A. Zeilinger, Nature (London)
390, 575 (1997); D. Boschi, S. Branca, F. De Martini,
L. Hardy, and S. Popescu, Phys. Rev. Lett. 80, 1121
(1998).

[6] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[7] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A
60, 1888 (1999).

[8] S. Albeverio, S. M. Fei, and W. L. Yang, Phys. Rev. A 66, 012301
(2002).

[9] Z. W. Zhou and G. C. Guo, Phys. Rev. A 61, 032108 (2000).
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