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Frequency-domain quantum computation to selectively manipulate many qubits
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We propose an implementation scheme of a frequency-domain quantum computation (FDQC) to avoid major
gate errors accompanying the computation. The FDQC is a way to implement many solid-state qubits defined
in a frequency domain without distinction of their positions. The FDQC has some gate errors due to unwanted
effects of operation lights on qubits. We investigate conditions to perform gates suppressing the errors using a
model of the FDQC with the unwanted interactions. Consequently, we find a scheme to selectively manipulate
many qubits using the FDQC.
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I. INTRODUCTION

Various physical implementations of the quantum computa-
tion have been studied [1]. A promising physical implementa-
tion of the computation is that of using adiabatic passages [2–
4]. Quantum gates can be robustly performed with adiabatic
passages using the dark state [5]. The adiabatic passages for
quantum gates have been demonstrated in some systems:
Rydberg atoms [6], an ion trap [7], rare-earth-ion-doped
crystals [8,9], and nitrogen-vacancy centers in diamond [10].

There are some systems in which we can hardly identify
positions of qubits in the above systems. Quantum gates based
on adiabatic passages using qubits identified by their frequen-
cies have been proposed to employ such systems for quantum
computations [11]. In the proposal, states of individual ions in
solids are employed as qubits, the ions are identified by their
transition frequencies, and these gates are performed using
operation lights which are resonant with each transition. If
inhomogeneous broadening of the transitions is larger than
homogeneous broadening, then these gates are feasible. A
frequency-domain quantum computation (FDQC) based on
such gates enables us to manipulate many solid-state qubits
selectively without identification of the positions of the qubits.

In the FDQC, operation lights with detuning interact with
transitions which are not intended to operate because qubits are
irradiated regardless of their positions. This unwanted interac-
tion causes gate errors of the FDQC. If frequency differences of
the transitions are large enough, the gate errors are suppressed.
However, when we would like to implement many qubits in
a finite-frequency range, the frequency differences cannot be
sufficiently large. Therefore, it is desirable to suppress the gate
errors even if the frequency differences are small.

The purpose of this paper is to investigate the conditions
to suppress gate errors due to unwanted interactions in the
FDQC. In particular, we focus on errors of the two-qubit gate
which are expected to have a nontrivial property. The two-qubit
gate using adiabatic passage is based on a cavity mediated
adiabatic passage (CMAP) using qubits coupled to a cavity
mode [12]. Therefore, we introduce the unwanted interactions
to the model of the CMAP, and investigate conditions to
perform the CMAP for high fidelity in the model. In the
investigation, the unwanted interactions are treated as the
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perturbation potential, and we evaluate the probabilities of
nonadiabatic transitions during the manipulation of the CMAP
by the perturbation theory. We analytically evaluate resonance
conditions to increase the errors generated by nonadiabatic
transitions. We numerically calculate the fidelity of the CMAP
in a three-qubit system around the resonance condition.

II. MODEL

The CMAP is a technique to manipulate quantum states of
multilevel systems in a cavity by coherent lasers.

Figure 1(a) shows a multiqubit system as an example of a
system for the CMAP in a FDQC. Each four-level system
Xi has states |0〉i , |1〉i , |2〉i , and |e〉i . The states |0〉i and
|1〉i represent a qubit, and the state |2〉i is an ancilla state.
We use Xi’s which have |2〉i − |e〉i transitions coupled to
the cavity mode with a coupling constant g. We assume that
transitions between lower states of Xi have inhomogeneous
broadening. Therefore, although all the |2〉i − |e〉i transitions
have the same frequency, |1〉i − |e〉i transitions have various
frequencies. Operation lights L1 and L2 are resonant with the
|1〉1 − |e〉1 transition and |1〉2 − |e〉2 transition, respectively.
We assume that the Rabi frequencies of interactions between
L1 and all the |1〉i − |e〉i transitions are a common �1 [13]. We
assume also that the Rabi frequencies due to L2 are a common
�2. γ is an energy-relaxation rate at excited states |e〉i and κ

is a cavity-relaxation rate.
For the CMAP, we use Gaussian pulses described by

�1(t) = �0 exp[−(t − τ1)2/2σ 2]

�2(t) = �0 exp[−(t − τ2)2/2σ 2]. (1)

�0 is the peak value of �1,2, and σ is the width of �1,2.
τ1,2 are times when �1,2 reach their peaks, respectively.
|n1n2n3 · · · nNnc〉 denotes a state of N -qubit system in which
states of Xi (i = 1,2, . . . ,N ) are |ni〉i and the cavity mode
has photon number nc. The CMAP using Gaussian pulses
[Eq. (1)] under τ2 < τ1 without unwanted interactions can
transfer a state from an initial state |12n3 · · · nN0〉 to a final
state |21n3 · · · nN0〉 (n3, . . . ,nN = 0,1) [12].

However, there are some unwanted interactions during
the CMAP operation in the FDQC. Interactions between L1

and |1〉i − |e〉i transitions (i = 2,3, . . . ,N ) and interactions
between L2 and |1〉i − |e〉i transitions (i = 1,3,4, . . . ,N) are
unwanted. When L1 and L2 are resonant with the |1〉1 − |e〉1
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FIG. 1. (a) A model of qubits in a cavity for a CMAP in a FDQC.
Each four-level system Xi has states |0〉i , |1〉i , |2〉i , and |e〉i . All of the
|2〉i − |e〉i transitions are coupled to the cavity mode with a coupling
constant g. An operation light L1 is resonant with the |1〉1 − |e〉1

transition, and L2 is resonant with the |1〉2 − |e〉2 transition. �1,2 are
Rabi frequencies due to L1,2, respectively. � is the detuning between
L1 and the |1〉2 − |e〉2 transition, �i are the detunings between L1 and
the |1〉i − |e〉i transitions, γ is an energy-relaxation rate at states |e〉i ,
and κ is a cavity-relaxation rate. (b) Schematic diagram of relations
between transitions and lights in (a).

and |1〉2 − |e〉2 transitions, respectively, unwanted interactions
are characterized by detunings � and �j (j � 3), where �

is defined as a frequency difference between the |1〉1 − |e〉1

transition and the |1〉2 − |e〉2 transition, and �j are defined
as frequency differences between the |1〉1 − |e〉1 transition
and the |1〉j − |e〉j transitions. There are N − 1 detuning
parameters in the N -qubit system. We assume that frequencies
of the |0〉i − |1〉i and |1〉i − |2〉i transitions of each Xi are
large enough to neglect the effects of L1,2 to |0〉i − |e〉i and
|2〉i − |e〉i transitions. Figure 1(b) shows the above relations
between transitions and lights.

In the rotating-wave approximation, we take an interaction
picture Hamiltonian H described by

H (t) = H1(t) + V (t) + D,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(t)/� =
N∑

i=1

gaσ
(i)
e2 + �1(t)σ (1)

e1 + �2(t)σ (2)
e1 + H.c.,

V (t)/� = �1(t)

⎧⎨
⎩e−i�tσ

(2)
e1 +

N∑
j=3

ei�j tσ
(j )
e1

⎫⎬
⎭

+ �2(t)

⎧⎨
⎩ei�tσ

(1)
e1 +

N∑
j=3

ei(�+�j )t σ
(j )
e1

⎫⎬
⎭ + H.c.,

D/� = −iγ

N∑
i=1

σ (i)
ee − iκa†a,

(2)

which is suitable to investigate the gate errors. See Appendix A
for a derivation. H is divided into the necessary interactions
H1, the unwanted interactions V , and relaxations D. H has

oscillation terms in V . σ
(i)
ab is an operator which transfers the

state of Xi from |b〉i to |a〉i . a and a† are annihilation and cre-
ation operators of the cavity mode, respectively. We investigate
conditions to perform the CMAP in high fidelity using H .

III. RESONANCE CONDITION

We assume the strong-coupling limit γ = κ = 0 to evaluate
the gate error due to unwanted interactions in the CMAP. The
initial state |ψ(0)〉 is fixed to the dark state |ψ0〉, which is one
of the eigenstates |ψn〉 of H1. In the case of �1,2 � g [14],
the state |ψ(t)〉 is given by |ψ(t)〉 = |ψ0〉 + ∑

n C(1)
n (t)|ψn〉 +∑

n C(2)
n (t)|ψn〉 + O(V 3)(n �= 0) in the perturbation theory of

V . The coefficients C(1,2)
n , which relate error probabilities, are

described by

C(1)
n (t) = 1

i�

∫ t

0
dt ′e−(En−E0)t ′/i�〈ψn|V (t ′)|ψ0〉,

C(2)
n (t) =

(
1

i�

)2 ∫ t

0
dt ′

∫ t ′

0
dt ′′e−(En−Ek)t ′/i�e−(Ek−E0)t ′′/i�

×〈ψn|V (t ′)|ψk〉〈ψk|V (t ′′)|ψ0〉. (3)

En are the eigenvalues of |ψn〉. The time variations of En are
smaller than the absolute values of En in the case of �1,2 � g,
since the variations of En depend on only the time variations
of �1,2. In that case, integrals in Eq. (3) are integrable,
and C(1,2)

n are inversely proportional to the exponents of the
exponential functions in C(1,2)

n . When the exponents are zero,
the error probabilities diverge, so that the perturbation theory is
unavailable. Considering oscillation terms in V (t ′), we obtain
resonance conditions using � and �j (j = 3,4, . . . ,N ),

(En − E0)/� = ±�,±�j,±(� + �j ), (4)

(Ek − E0)/� = ±�,±�j,±(� + �j )

(En − Ek)/� = ±�,±�j,±(� + �j ). (5)

When the conditions described by Eqs. (4) and (5) are satisfied,
the errors of the CMAP are increased owing to increases of
C(1)

n and C(2)
n , respectively.

In the case of �1,2 � g, the terms of �1,2 are negligible
in H1, and En are evaluated by the analogy of the vacuum
Rabi splitting. The number of Xi which have population in
two levels |2〉i and |e〉i is denoted by N2, the eigenvalues of
(
∑

i σ
(i)
e1 )2 + (

∑
i σ

(i)
1e )2 + (

∑
i σ

(i)
ee )2 are denoted by s(s + 1),

and the eigenvalues of
∑

i σ
(i)
ee are denoted by ne/2 − s. En are

classified according to the total number of excitations Ne =
ne + nc and s [15,16]. Some of En are described by

En/� =

⎧⎪⎨
⎪⎩

±√
N2g (Ne = 1,s = N2/2)

0, ± √
4N2 − 2g (Ne = 2,s = N2/2)

±√
N2 − 2g (Ne = 2,s = N2/2 − 1)

. (6)

See Appendix B for a derivation. En/� of the case of (Ne =
1,s = N2/2) is corresponding to the peak frequencies of the
vacuum Rabi splitting. The resonance conditions represented
by Eqs. (4) and (5) are analytically evaluated using Eq. (6) and
E0 = 0. To perform the high-fidelity CMAP in the FDQC,
systems and operation lights have to avoid the resonance
conditions.
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IV. NUMERICAL SIMULATION

We numerically calculate the fidelity of a CMAP using a
three-qubit system to investigate the behavior of errors via
unwanted interactions around the resonance conditions. When
the relaxation rates γ and κ are zero, the time evolution of states
is calculated using time-dependent Schrödinger equations
i� d

dt
|ψ(t)〉 = H (t)|ψ(t)〉. When the system has relaxations,

the time evolution of states is calculated using the Monte Carlo
simulation based on the quantum jump approach [17]. In our
calculation, the initial state is fixed to a state |1210〉, the state is
evolved from t = 0 to t = 10σ under Eq. (1), and the fidelity
of the CMAP is defined as the probability of a state |2110〉
in the final state. The probability of the other states in the
final state is the gate error. σ is fixed to 20/�0 to suppress
nonadiabatic effects. τ1,2 are optimized with respect to �0.

Figure 2 shows detuning dependences of the errors of
the CMAP. Figures 2(a) and 2(b) shows � dependence with
�3 = 10g and �3 dependence with � = 10g, respectively.
Figures 2(c) and 2(d) show contour diagrams of the error in the
�3–� planes with �0 = 0.05g and �0 = 0.2g, respectively. In
these calculations, we assume that all relaxation rates are zero.

In Fig. 2, the errors increase in particular regions. In
Fig. 2(a), the errors of X1,2, which are probabilities of the states
|1210〉, |2e10〉, |2211〉, and |e210〉 in the final state, increase
around � = 0,

√
2g. In Fig. 2(b), the errors of X3, which are

probabilities that the state of X3 becomes states except |1〉3

FIG. 2. (Color online) (a) � dependence of the errors. The error
probability of the CMAP with �0 = 0.05g, τ1 = 6.01σ , τ2 = 3.99σ ,
and �3 = 10g is plotted. Errors of X1,2 represent a probability of
the states |1210〉, |2e10〉, |2211〉, and |e210〉 in the final state, and
errors of X3 represent a probability that the state of X3 becomes states
except |1〉3 in the final state. (b) �3 dependence of the errors. The
probabilities are plotted with � = 10g. The other conditions are the
same as those for (a). (c) Contour diagram of the error with �0 =
0.05g, τ1 = 6.01σ , and τ2 = 3.99σ . The contour diagram shows the
error in the �3–� plane. (d) Contour diagram of the error with �0 =
0.2g, τ1 = 6.03σ , and τ2 = 3.97σ .

TABLE I. Equations corresponding to the labels in Fig. 2(c).

(a − 1,2) � = 0,
√

2g

(b − 1,2,3,4) �3 = 0,g,
√

2g,
√

10g

(c − 1,2,3) � + �3 = g,
√

2g,
√

10g

(d − 1,2,3,4,5,6,7) � − �3 = 0, ± g, ± √
2g, ± √

10g

(e − 1,2,3) 2� + �3 = g,
√

2g,
√

10g

in the final state, increase around �3 = 0,g,
√

2g,
√

10g, and
the errors of X1,2 increase around �3 = g,

√
2g. There are the

19 regions in which the errors increase in Figs. 2(c) and 2(d).
The regions in Fig. 2(c) are represented by the equations in
Table I. All of the 19 regions are explained by analytic solution
of second-order perturbation theory (see Appendix C).

The CMAP shows low error in �,�j � g. In Figs. 2(c)
and 2(d), there are also low-error regions avoiding the
resonance conditions in �,�j < g. In particular, there are
large regions of low error in Fig. 2(c), in which �0 is small
and the gate time is long.

Actual systems have other error sources such as the energy
relaxation or the cavity relaxation. In the above, the relaxations
are neglected. We investigate the resonance conditions of
unwanted interactions with the relaxations as follows. Figure 3
shows the �3 dependences of the error of the CMAP with
� = 10g for various relaxation rates.

Although there are the relaxations in the system, the peaks
of errors are still around the resonance conditions, in particular,
the errors suppressed even in �3 < g regions by avoiding the
resonance conditions.

V. DISCUSSION

We investigated the CMAP including the unwanted in-
teractions. Although there are the unwanted interactions,
the CMAP shows high fidelity by avoiding the resonance
conditions. The high-fidelity regions in �,�j � g are trivial
regions because the unwanted interactions become small
as frequency differences of transitions become large. The
high-fidelity regions in �,�j < g are nontrivial and useful
regions to implement many qubits in a finite-frequency range.

FIG. 3. (a) �3 dependence of the error for various γ with
�0 = 0.05g, τ1 = 6.01σ , τ2 = 3.99σ , � = 10g, and κ = 0. The
calculations are based on 104 times Monte Carlo simulation. (b)
�3 dependence of the error for various κ with γ = 0. The other
conditions are the same as those for (a).
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A strong-coupling system, which satisfies the condition of
γ,κ � g, is required to reduce gate errors well in these high-
fidelity regions. The system should have the long-coherence
time, since the gate time should be long to suppress the
nonadiabatic effects. However, the strong-coupling system
with long-coherence time has not been realized. We discuss
directions of development to realize the FDQC using two
actual systems which have long-coherence times.

The first system is a rare-earth-ion-doped crystal
Pr3+:Y2SiO5 (Pr:YSO), which has long-coherence time and is
a promising system for quantum information devices [18–21].
In the Pr:YSO, the inhomogeneous broadening between a pair
of hyperfine sublevels of the lower states of the 3H4–1D2

transitions is 70 kHz, and the homogeneous broadening
between 3H4–1D2 is several kHz [22]. Therefore, many
qubits can be implemented using the transitions. However,
the high-fidelity quantum gates cannot be performed even
in any frequency regions avoiding the resonance condition,
since actual relaxation parameters κ/g and γ /g are large.
In our previous experimental study, κ/2π of a sample is
1.3 MHz [23], and g/2π of another sample is 15 kHz [24]. The
energy-relaxation rate γ /2π is about 1 kHz [25]. A cavity with
lower loss and smaller mode volume is required to realize the
FDQC using the Pr:YSO. If a Pr:YSO system with a cavity of
10−6 loss per round trip and the mode waist of wavelength scale
is developed, then the parameters become κ/2π ∼ 1 kHz [26]
and g/2π ∼ 1 MHz [27] (κ/g ∼ γ /g ∼ 0.001), and the gate
errors are reduced to less than 10−2 even in the � < g.

The second system is nitrogen-vacancy centers in a dia-
mond (NV centers). NV centers have long-coherence time
at room temperature, and are also promising systems of
the quantum information devices [28]. A system of NV
centers coupled to a photonic crystal cavity with g/2π =
2.25 GHz, γ /2π = 0.013 GHz, and κ/2π = 0.16 GHz
(κ/g ∼ 0.07, γ /g ∼ 0.006) has been reported [29]. Improve-
ment of g and κ is required to reduce gate errors to 10−2

in the �,�j < g region. There are high-fidelity regions in
the �3 > g region of Fig. 3 even for the above parameters.
However, it is difficult to implement the FDQC in the systems
because the homogeneous broadening of optical transitions of
NV centers is larger than the inhomogeneous broadening of
the spin levels. For example, the homogeneous broadening
is about 50 MHz, and the inhomogeneous broadening is
5 MHz in Ref. [30]. The inhomogeneous broadening can be
increased by an increase of the density of the NV centers,
but the coherence time will be decreased. A different method
to increase the inhomogeneous broadening is required to
realize the FDQC using the NV centers. The inhomogeneous
broadening is increased by the magnetic-field gradient because
the resonance frequency of each NV center is split by the
magnetic field [31]. If we apply the magnetic-field gradient of
50 mT per 1 μm, inhomogeneous broadening within 1 μm will
be increased to over 1 GHz, which is larger than homogeneous
broadening. Here, 1 μm is a typical size of the mode waist
where NV centers coupled to a cavity are distributed, when
the waist is reduced to the order of the wavelength of the
mode.

The conditions for the high-fidelity FDQC obtained by our
investigation will be useful when the FDQC is realized by the
above development.

We showed numerical analyses only on a three-qubit
system. The scheme to find the high-fidelity region can also
be applied to the case of many-qubit systems. A candidate
of high-fidelity regions can be found in regions avoiding the
resonance conditions [Eqs. (4) and (5)] which are obtained
analytically even in the many-qubit systems.

VI. SUMMARY

We investigated the major gate errors of the FDQC
using adiabatic passage. The gate errors are generated by
unwanted interactions because qubits are irradiated regardless
of their positions. We analytically found out the resonance
conditions in which the gate errors increase. We showed
that high-fidelity gates are practicable, avoiding the resonance
conditions even in �,�j < g. This means that we obtained a
useful implementation scheme which enables many qubits to
be selectively manipulated in the FDQC.

APPENDIX A: THE INTERACTION PICTURE
HAMILTONIAN

We explain the interaction picture Hamiltonian [Eq. (2)] of
the cavity mediated adiabatic passage (CMAP). The model of
the CMAP is described in Fig. 1. In Fig. 1(a), each four-level
system Xi has states |0〉i , |1〉i , |2〉i , and |e〉i , and the energies of
states |j 〉i are �ω

(i)
j . The cavity mode and the operation lights

L1,2 have frequencies fc and f1,2, respectively.
The Schrödinger picture Hamiltonian of the CMAP includ-

ing unwanted interactions in the rotating-wave approximation
is described by

HS(t)/� =
N∑

k=1

⎡
⎣ ∑

j=0,1,2,e

ω
(k)
j σ

(k)
jj − iγ σ (k)

ee

⎤
⎦

+ [2πfca
†a − iκa†a]

+
N∑

k=1

[
gaσ

(k)
e2 + �1(t)e−i2πf1t σ

(k)
e1

+�2(t)e−i2πf2t σ
(k)
e1 + H.c.

]
. (A1)

σ
(k)
ab is an operator which transfers the state of Xk from |b〉k

to |a〉k . a and a† are annihilation and creation operators of
the cavity mode, respectively. Each term of the Hamiltonian
represents the energy or interaction described below. The
first term represents the energy of states and the energy
relaxation of Xk . The second term represents the energy
of the cavity mode and the cavity relaxation. The third
term represents interactions between the cavity mode and
|2〉k − |e〉k transitions, between L1 and |1〉k − |e〉k transitions,
and between L2 and |1〉k − |e〉k transitions.

There are various representations of the interaction picture
Hamiltonian, which is eiH0t/�(HS − H0)e−iH0t/�, according to
H0. When two lasers interact with a transition, we cannot take
a standard picture in which the interaction picture Hamiltonian
has the energy terms including detuning parameters and does
not have the oscillation terms. When the Hamiltonian has
energy terms and oscillation terms, it is difficult to evaluate the
probabilities of nonadiabatic transitions by the perturbation
theory. Therefore, we take a representation in which the
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interaction picture Hamiltonian has oscillation terms including
detuning parameters and does not have energy terms. H0 is
defined by

H0/� ≡
N∑

k=1

⎡
⎣ ∑

j=0,1,2,e

(
ω

(k)
j σ

(k)
jj

)
⎤
⎦ + 2πfca

†a (A2)

to take such representation. The interaction picture Hamilto-
nian H described by Eq. (2) is obtained by this H0 and the
following relations:

ω(1)
e − ω

(1)
1 = 2πf1, (A3)

ω(1)
e − ω

(1)
1 = 2πf2 + �, (A4)

ω(2)
e − ω

(2)
1 = 2πf1 − �, (A5)

ω(2)
e − ω

(2)
1 = 2πf2, (A6)

ω(j )
e − ω

(j )
1 = 2πf1 + �j, (A7)

ω(j )
e − ω

(j )
1 = 2πf2 + � + �j, (A8)

ω(k)
e − ω

(k)
2 = 2πfc, (A9)

for (k = 1,2, . . . ,N ) and (j = 3,4, . . . ,N).
H does not have energy terms and there are detuning

parameters only in the oscillation terms. The oscillation terms
result from the unwanted interactions for the CMAP. We
can analytically evaluate the probabilities of nonadiabatic
transitions using this representation. In Sec. III, we analytically
evaluate the resonance conditions by perturbation theory
using H .

APPENDIX B: THE EIGENVALUES OF THE
HAMILTONIAN

Equations (6), which are the eigenvalues of H1 in Eq. (2),
are derived as follows. This derivation is based on Refs. [16]
and [17].

In the case of �1,2 � g, H1 is described by

H1/� =
N2∑
i=1

(
gaσ

(i)
e2 + ga†σ (i)

2e

)
. (B1)

H1 operates in the two-state systems |2〉i − |e〉i (i =
1,2, . . . ,N2), where N2 denotes the number of Xi’s which have
population in the |2〉 or |e〉 during the CMAP. The number
of Xi’s whose states are |e〉i is ne, and the photon number
of the cavity mode is nc. The total number of excitations is
Ne = ne + nc. N2 depends on N , Ne, and the initial state of
the CMAP. For example, when the initial state is |1210〉 in the
three-qubit system, N2 is 2 for Ne = 1, and N2 is 3 for Ne = 2.
The eigenvalues of (

∑
i σ

(i)
e1 )2 + (

∑
i σ

(i)
1e )2 + (

∑
i σ

(i)
ee )2 are

denoted by s(s + 1), therefore, eigenvalues of
∑

i σ
(i)
ee are

ne/2 − s. The eigenstates of H1 can be classified according to
Ne and s, and the eigenstates are described by |s,ne,nc〉. The
states generated by the operators in H1 from the eigenstates

are described by

gσe1a|s,ne,nc〉
=

√
(s − ne/2)(s + ne/2 + 1)

√
ncg|s,ne + 1,nc − 1〉,

(B2)

gσ1ea
†|s,ne,nc〉

=
√

(s + ne/2)(s − ne/2 + 1)
√

nc + 1g|s,ne − 1,nc + 1〉.
(B3)

The coefficients are called Clebsch-Gordan coefficients. In the
operations by the operators, Ne is conserved. The eigenvalue
of each case of Ne and s is described as follows.

1. The case of Ne = 1 and s = N2/2

The ground state in the case of Ne = 1 and s = N2/2 is
|N2/2,0,1〉, and the state which can be generated by H1 is
only |N2/2,1,0〉. The matrix representation of H1 is described
by

H1/� =
(

0
√

N2g√
N2g 0

)
, (B4)

with base of (|N2/2,0,1〉,|N2/2,1,0〉). The eigenvalues which
are obtained by diagonalization of the matrix are described by

En/� = ±
√

N2g. (B5)

In the case of N = 3, the eigenvalues are En/� = ±√
2g

because of N2 = 2.

2. The case of Ne = 1 and s = N2/2 − 1

The ground state in the case of Ne = 1 and s = N2/2 −
1 is |N2/2 − 1,1,0〉. When the operators in H1 [Eq. (B1)]
operate the state, the state becomes zero vector. Therefore, the
eigenvalue En is 0.

3. The case of Ne = 2 and s = N2/2

The ground state in the case of Ne = 2 and s = N2/2 is
|N2/2,0,2〉, and the states which can be generated by H1 are
|N2/2,1,1〉 and |N2/2,2,0〉. The matrix representation of H1

is described by

H1/� =
⎛
⎝ 0

√
2N2 0√

2N2 0
√

2 (N2 − 1)g
0

√
2 (N2 − 1)g 0

⎞
⎠ , (B6)

with base of (|N2/2,0,2〉,|N2/2,1,1〉,|N2/2,2,0〉). The eigen-
values which are obtained by diagonalization of the matrix are
described by

En/� = 0,±
√

4N2 − 2g. (B7)

In the case of N = 3, the eigenvalues are En/� = 0,±√
10g

because of N2 = 3.

4. The case of Ne = 2 and s = N2/2 − 1

The ground state in the case of Ne = 2 and s = N2/2 − 1
is |N2/2 − 1,1,1〉, and the state which can be generated by
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H1 is only |N2/2 − 1,2,0〉. The matrix representation of H1 is
described by

H1/� =
(

0
√

N2 − 2g√
N2 − 2g 0

)
, (B8)

with base of (|N2/2 − 1,1,1〉,|N2/2 − 1,2,0〉). The eigenval-
ues which are obtained by diagonalization of the matrix are
described by

En/� = ±
√

N2 − 2g. (B9)

In the case of N = 3, eigenvalues are En/� = ±g because of
N2 = 3.

5. The case of Ne = 2 and s = N2/2 − 2

The ground state in the case of Ne = 2 and s = N2/2 −
2 is |N2/2 − 2,2,0〉. When the operators in H1 [Eq. (B1)]
operate the state, the state becomes zero vector. Therefore, the
eigenvalue En is 0.

The eigenvalues in the case of Ne � 3 can be derived by a
similar calculation.

APPENDIX C: DERIVATION OF TABLE I

The regions represented by the equations in Table I are
explained by the resonance conditions as follows. When the
initial state is fixed to the state |1210〉, H can generate
only the states of (Ne,N2) = (1,2),(2,3) in the states of

Ne � 1. Therefore, the eigenvalues En contributing to the
resonance conditions are only ±√

2g (Ne = 1, s = N2/2 =
1), 0, ± √

10g (Ne = 2, s = N2/2 = 3/2), and ±g (Ne = 2,
s = N2/2 − 1 = 1/2) in Eqs. (6). The resonance conditions
obtained from C(1)

n [Eqs. (4)] using the above eigenvalues
and E0 = 0 are � = 0,g,

√
2g,

√
10g, �3 = 0,g,

√
2g,

√
10g,

and � + �3 = 0,g,
√

2g,
√

10g in the three-qubit system. In
the case of �3 � g, the state of X3 almost never transfers
from a state |1〉3, and the states of N2 = 3 are almost
never generated. Therefore, the error does not increase at
� = g,

√
10g corresponding to the eigenvalues of N2 = 3

in Fig. 2(a). The resonance conditions obtained from C(2)
n

[Eqs. (5)] have a smaller contribution than the conditions
obtained from C(1)

n . However, when multiple conditions of
Eqs. (5) are satisfied simultaneously, the contributions are
not negligible. The conditions of such case are described
by

(En − E0)/� = 0,±�,±�j,±2�,±2�j,±(� − �i),

±(2� + �j ),±(� + 2�j ),±2(� + �j ).

(C1)

Some of the equations in Table I are explained by Eq. (C1). All
of the 19 regions in which the errors increase in Fig. 2(c) are
explained by analytic solution of second-order perturbation
theory as above.
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