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We exploit and clarify the use of random matrix theory for the calculation of the entanglement entropy of
free Fermi gases. We apply this method to obtain analytic predictions for Rényi entanglement entropies of a
one-dimensional gas trapped by a harmonic potential in all the relevant scaling regimes. We confirm our findings
with accurate numerical calculations obtained by means of an ingenious discretization of the reduced correlation
matrix.
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I. INTRODUCTION

During the past decade entanglement became a very
powerful tool for the study of many-body quantum systems,
especially for the identification of critical and topological
phases of matter (see, e.g., Refs. [1–3] as reviews). In this
respect the most studied quantity is surely the (von Neumann
or Rényi) entanglement entropy. In terms of the reduced
density matrix ρA = TrĀρ of a subsystem A (Ā denotes the
complement of A), the order-q Rényi entropy is defined as

Sq = 1

1 − q
ln Trρq

A, (1)

that in the limit q → 1 reduces to the most studied von
Neumann entropy S1. The knowledge of the Rényi entropies
for arbitrary values of q contains much more information than
the sole S1 since from them one can extract the full spectrum
of ρA [4].

From the definition and from the highly nonlocal character
of Eq. (1), it can appear extremely difficult to calculate the
entanglement entropy even for the simpler models. However,
a number of advanced analytic techniques have been developed
in such a way to have a rather precise characterization in many
different classes of systems. These include one-dimensional
conformal field theories [5–7], spin chains mappable to free
fermions thanks to Toeplitz matrix techniques [7–12], higher-
dimensional lattice fermions with Widom conjecture [13],
holographic techniques [14], renormalization groups [15], and
many more. The entanglement entropies are also a crucial
concept to understand the scaling and the working [16] of
matrix product states algorithms [17].

In this paper we discuss and develop the connection
between the entanglement entropies and random matrix theory
in free one-dimensional Fermi gases. A similar connection
was first highlighted in lattice models in Ref. [18] and further
developed in [10]. In two recent papers [19,20], random
matrix theory has been used to calculate the particle number
distribution (aka the full counting statistics) in a finite length
interval, but not for the entanglement entropies. As we shall
see, this approach makes it possible to clarify several concepts
already present in the literature and provides also other results,
such as the scaling of the entanglement entropy in a free
fermion gas confined by a harmonic potential, a problem that
so far has been studied only numerically [21].

The paper is organized as follows. In Sec. II we briefly
review the standard methods for the calculation of the
entanglement entropy in Fermi gases and we establish the
correspondence with random matrix theory. In Sec. III we
use this formalism to analytically calculate the entanglement
entropies for a one-dimensional Fermi gas trapped in a
harmonic potential for an interval symmetric with respect to
the center of the trap. In the same section, we also confirm
our findings by accurate numerical calculations. Finally, in
Sec. IV we draw our conclusions and we discuss some possible
generalizations and open issues. Some details about the density
of eigenvalues of the overlap matrix have been relegated to the
Appendix.

II. FREE FERMION GASES AND RANDOM MATRIX
THEORY

Let us consider a system of N noninteracting spinless
fermions with a discrete one-particle energy spectrum. The
many-body wave function �(x1, . . . ,xN ) is the Slater deter-
minant built with the one-particle eigenstates, i.e.,

�(x1, . . . ,xN ) = 1√
N !

det[φk(xn)], (2)

where the normalized wave functions φk(x) are the occupied
single-particle energy levels. The ground state �0(x1, . . . ,xN )
is obtained by filling the lowest N energy levels. The ground-
state two-point correlation function is

C(x,y) ≡ 〈c†(x)c(y)〉 =
N∑

k=1

φ∗
k (x)φk(y), (3)

where c(x) is the fermionic annihilation operator and the one-
particle eigenfunctions φk(x) are ordered according to their
energies. The Wick theorem makes it possible to write the
reduced density matrix of a spatial subsystem A as [22]

ρA ∝ exp

[
−

∫
A

dy1dy2c
†(y1)H(y1,y2)c(y2)

]
, (4)

where H = ln[(1 − C)/C] and the normalization constant is
fixed by requiring TrρA = 1.

It is useful to define the correlation matrix restricted to the
subsystem A,

CA(x,y) ≡ IA(x)C(x,y)IA(y), (5)
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with IA(x) being the characteristic function of the subsystem;
i.e.,

IA(x) =
{

1 x ∈ A,

0 x /∈ A.
(6)

A related quantity is the overlap matrix of the subsystem A

defined as [23,24]

Anm =
∫

A

dz φ∗
n(z)φm(z), n,m = 1, . . . ,N. (7)

As shown in Refs. [23,24], the overlap matrix and the restricted
correlation matrix have the same spectrum although they act
on different spaces. Using the quadratic form of the reduced
density matrix (4), the Rényi entanglement entropies can be
written in terms of the overlap or correlation matrices as

Sq = 1

1 − q
Tr ln[Aq + (1 − A)q], (8)

Sq = 1

1 − q
Tr ln

[
C

q

A + (1 − CA)q
]
. (9)

In terms of the eigenvalues ai , common to the overlap and
reduced correlation matrices, the entanglement entropy is

Sq =
N∑

i=1

eq(ai), eq(x) ≡ 1

1 − q
ln[xq + (1 − x)q]. (10)

At this point there are two possible roads for a numerical
evaluation of the entropy. The first possibility is to explicitly
construct the overlap matrix, find its eigenvalues numerically,
and from them compute Sq . This numerical approach has been
effectively applied for the determination of the entanglement
entropy of Fermi gases in many equilibrium [21,23–29] and
nonequilibrium situations [29–32], as well as to the related
statistics of particle number in the subsystem [19,20,33–37]
(we mention that the entanglement entropies of trapped lattice
gases were numerically studied in [38]). A second possibility
is to extract the spectrum from the reduced correlation
matrix. While at first this can sound awkward, because we
should work with a continuous kernel, some very effective
discretizations have been developed [39], which allow a
much faster computation of the entropies especially when the
integrals defining the elements of the overlap matrix (7) cannot
be analytically performed. In Fig. 1 we report the numerically
evaluated entanglement entropy S1 for the model studied in this
paper which is a Fermi gas trapped in a harmonic potential.
We only consider the case in which the subsystem is the
symmetric interval A = [−�,�]. We calculated the spectrum
of CA by using the Gauss-Legendre discretization proposed
in Ref. [39]. We found that in order to achieve a precision
of about 10−8 on the entropy, the discretized matrix should
have a dimension growing linearly in N , which is the same as
the overlap matrix, but its elements must not be calculated
by numerical integration. The main reason for this high
efficiency is that convergence is exponential in the number
of steps on Gauss-Legendre discretization [39]. We checked
for several values of N that the spectrum of the reduced
correlation matrix obtained in this way is the same as the
one of the overlap matrix, but its numerical determination

FIG. 1. (Color online) Entanglement entropy S1 for a Fermi gas
with N particles trapped in a harmonic potential. We consider the
bipartition in which the subsystem A is the interval A = [−�,�].
We report the entanglement entropy as function of ζ = �/

√
N for

different values of N . The reported data are obtained from an
ingenious discretization of Eq. (9).

is much faster. Obviously, every time the overlap matrix
is analytically evaluable (as, e.g., in the cases considered
in [24]), there is no advantage in this procedure and the overlap
matrix method remains favorable. We mention that the results
reported in Fig. 1 are equivalent to those already reported in
Ref. [21].

A. The connection with random matrix theory

The connection with random matrix theory [19,20] starts
from the definition of the characteristic polynomial of A (or
CA),

DA(λ) =
N∏

i=1

(λ − ai) = det[λI − A], (11)

which is a standard tool in the analytic calculation of the
entanglement entropy [8,10]. This characteristic polynomial
DA(λ) can be straightforwardly written as a random matrix
average. Indeed, by definition we have [using the completeness
of the eigenfunctions φm(z) on the full line]

DA(λ) = det

[
λ

∫ ∞

−∞
dzφ∗

n(z)φm(z) −
∫

A

dzφ∗
n(z)φm(z)

]

= det

{∫ ∞

−∞
dz[λ − IA(z)]φ∗

n(z)φm(z)

}
. (12)

At this point we can use the Cauchy-Binet identity,

∫
dx1 · · · dxN det[fi(xj )] det[gk(xl)]

N∏
i=1

h(xi)

= N ! det

[∫
dxh(x)fi(x)gj (x)

]
, (13)
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to rewrite DA(λ) as

DA(λ) = 1

N !

∫
dx1 · · · dxN det[φi(xj )] det[φk(xl)]

×
N∏

i=1

[(λ − IA(xi)]

=
∫

dx1 · · · dxN |�0(x1, . . . ,xN )|2
N∏

i=1

[λ − IA(xi)],

(14)

where we recognized �0(x1, . . . ,xN ) = det[φk(xn)]/
√

N !.
Thus, every time |�0(x1, . . . ,xN )|2 corresponds to a random
matrix average 〈·〉RM, when the xi are related to eigenvalues of
a random matrix (see below), the above equation is equivalent
to

DA(λ) =
〈

N∏
i=1

[λ − IA(xi)]

〉
RM

. (15)

We list and analyze in the following a number of interesting
random matrix averages for one-dimensional Fermi gases, but
first we proceed to further simplifications and interpretation of
the above average. We also remove the subscript RM from the
averages.

To this aim, let us introduce the operator counting particle
number in the subsystem A [here n̂(x) = c†(x)c(x) is the
particle density],

NA =
N∑

i=1

IA(xi) =
∫

A

n̂(x)dx, (16)

and its generating function

χ (s) ≡ 〈e−sNA〉 =
〈

N∏
i=1

e−sIA(xi )

〉
. (17)

[Often χ (is) is called generating function, but this is not
important for what follows.] Since

e−sIA(x) =
{
e−s x ∈ A,

1 x /∈ A,
(18)

we have

e−sIA(x) = e−sIA(x) + [1 − IA(x)] = 1 − (1 − e−s)IA(x),

(19)

and then

χ (s) =
〈

N∏
i=1

[1 − (1 − e−s)IA(xi)]

〉

= (1 − e−s)N
〈

N∏
i=1

[(
1

1 − e−s

)
− IA(xi)

]〉
. (20)

Setting

λ = 1

1 − e−s
⇒ e−s = λ − 1

λ
, (21)

we have 〈(
λ − 1

λ

)NA
〉

= 1

λN

〈
N∏

i=1

(λ − IA(xi))

〉
. (22)

Thus, plugging the above equation into Eq. (15), we have

DA(λ) = λNχ

(
e−s = 1 − 1

λ

)
= λN

〈(
λ − 1

λ

)NA
〉
. (23)

This is a very compact expression for the characteristic
polynomial valid for arbitrary number of particles N and
arbitrary random matrix average. Although it appeared (in
a more or less explicit form) a few times in the literature, its
general validity has not been appreciated enough.

In order to calculate the entropies, let us introduce the
resolvent

F (λ) =
N∑

i=1

1

λ − ai

= Tr
1

λI − A
, (24)

which is related to DA(λ) as

F (λ) = D′
A(λ)

DA(λ)
= d

dλ
ln DA(λ). (25)

Using Eq. (23) for DA(λ) we have after simple algebra

F (λ) = N

λ
+ 1

λ(λ − 1)

〈
NA

(
1 − 1

λ

)NA
〉

〈(
1 − 1

λ

)NA
〉 . (26)

Given that the entropies are given by Eq. (10), we immediately
have

Sq =
∫

C

dλ

2πi
eq(λ) F (λ), (27)

where the contour C in the complex λ plane goes counter-
clockwise over the rectangle: [0,1] × [−ε,ε], as shown in
Fig. 2, with ε → 0+ eventually. Note that the function eq(λ)
has branch cuts for Re(λ) < 0 and Re(λ) > 1 (this is equivalent
to the analogous formulas for spin chains [8,10]). Substituting
the definition of F (λ) from Eq. (24) on the right-hand side

a i

λ plane

1

C
0

FIG. 2. (Color online) The rectangular counterclockwise contour
C in the complex λ plane encloses the poles at ai’s shown by dots.
The left vertical line of C is to right of λ = 0 and the right vertical
line is to the left of λ = 1.
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of Eq. (27) and calculating the residues around the poles
0 � ai � 1, gives this result immediately.

Plugging the expression of F (λ) from Eq. (26) into Eq. (27),
one arrives at a rather compact exact expression for the entropy,
valid for all N ,

Sq = 1

(1 − q)

1

2πi

∫
C

dλ

λ(λ − 1)
ln[λq + (1 − λ)q]

×
〈
NA

(
1 − 1

λ

)NA
〉

〈(
1 − 1

λ

)NA
〉 . (28)

The term N/λ in Eq. (25) does not contribute to the entropy Sq

because, inside the integration contour, it provides an analytic
function with zero residue. By writing further, 1 − 1/λ = e−s ,
one can write a slightly more compact expression for the ratio〈

NA

(
1 − 1

λ

)NA
〉

〈(
1 − 1

λ

)NA
〉 = − ∂

∂s
ln[〈e−sNA〉]. (29)

Finally, these expressions allow us to derive the asymptotic
large N density of eigenvalues ρ(a) of the overlap matrix (or
reduced correlation matrix) which is defined by the implicit
relation

N

∫
da

ρ(a)

λ − a
= F (λ), (30)

leading to

ρ(a) = − 1

π
lim

ε→0+
ImF (a + iε). (31)

We discuss explicitly the density of eigenvalues ρ(a) for a
trapped Fermi gas in the Appendix.

B. Gaussian distribution

An immediate consequence of the exact formula in Eq. (28)
is the well-known relation [33,40–43] between the variance of
NA and entropies in the case the random variable NA is a pure
Gaussian with mean 〈NA〉 and variance VNA

, i.e.,

NA = 〈NA〉 + √
VNA

N (0,1), (32)

whereN (0,1) is a standard normal Gaussian variable with zero
mean and unit variance. Indeed, using the Gaussian property
of N (0,1), it follows immediately that

〈e−sNA〉 = e−s 〈NA〉+ s2

2 VNA . (33)

Taking logarithm and deriving with respect to s as in Eq. (29)
we obtain〈

NA

(
1 − 1

λ

)NA
〉

〈(
1 − 1

λ

)NA
〉 = 〈NA〉 + VNA

ln

(
1 − 1

λ

)
. (34)

Plugging this expression in Eq. (28) gives

Sq = 1

(1 − q)

1

2πi

∫
C

dλ

λ(λ − 1)
ln[λq + (1 − λ)q]

×
[
〈NA〉 + VNA

ln

(
1 − 1

λ

)]
. (35)

The contour integral with the constant term 〈NA〉 vanishes
since the integrand in analytic inside the contour (which does

not include the poles at λ = 0 and λ = 1). This leaves us with

Sq = VNA

(1 − q)

1

2π i

∫
C

dλ

λ(λ − 1)

× ln[λq + (1 − λ)q] ln

(
1 − 1

λ

)
, (36)

which is an exact expression for entropy when NA is a pure
Gaussian. The contour integral in Eq. (36) can be performed
exactly in the limit ε → 0+. The contributions from the vertical
portions vanish as ε → 0+ and the contributions from the
horizontal portions gives a real integral over λ ∈ [0,1] as
follows:

Sq = − VNA

π (1 − q)

∫ 1

0

dx

x(x − 1)

× ln[xq + (1 − x)q] Im

[
ln

(
1 − 1

x + iε

)]
ε→0+

.

(37)

Using Im[ln(1 − 1
x+iε

)]ε→0+ = π then gives the final result for
the entropy, given that NA is a pure Gaussian,

Sq = − VNA

(1 − q)

∫ 1

0

dx

x(x − 1)
ln[xq + (1 − x)q]

= π2

6

(
1 + 1

q

)
VNA

. (38)

Although this relation between entropy and fluctuations is well
known in the literature [33,43], we find the above derivation
very instructive from the random matrix point of view.

C. Examples of random matrix ensembles and corresponding
fermionic systems

For a Fermi gas in a ring of length L with periodic boundary
conditions, the normalized one-particle wave functions are
plane waves φk(x) = e2πikx/L/

√
L and the corresponding

many-body wave function �0 gives the circular unitary
ensemble (CUE). This random matrix ensemble has been
already studied in the context of the entanglement entropy
of spin chains [10,18] and the these results have been exported
to the Fermi gas in [25]. In the case when A is an interval of
length � embedded in a finite system of length L, the leading
and subleading behavior for the entropy has been obtained
in [25]. The asymptotic large N behavior of the entropies for
fixed ratio �/L and at finite density n = N/L (obtained by
means of the Fisher-Hartwig conjecture) is [23,25]

Sq = 1

6

(
1 + 1

q

)
ln

(
2N sin π

�

L

)
+ Eq + o(N0), (39)

and the constant Eq is given by [8]

Eq =
(

1 + 1

q

) ∫ ∞

0

dt

t

[
1

1 − q−2

×
(

1

q sinh t/q
− 1

sinh t

)
1

sinh t
− e−2t

6

]
. (40)

Random matrix techniques are instead a needed tool to access
some of the corrections to the above leading behavior; see
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Ref. [10]. More general results for the case when A is
composed of disjoint intervals are also known [25].

It is important to mention that the functional dependence
of the entanglement entropy (39) over � and L is a general
prediction of conformal field theory [6,45]. Indeed, from the
well-known infinite system result

Sq = 1

6

(
1 + 1

q

)
ln � + Eq, (41)

one obtains Eq. (39) with the replacement � → N sin π�/L,
as a consequence of the mapping from the plane to a cylinder
of circumference L [6]. This simple result is indeed valid for a
general correlation function of primary operators (in conformal
field theory the entanglement entropies for integer q are
correlation functions of the so-called twist fields [45,46]). This
is a very powerful prediction for the finite size-scaling function
of the entanglement entropy for homogeneous systems whose
analog in the presence of a harmonic potential will be
calculated in the following section.

For a gas of spinless fermions confined in the interval
[0,L] by a hard-wall potential, the one-particle wave functions

are φk(x) =
√

2
L

sin[πk x
L

]. In this case the corresponding

random matrix ensemble is O+(2N ) symmetric [18], but
the consequences of this correspondence have not been
studied in great detail yet. The asymptotic large N behavior
of the entanglement entropy has been obtained by using
a generalization of the Fisher-Hartwig conjecture (for spin
chains in [11] and for Fermi gases in [25]). For the Fermi gas
this asymptotic result reads

Sq = 1

12

(
1 + 1

q

)
ln

(
4N sin π

�

L

)
+ Eq

2
+ o(N0), (42)

where Eq is the same constant in Eq. (40). Also in this
case, the system being homogeneous, the finite-size scaling
function can be entirely obtained from boundary conformal
field theory [6,45].

III. ENTANGLEMENT ENTROPY FOR A QUADRATIC
TRAPPING POTENTIAL

Let us now consider free fermions in an external harmonic
potential (trap)

V (x) = 1
2mω2x2. (43)

For simplicity in the following, we set � = m = ω = 1. The
dependence over the trap frequency ω can easily be restored
using trap size-scaling arguments [44]. The single-particle
wave functions are

φn(x) = Hn−1(x)√
π1/22n−1(n − 1)!

e−x2/2 , n = 1, . . . N, (44)

where Hn(x) are the Hermite polynomials. The many-body
ground-state wave function is

�0(x1, . . . ,xN ) = Z−1
N

∏
i<j

(xi − xj )e− ∑N
i=1 x2

i /2, (45)

with ZN a normalization constant. Note that |�0(x1, . . . ,xN )|2
can be interpreted as the joint distribution of N real eigen-
values (x1, . . . ,xN ) drawn from the famous Gaussian unitary

ensemble (GUE) [47]. Using Christoffel-Darboux formula, the
two-point function (3) is

C(x,y) = N1/2

√
2

φN+1(x)φN (y) − φN (x)φN+1(y)

x − y
, (46)

which is the well-known GUE kernel.
The generating function for the particle number can be read

from Eqs. (11) and (23) and it is

χ (s) ≡ 〈e−sNA〉 = det[I + (e−s − 1)A], (47)

which, expanded to O(s2), yields the particle variance for an
arbitrary subsystem A,

VNA
=

∫
A

dx C(x,x) −
∫

A

dx

∫
A

dy |C(x,y)|2, (48)

which is VNA
= Tr[CA − C2

A] = Tr[A − A2].
For the harmonic potential, the entanglement entropy has

been studied numerically in [20,21] for several bipartition of
the systems. The particle-number variance has been studied
numerically in the above papers, but in the case when A is
a symmetric interval with respect to the center of the trap
of length 2�, i.e., A = [−�,�], random matrix theory allowed
for a full large N asymptotic analytical prediction for arbitrary
value of �. Three different scaling regimes have been identified,
which are [19]

VNA


⎧⎪⎨
⎪⎩

1
π2 ln[Nζ (2 − ζ 2)3/2],

√
2 − ζ ∼ O(1),

Ṽ2[
√

2N2/3(ζ − √
2)], ζ − √

2 ∼ O(N− 2
3 ),

exp[−2Nφ(ζ )], ζ − √
2 ∼ O(1),

(49)

where we introduced ζ = �/
√

N (notice that, in random matrix
literature, lengths are always normalized to

√
N as, e.g., in

Ref. [19]) and the functions

Ṽ2(s) = 2
∫ ∞

s

KAi(x,x) − 2
∫

[s,∞]2
dxdy|KAi(x,y)|2,

(50)

φ(ζ ) = ζ
√

ζ 2 − 2

2
+ ln

ζ −
√

ζ 2 − 2√
2

,

where KAi(x,y) is the Airy kernel,

KAi(x,y) = Ai(x)Ai′(y) − Ai(y)Ai′(x)

x − y
. (51)

We mention that while the scaling behavior of the variance in
the intermediate edge regime in Eq. (49) was well known [48]
(see also [20]), the full scaling function Ṽ2(s) (and, in
particular, its asymptotic behaviors for both negative and
positive arguments) was computed explicitly only recently
in [19].

In the following we generalize the findings of Ref. [19]
to the entanglement entropy of a bipartite system in the case
when A is a symmetric interval around the center of the trap.

A. Bulk regime: ζ ∼ 1/N � 1

We first consider the so-called bulk regime when ζ ∼
1/N � 1, i.e., when the box size scales as the typical distance
between eigenvalues of GUE in the bulk, i.e., far away from
the edges ζ = √

2 of the semicircle. It is called bulk regime
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because the condition ζ � 1 ensures that the gas is almost
homogeneous on these length scales.

In this regime, when N → ∞, ζ → 0 but keeping the
product

z = 2
√

2 Nζ

π
(52)

fixed, it has been proved [48–51] that the random variable
NA is indeed a pure Gaussian with mean 〈NA〉 ≈ z and the
variance

VNA
≈ V (z), (53)

where the scaling function V (z) for all z was first computed
by Dyson and Mehta [52] and is given by (see, e.g.,
Appendix A.38 in Mehta’s book [47])

V (z) = z − 2
∫ z

0
dr (z − r)

[
sin(πr)

πr

]2

. (54)

This function has the asymptotics

V (z) → z − 1

2
z2 + O(z3), as z → 0,

→ 1

π2
ln(2πz) + (1 + γE)

π2
+ O(1/z), as z → ∞,

(55)

where γE = 0.577 215 . . . is the Euler constant. Thus, in
this range when z � 1, or equivalently 1/N � ζ � 1, the
variance behaves as

VNA
= 1

π2
ln(2

√
2 Nζ ) + CDM + O(1/z), (56)

where the constant CDM is known as the Dyson-Mehta constant
(see A.38 in the book [47]) and is given by

CDM = (1 + γE + ln 2)

π2
= 0.230 036 . . . (57)

At this point, one would be tempted to use the fact that,
in this bulk limit, NA is a pure Gaussian and, hence, Eq. (38)
should be valid. We anticipate that this is not the case, but
before let us see what the prediction for the entropy under this
assumption would be. In this case also Sq becomes a function
of the single scaling variable z [cf. Eq. (52)] given by

Sq
?= π2

6

(
1 + 1

q

)
V (z), (58)

with V (z) given in Eq. (54) for all z. In particular, for large
z, i.e., when ζ � 1/N but still ζ � 1, using the large z

asymptotics of V (z) in Eq. (56), one would get

Sq
?= 1

6

(
1 + 1

q

)
ln(2

√
2 Nζ ) + Cq + · · · , (59)

where the constant Cq is

Cq = π2

6

(
1 + 1

q

)
CDM. (60)

Notice the very simple dependence on q of this constant
compared with the fairly more complicated one in the case
of homogeneous systems [cf. Eq. (40)].

The reasoning above has an obvious flaw. Indeed, even if
in the bulk regime the distribution of NA becomes Gaussian,
by no means does this imply that the full entropy is given by
Eq. (59): The leading term in N of the entropy is clearly correct,
but non-Gaussian corrections to the distribution of NA, when
integrated to calculate the entropy in Eq. (28), can give rise
to terms of the order O(N0), which add up to Cq in Eq. (59).
Indeed, these higher cumulants of NA have been calculated
for a homogenous Fermi gas in [33] and their general relation
with the entropies have been studied in Refs. [33,41–43].

However, the subleading O(N0) term can be obtained by
a general physical requirement. Indeed, close to the center
of the trap, the system is almost homogeneous with density
n(0) = N1/2

√
2/π . Thus, we expect the entanglement entropy

to have the same value as a uniform system [cf. Eq. (39)], which
for small � is

Sq = 1

6

(
1 + 1

q

)
ln

(
2
N

L
π�

)
+ Eq + · · · . (61)

Replacing now the density N/L with n(0) = N1/2
√

2/π , we
have the prediction

Sq = 1

6

(
1 + 1

q

)
ln(2

√
2N1/2�) + Eq + · · · , (62)

which has the same leading term as Eq. (59), but presents
a different additive constant. The two values Cq and Eq are
indeed relatively close; for example, at q = 1 they are C1 =
0.756 788 . . . and E1 = 0.726 067 . . . .

In order to confirm the correctness of the previous reason-
ing, we compute numerically the entanglement entropy in this
bulk regime. In Fig. 3 we report the result for q = 1 (but we
checked also for other values of q). It is evident that the data
in this regime converges quickly (increasing N ) to Eq. (62).
It is also clear that changing the constant term from E1 to C1

moves the curve up of about 0.03, which is a very visible shift
on the vertical scale, as shown explicitly in Fig. 3.

FIG. 3. (Color online) Numerical evaluation of the entanglement
entropy S1 from the discretization of Eq. (9) for several values of N

and � in the bulk regime � � √
N . By increasing N the data approach

the asymptotic prediction (62) in a nonmonotonic way. The dotted
line is Eq. (59), in which the additive constant has not been fixed to
its correct value.
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While the prediction in this bulk regime has been obtained
on the sole basis of a scaling argument, this will not be the case
for the intermediate regime described in the following section.
However, having established the correct scaling behavior of
the entanglement entropy in this regime, where the final result
was known a priori, will be a very useful guide in the following
section.

B. Intermediate regime: ζ ∼ O(1) <
√

2 − O(N2/3)

The question we answer in this section is what happens
when one relaxes the upper limit ζ � 1, to ζ ∼ O(1) <√

2 − O(N2/3), i.e., still far from the edge-scaling regime.
In this regime, the full large deviation function associated with
the distribution of NA was computed recently in [19] using a
Coulomb gas method. From this large deviation function, the
variance of NA can then be read off and it was found to be a
function of the single scaling variable [19]

� = N ζ (2 − ζ 2)3/2. (63)

The regime ζ ∼ O(1) <
√

2 − O(N2/3) translates into the
regime � � 1 and it was shown recently [19] that the variance
VNA

of NA behaves as

VNA
= 1

π2
ln(�) + CDM + O(1/�). (64)

While the leading term was found analytically in Ref. [19],
the subleading constant CDM was found, by fitting numerical
data, to be the same as the Dyson-Mehta constant in Eq. (57);
see also [21]. Note that, in the limit ζ � √

2, using Eq. (63),
the result in Eq. (64) reduces precisely to the bulk result in
Eq. (56), as it should.

The question is as follows: Can we use this result for the
variance to compute the entropy Sq? The main point is that
the distribution of NA may no longer be a pure Gaussian
and the entropy may have non-Gaussian corrections. Had the
distribution been purely Gaussian with variance VNA

given in
Eq. (64), we could use Eq. (38) to obtain the prediction

Sq
?= 1

6

(
1 + 1

q

)
ln[N ζ (2 − ζ 2)3/2] + Cq + · · · , (65)

where the constant Cq is given in Eq. (60). The prediction
in Eq. (65) is valid assuming NA is purely Gaussian with
variance VNA

given in Eq. (64). However, the distribution of
NA in this intermediate regime is not purely Gaussian and
there are logarithmic corrections [19]. While these logarithmic
corrections do not modify the leading term on the right-hand
side of Eq. (65), they are expected to modify the subleading
ζ -independent constant term Cq (as in the bulk regime).
However, we can fix the constant term by requiring that, for
small ζ , Eq. (65) reduces to the bulk one (62), obtaining

Sq = 1

6

(
1 + 1

q

)
ln[N ζ (2 − ζ 2)3/2] + Eq + o(N0). (66)

This new prediction is one of the main results of this paper.
Equation (66) is indeed an expansion for � � 1 of the scaling
function for the entropy, in which � has been replaced with
its actual value (63).

In Ref. [21], on the basis of the numerical data, it was
conjectured that the Rényi entanglement entropies could have

FIG. 4. (Color online) Subtracted von Neumann entanglement
entropy �S1 = S1 − (ln N )/3 as function of ζ = �/

√
N for several

values of N up to N = 160. By increasing N the data approach
the asymptotic curve (66) in a nonuniform way as function of ζ . The
dashed line is the conjecture in Eq. (67), which is very close to the
actual asymptotic curve everywhere except close to the edge.

been described by the asymptotic form

Sq ≈ 1

6

(
1 + 1

q

)
ln

(
4N

π
sin

πζ√
2

)
+ Eq + · · · . (67)

The two scaling curves are indeed very close to each other, but
the numerical data for q = 1 fit slightly better the random
matrix prediction (66) compared to the above conjecture
(which, however, is very accurate; see Fig. 4). In Figs. 4 and 5
we report (for q = 1 and q = 2) the subtracted entropy

�Sq = Sq − 1

6

(
1 + 1

q

)
ln N, (68)

which, in the limit of large N , is a scaling function of
ζ = �/

√
N . Increasing N , the numerical data approach the

random matrix prediction (66). For q = 1 the agreement is

FIG. 5. (Color online) Subtracted second-order Rényi entropy
�S2 = S2 − (ln N )/4 as function of ζ = �/

√
N for several values

of N up to N = 160. The nonuniform approach to the asymptotic
result (66) is more evident than in the case q = 1.
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very clear, while for q = 2 there are oscillating corrections
to this asymptotic form (especially close to the edge), which
make the distinction between Eq. (66) and the conjecture (67)
impossible. As noticed already in Ref. [21] the approach
to the asymptotic result is nonuniform and gets very bad
close to the edge, but, as we show in the next section,
following Refs. [19,20], this apparently strange behavior can
be understood in terms of the different scaling at the edge.

We have been also trying to describe, at least phenomeno-
logically, the corrections to the asymptotic scaling behavior
in the regime with � � 1 by subtracting from the numerical
data the asymptotic prediction (66). However, as it should be
already clear from Fig. 5 with q = 2, at least two different
kinds of corrections affect the data. The first is present also
for small ζ in the form of small oscillations around the
asymptotic value. This is reminiscent of the nowadays well-
understood “unusual corrections” to the scaling [9,10,53–55],
which have been discussed in many different situations in
homogeneous systems in which case they scale like N−2/q (for
periodic systems). The second corrections instead originate
from the edge � ∼ √

2N and its form is derived in the next
section. However, in the intermediate regime with ζ ∼ O(1), a
quantitative description of the corrections to the scaling eludes
our understanding because the two effects are mixed up even
for large, but finite, N .

C. Edge regime

Close to the edge and in the limit of large N , the GUE
kernel (46) tends to the Airy kernel [cf. Eq. (51)] in terms of
the scaling variable [56,57],

s =
√

2N2/3(ζ −
√

2). (69)

Since we are considering a symmetric interval with respect to
the center of the trap, there are two edges which contribute
identically to the entanglement entropy. Thus, the large N

limit in the edge-scaling regime is simply the limit of Eq. (9),
i.e. [58],

Sq = 2

1 − q
Tr ln[(PsKAiPs)

q + (1 − PsKAiPs)
q], (70)

where Ps is the projector on the interval [s,∞]. This expression
can be readily calculated from the spectrum of the opera-
tor PsKAiPs , obtained by a proper discretization following
Ref. [39] (this procedure has been already applied for q = 1
in Ref. [20]). In Fig. 6 we report the obtained exact scaling
curve for Sq as a function of s and for various values of q.
It is evident that the scaling curves present oscillations whose
amplitude grows with increasing q. This behavior explains
why in the intermediate regime, the data for S1 in Fig. 4 are
much better described by the asymptotic curve than the data for
S2 in Fig. 5. The behavior of the amplitude of the oscillations
is reminiscent of the one of the unusual corrections to the
scaling [9,10,25], but, their origin being different, if there
is any connection between the two is still to be understood.
Furthermore a similar behavior has been observed also close
to the boundary of a hard-wall trap [25], but in that case the
theory of soft edge does not apply and the calculation of the
asymptotic curve needs different methods.

FIG. 6. (Color online) Universal scaling of the Rényi entangle-
ment entropy (always for A = [−�,�] in a trapped gas) close to the
edge. We report the asymptotic curves in Eq. (70) as function of the
scaling variable s in Eq. (69) for different values of q. We only report
the numerical data for N = 160 and q = 2.

Finally, we also checked that in the edge regime the
numerical data approach the asymptotic result. This was
already discussed in Ref. [20] for q = 1. Thus, in Fig. 6 we
limit to reporting a few data for q = 2 and N = 160. The
agreement between the numerics and the prediction (70) is
very good already for N = 160. We checked also other values
of q, but we do not report them in order to have a readable
figure.

D. Beyond the edge

There is clearly a third regime for ζ >
√

2, in which the
leading order of the entropy Sq vanishes for large N . Thus, Sq

is exponentially small. For the sake of completeness, in this
section we report the calculation the entropy in this regime.

In order to compute the leading correction we again start
from Eq. (23). When NA = N , i.e., all particles are inside
the interval [−ζ, +ζ ], we have DA(λ) = (λ − 1)N and hence
ρ(a) = δ(a − 1). Consequently, the entropy is zero. The first
elementary excitation has NA = N − 1, which corresponds to
pulling one fermion outside the Wigner sea (on either side).
The probability of this event is given by [59]

p ∼ e−2Nφ(ζ ), (71)

where φ(ζ ) is also the (right) large deviation function [60]
associated with the largest eigenvalue of the GUE random
matrix given in Eq. (50). Note that as ζ → √

2 from above,
i.e., entering the small deviation (edge) regime, this function
vanishes as φ(ζ ) = 27/4

3 (ζ − √
2)3/2; hence, in this regime p ∼

e− 4
3 s3/2

, where s is given in Eq. (69).
Since p � 1 in the regime ζ > 2, one has

Prob(NA) ≈ pδNA,N−1 + (1 − p)δNA,N , (72)

which, using Eq. (23), leads to DA(λ) = (λ − 1)N−1[λ − (1 −
p)] and, hence,

ρ(a) ≈
(

1 − 1

N

)
δ(a − 1) + 1

N
δ[a − (1 − p)]. (73)
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We thus obtain the entropy to leading order in small p,

Sq = N

1 − q

∫ 1

0
da ln[aq + (1 − a)q]ρ(a)

 1

1 − q
ln[(1 − p)q + pq] ≈ 1

1 − q
ln(1 − qp + pq).

(74)

For fixed q > 1 this is

Sq  q

q − 1
p, (75)

but, on the other hand, for q = 1, this reduces to

S1  −p ln p. (76)

There exists a scaling function interpolating between the two
limits. Taking the limits q − 1 → 0 and p → 0, keeping the
product y = −(q − 1) ln p fixed, one has

Sq(p) = (−p ln p)f (y), f (y) = 1 − e−y

y
. (77)

Therefore, for any q � 1 the entropy Sq is exponentially small
in N when ζ >

√
2.

We can arrive at the same conclusion also starting from
Eq. (70), which describes the behavior of the entropy in the
small deviation regime from the edge. In the region ζ >

√
2

and N large, the edge-scaling variable s = √
2N2/3(ζ − √

2)
becomes large. Hence, the operator

K̃(x,y) ≡ [PsKAiPs](x,y)

= θ (x)θ (y)
∫ +∞

0
dvAi(x + v + s) Ai(y + v + s),

(78)

becomes uniformly small since Ai(x) ∼ e− 2
3 x3/2

for large
positive x. Hence, we can expand Eq. (70) as

Sq  2

1 − q
Tr ln(1 − qK̃ + K̃q). (79)

For fixed q > 1 and large s we obtain

Sq = 2q

1 − q
TrK̃ ∼ q

1 − q
A(s)e− 4

3 s3/2
, (80)

where A(s) is an unimportant prefactor which can easily
be calculated from the Airy function asymptotics. Thus, it
matches the result (75) obtained from the large deviation side.
For q = 1 one instead obtains

S1  −2Tr K̃ ln K̃, (81)

which corresponds to Eq. (76).
In conclusion, both in the large deviation regime (ζ >

√
2),

as well as in the tail of the small deviation regime (s � 1), the
entropy is exponentially small for large N . Here we limited to
compute the leading nonvanishing term, but a systematic large
s expansion can, in principle, be performed from Eq. (70).

IV. CONCLUSIONS

In this paper we exploited and clarified the connection
between entanglement entropy and random matrix theory for

systems of free fermions. Such a connection has been already
(more or less explicitly) pointed out in the literature [18–20],
but in this paper we push to the level to have a complete
analytic description of the entanglement entropy in the ground
state of a free Fermi gas trapped by a harmonic potential.
The main analytical results of this paper can be summarized
by Eqs. (66), (70), and (77). Indeed, Eq. (66) provides the
asymptotic behavior of the entropy in the scaling regime with
�/

√
N of order 1, but far enough from the edge (a problem

which was numerically studied in Ref. [21]). Instead, Eq. (70)
is the asymptotic behavior of the entropy in the edge - regime.
Furthermore, an interesting by-product of this work is that the
entanglement entropy for finite number of particles (in some
circumstances like the case of a trapped gas) can be more
effectively calculated by ingeniously discretizing the reduced
correlation matrix (as described in Ref. [39]) than by using the
overlap matrix.

We conclude by mentioning some possible extensions of
this work which deserve further investigation. It would be
interesting to understand whether random matrix theory could
provide quantitative predictions not only for the ground state
of a trapped Fermi gas, but also for excited states that in
the homogeneous case present many interesting and universal
features [61–63]. Whether the present approach can be gen-
eralized to the entanglement entropy of free bosonic systems,
such as the harmonic chain (see, e.g., [64]), is also a relevant
open question. Finally, generalizations to other entanglement
estimators such as entanglement negativity [65], entanglement
contour [66], or Shannon mutual information [67] are also
waiting for an analytical description.
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APPENDIX: THE DISTRIBUTION OF EIGENVALUES
OF THE OVERLAP MATRIX

In this appendix, we report a technical by-product of this
paper, which is the distribution of eigenvalues of the overlap
matrix (which is the same as the one of the reduced correlation
matrix) for a trapped Fermi gas in the intermediate regime
[ζ ∼ O(1), but far from the edge]. At the leading order in N ,
for the interval A = [−�,�], assuming the distribution of NA

Gaussian, we have immediately

DA(λ) = λN

〈(
1 − 1

λ

)NA
〉

= λNe
〈NA〉 ln(1− 1

λ
)+ ln[Nζ (2−ζ2)3/2]

2π2 ln2(1− 1
λ

)
, (A1)
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so that the resolvent function (25) is

F (λ) = N

λ
+ 〈NA〉

λ(λ − 1)
+ ln[Nζ (2 − ζ 2)3/2]

π2λ(λ − 1)
ln

(
1 − 1

λ

)
.

(A2)

The resulting distribution of eigenvalues ρ(a), at the leading
order in N , can be extracted from Eq. (31), giving

ρ(a) = − 1

π
lim

ε→0+
ImF (a + iε)

=
(

1 − 〈NA〉
N

)
δ(a) + 〈NA〉

N
δ(a − 1)

+ ln[Nζ (2 − ζ 2)3/2]

Nπ2

1

a(1 − a)
. (A3)

This distribution reproduces the correct leading order of the
entropy. Indeed, by using

1

1 − q

∫ 1

0

da

a(1 − a)
ln[aq + (1 − a)q] = π2

6

(
1 + 1

q

)
,

(A4)

we obtain

Sq = N

1 − q

∫
da ρ(a) ln[aq + (1 − a)q]

= ln[Nζ (2 − ζ 2)3/2]

π2

π2

6

(
1 + 1

q

)
, (A5)

which coincides with the leading order of Eq. (66). Note that
the third term in (A3) actually is nonintegrable near a = 0 and
a = 1; however, when the entropy is evaluated in Eq. (A5), it
gives a finite contribution.
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