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Mutual information as an order parameter for quantum synchronization
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Spontaneous synchronization is a fundamental phenomenon, important in many theoretical studies and
applications. Recently, this effect has been analyzed and observed in a number of physical systems close to
the quantum-mechanical regime. In this work we propose mutual information as a useful order parameter
which can capture the emergence of synchronization in very different contexts, ranging from semiclassical to
intrinsically quantum-mechanical systems. Specifically, we first study the synchronization of two coupled Van
der Pol oscillators in both classical and quantum regimes and later we consider the synchronization of two qubits
inside two coupled optical cavities. In all these contexts, we find that mutual information can be used as an
appropriate figure of merit for determining the synchronization phases independently of the specific details of
the system.
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I. INTRODUCTION

In 1665 Huygens first observed that two pendulum clocks
mounted on the same support tend to oscillate in a synchronous
way [1]. This is a particular instance of a rather widespread
phenomenon called spontaneous synchronization [2,3]. In
basic terms, two or more classical systems spontaneously
synchronize when the amplitude and/or the phase of their
individual phase-space trajectories lock together due to some
mutual coupling in the complete absence of any external
reference signal. This behavior has been observed in a large
variety of biological, chemical, physical, and social contexts
[3] and has become a well-understood feature of nonlinear
classical systems [2].

Recently, there has been considerable effort to extend
the concept of synchronization to quantum systems, where
the notion of deterministic trajectories in phase space is no
longer meaningful. Most approaches deal with continuous-
variable systems that can still be conveniently described by
quasidistributions in phase space, retaining some link with the
classical theory.

Synchronization has been characterized by looking at the
localization of the Wigner function or by comparing the local
frequency spectra of optical [4] and mechanical resonators
[5–7]. Along the same research line, extrapolating them
from the concepts of complete and phase synchronization
of classical models, quantitative measures of synchronization
for continuous-variable quantum systems have been recently
proposed [7], highlighting the fundamental limits imposed by
the Heisenberg uncertainty principle. A paradigmatic example
in this context is given by the Van der Pol (VdP) oscillator,
i.e., the simplest model of a nonlinear resonator characterized
by self-sustained oscillations. Spontaneous synchronization
between two quantum VdP oscillators, both coherently [8]
and dissipatively [9,10] coupled, or many VdP oscillators
[8,9] has been characterized as well. Phase locking of a
single VdP resonator with an external drive was studied in
[11]. These systems are very promising from an experimental
point of view, because the first observations of classical
synchronization of nano- and micromechanical oscillators

have been recently reported [12–15] and the quantum regime
is not far from current technological capabilities.

A semiclassical Kuramoto model was introduced in [16],
while quantum networks of two [17] or more [18] coupled
linear (harmonic) oscillators have also been investigated. Here
the system usually reaches a stationary static configuration,
and synchronization can be observed in the initial transient
regime where it can be characterized by the dynamics of
local observables. Moreover, in this case the emergence of
synchronization has been related to the presence of slow-
decaying quantum correlations in the specific form of quantum
mutual information and quantum discord [19]. This approach
has also been extended to finite-dimensional quantum systems
such as two dissipatively coupled spins [20]. Finally, very
recently, synchronization between coupled quantum many-
body systems [21] has been studied and possible tests with
bosonic ultracold atomic clouds have been proposed [22].

Several aspects are still not completely explored. How
can we universally define and quantify synchronization for
finite-dimensional systems? Is there a relationship between
synchronization and general quantum correlations? With the
present work, we attempt to give some answers to these
questions. Specifically, we suggest the use of quantum mutual
information as an order parameter for quantitatively deter-
mining the synchronized phase of arbitrary quantum systems.
The advantage of this information-based approach is that it
applies to semiclassical continuous-variable systems where
quantum fluctuations add noise around classical trajectories,
but also to deeply quantum systems (e.g., qubits) where the
idea of synchronization cannot even be visualized in terms of
a classical analog.

The paper is organized as follows. In the first section
we review the concept of mutual information between two
quantum systems and propose its use as an order parameter
for synchronization. We then apply this approach to the
prototypical scenario of two coupled quantum VdP oscillators,
evolving in the semiclassical and in quantum regimes. We
show that the mutual information gives a good characterization
of spontaneous synchronization, in qualitative agreement
with the phase-space synchronization measure introduced
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in Ref. [7]. As a second step, we study the dynamics of
an intrinsically quantum system consisting of two optically
coupled qubits, where typical features of synchronization
(finite threshold, Arnold tongue, etc.) are characterized in
terms of the mutual information. Finally, we analyze the
interplay between classical and quantum correlations in the
emergence of synchronization.

II. MUTUAL INFORMATION AND SYNCHRONIZATION

Given a quantum state ρ composed of two subsystems
with reduced density matrices ρA = TrB(ρ) and ρB = TrA(ρ),
respectively, the quantum mutual information is defined as

I = S(ρA) + S(ρB) − S(ρ), (1)

where S(ρ) = −Tr[ρ ln(ρ)] is the Von Neumann entropy. In
classical information theory, mutual information is a measure
of correlations between two random variables A and B.
Operationally, it quantifies how much the knowledge of the
variable A gives information about the variable B. Equation (1)
is the direct generalization of this quantity to systems described
by quantum states.

The idea behind this work is that synchronized systems
should converge to a steady state having large mutual in-
formation. In order to better understand this relationship, it
is convenient to first consider a classical example. Imagine
to have an ensemble of pendulum clocks which are weakly
mechanically coupled in such a way that they spontaneously
tend to synchronize. If the clocks are not perfect, after a long
time, the information about the position of each clock hand
is completely lost (high local entropy). However, since the
clocks are synchronized, if we knew the state of one clock
we could completely determine the state of the ensemble (low
global entropy). From an information-theoretic perspective,
this scenario corresponds exactly to a system possessing large
mutual information.

The advantage of this information-based approach is that
it can be straightforwardly extended to quantum systems
simply by replacing the Shannon entropy with the Von
Neumann entropy. Basically, one can use the expression
(1) as an order parameter which could signal the presence
of a synchronized phase. In this way one can study the
synchronization of deeply quantum systems such as qubits,
where any semiclassical interpretation of this effect is hardly
applicable. For example, while for two mechanical resonators
one could try to define quantum synchronization extending
the idea of “two systems converging to equal phase-space
trajectories” to quantum operators (see, e.g., [7]), for two
qubits this classically motivated approach cannot be used.
Nonetheless, mutual information is still a well-defined quantity
and this fact allows us to extend the notion of synchronization
to quantum system of arbitrary nature: semiclassical or deeply
quantum, continuous-variable, or discrete variable, etc.

An enhancement of mutual information during the syn-
chronized dynamics of quantum systems has been already
observed in some previous works [17,18,20]. The aim of
our contribution is to further investigate this link and, more
precisely, to underline the universality of mutual information
as a proper order parameter for synchronization. The main
message that we would like to convey is that the link between

synchronization and mutual information is not accidental but,
in fact, it can be considered as a kind of “definition” of
synchronization from an information theory perspective.

In order to move smoothly from the classical towards
the quantum regime, here we begin our analysis by first
considering two VdP oscillators and, eventually, we focus on
the synchronization of two qubits.

III. SYNCHRONIZATION OF TWO
VAN DER POL OSCILLATORS

The VdP oscillator was originally proposed by van der
Pol in 1920 [23]. This is basically a model of a harmonic
oscillator with additional nonlinear terms in the equations of
motion and has been successfully used to describe a variety of
systems possessing a cyclic behavior. A characteristic feature
of the VdP oscillator is the existence of periodic steady-state
solutions (limit cycles) even when the system is not driven
by a time-dependent force. This feature, common in nonlinear
systems, typically gives rise to synchronization phenomena
among different limit cycles associated with two or more VdP
resonators [2,3]. For this reason the quantum version of the
VdP oscillator represents a perfect candidate for understanding
the analogies and the differences between classical and
quantum synchronization. Indeed, several theoretical studies
have been recently performed [8–11] based on this approach.

The quantum-mechanical dynamics of two coupled VdP
oscillators can be described by the master equation [8]

dρ

dt
= −i[ρ,H ] +

2∑

i=1

κ1(2a
†
i ρai − aia

†
i ρ − ρaia

†
i )

+ κ2
(
2a2

i ρa
†2
i − a

†2
i a2

i ρ − ρa
†2
i a2

i

)
, (2)

where we set � = 1, a1 and a2 are the bosonic annihilation
operators of each VdP resonator, and 2κ1 and 2κ2 are the rate
of gaining one phonon and of losing two phonons, respectively.
The Hamiltonian is

H = ω1a1
†a1 + ω2a2

†a2 + g(a1
†a2 + a2

†a1), (3)

where ωj are the natural frequencies of the two oscillators and
g is a weak coupling constant which will be responsible for
the development of synchronization.

As shown in [8], by changing the ratio of the dissipative
rates κ1 and κ2 one can easily interpolate from a classical
(κ2/κ1 � 1) to a quantum (κ2/κ1 � 1) limit. Indeed, for
κ2/κ1 � 1 the VdP oscillators develop semiclassical limit
cycles (large amplitudes and low noise); on the other hand, for
κ2/κ1 � 1 the VdP oscillators have such small amplitudes that
the steady state is essentially dominated by quantum fluctua-
tions. For both regimes we evaluated the mutual information
of the steady state with respect to the coupling g and the
detuning between the two VdP oscillators � = ω2 − ω1. In
Fig. 1 one can clearly recognize the typical Arnold’s tongue
[2,3] (“V” shape) of the synchronized phase and also the
existence of a clear threshold for the parameter g, below
which synchronization does not happen. Moreover, as already
noticed in several works [4,11], moving from the classical to
the quantum regime the level of synchronization is reduced
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FIG. 1. (Color online) Synchronization analysis for the steady
state of the two-VdPs model (2): (a),(b),(c) Mutual information;
(d),(e),(f) semiclassical synchronization measure defined in Eq. (4).
The quantumness parameter for (a),(d) is κ2/κ1 = 0.1; for (b),(e) is
κ2/κ1 = 10; and for (c),(f) is κ2/κ1 = 100. � (units of κ1) is the
detuning of VdPs and g (units of κ1) is the coupling strength.

and the typical Arnold tongue is smoothed due to the presence
large quantum fluctuations.

In order to justify the use of mutual information as a
valid order parameter, we also compare it with a semiclassical
measure of complete synchronization introduced in [7]. This
is defined as

Sc = 〈p2
− + q2

−〉−1, (4)

where p− = (p2 − p1)/
√

2, q− = (q2 − q1)/
√

2, and qi =
(ai + a

†
i )/

√
2, pi = i(a†

i − ai)/
√

2 are the dimensionless po-
sition and momentum operators of the VdP oscillators.

The interesting result here is that both the synchronization
measure (4) and the mutual information have the same
qualitative behavior, justifying our idea of using mutual
information as an order parameter. Actually, due to the small
amount of phonons in the system, the semiclassical quantity
(4) is significantly nonzero even when the system is not
synchronized (this effect is negligible only in the large energy
regime). This fact may be considered an unwanted feature
for a well-behaving order parameter. On the contrary, mutual
information does not suffer from this problem and, even
in the deeply quantum regime, the quantity is zero outside
synchronization region.

As a side remark we comment that in all the cases
considered in Fig. 1, we did not find entanglement even in
the presence of synchronization. This fact suggests that there
is not a one-to-one correspondence between entanglement and
synchronization, even if there are cases in which this relation
is present, as recently reported in Ref. [9].

IV. SYNCHRONIZATION OF TWO QUBITS

In the previous section we studied the synchronization of
two VdP resonators. Now we consider the synchronization of
two qubits which are coupled by optical radiation. As we show,
even in this intrinsically quantum case, mutual information can
be used as an order parameter for synchronization.

We assume that the two qubits are placed in two coupled
optical cavities where only the first cavity is driven by a laser,
while the second one is populated by the photons leaking
from the first cavity. The setup is described in Fig. 2 and the
corresponding Hamiltonian is

H = ω1a
†
1a1 + ω2a

†
2a2 + ω1σz1 + ω2σz2 + E(a†

1 + a1)

+ g(a†
1a2 + a

†
2a1) + μ(a1 + a

†
1)σx1 + μ(a2 + a

†
2)σx2,

(5)

where � = 1, E determines the strength of the external driving
on the first cavity, and g and μ are the optical coupling
constant and the qubit-field coupling constant, respectively. We
assume that each cavity is resonant with its own internal qubit,
while the detuning � = ω2 − ω1 between the characteristic
frequencies of the two qubits can be nonzero. We also take
into account the dissipation of both optical cavities into
the environment, while, for simplicity, we neglect the direct
decoherence of the qubits. The corresponding master equation
is then

dρ

dt
= −i[ρ,H ] +

2∑

i=1

κ(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai). (6)

In order to study the emergence of synchronization, we
compute the mutual information between the two qubits on the
steady state of the system as a function of the detuning � and of
the optical coupling constant g. Similarly to the previous case
involving VdP oscillators, the mutual information in nonzero
in a parameter region with the characteristic shape of an Arnold
tongue. Moreover, also in this case we observe a threshold
value of the coupling g, below which mutual information is

FIG. 2. (Color online) a1,a2 and q1,q2 are the optical modes and
qubits in the first and second cavities, respectively. E is a driving laser
amplitude which is applied to the first cavity. Photons can coherently
hop from one cavity to the other with a rate g.

012301-3



V. AMERI et al. PHYSICAL REVIEW A 91, 012301 (2015)

FIG. 3. (Color online) Mutual information of the steady state of
the two qubits model as a function of the optical coupling constant
g (units of μ) and detuning � (units of μ). The other parameters are
ω1 = 10, κ = 0.05, E = 3, and μ = 1.

negligible. These peculiar features justify the interpretation of
such correlated phase as a quantum synchronization effect.

Mutual information measures all correlations existing
between the qubits and then one could doubt that, despite
the strong analogy, the Arnold tongue phase shown in Fig. 3
could be unrelated to synchronization. For this reason, in
order to validate our interpretation, we compare the value
of mutual information with a model-specific measure of
phase locking. In the previous section about VdP oscillators,
we used the semiclassical measure based on position and
momentum quadratures given in Eq. (4). In this case instead
there is not a classical analog of the system and, since we
deal with two qubits, Eq. (4) cannot be applied. Then, to
visualize the the phase locking between the qubits, we need to
use a different approach (similar to [20]) which is based on the
transient dynamics happening before the system reaches the
steady state. In this initial transient, the expectation values
of the operators are time dependent and present Rabi-like
oscillations. In our specific model, we found it more convenient
to focus on the x component of each qubit in the Bloch sphere
〈σx,i〉, i = 1,2. The simplest model for the oscillations of this
quantity is given by

〈σx,i(t)〉 = σ̄x,i(t) sin[φi(t)], (7)

where σ̄x,i(t) are slowly varying amplitudes and φi(t) are
the oscillation phases [i.e., we assume d

dt
σ̄x,i(t) � d

dt
φi(t)].

Defining the quantity

sp(t) = cos[φ2(t) − φ1(t)], (8)

we get an estimate of the relative phase between the qubits. For
example, if sp � 1, the qubits are phase locked; if sp � −1,
the oscillations are antiphase locked; while if sp is not stable
around a constant value, we can conclude that the system is
not synchronized.

In Figs. 4(a) and 4(b) we plot sp(t) for different values
of the parameters and we compare it with the behavior of
mutual information. Clearly, one can observe that when � =
ω2 − ω1 � 0 the oscillations become phase locked and mutual
information assumes nonzero values. On the contrary, when �

is too large, sp(t) oscillates without any phase-locking effect
and correspondingly the mutual information is negligible.

FIG. 4. (Color online) (a),(b),(c) Simulation of phase-locking
measure sp defined in Eq. (8) as a function of time (in units of
τ = 2π/ω1). (d),(e),(f) Mutual information of qubits as a function of
time (in units of τ ). The parameters are (a),(d) ω1 = 10,ω2 = 10,g =
0.5,μ = 1,κ = 0.1, E = 3; (b),(e) ω1 = 10,ω2 = 10,g = −0.5,μ =
1,κ = 0.1, E = 3; (c),(f) ω1 = 10,ω2 = 20,g = 0.5,μ = 1,κ = 0.1,
E = 3.

These results justify our initial interpretation of the mutual
information phase diagram (Fig. 3) as a signature of quantum
synchronization.

We remark that the advantage of mutual information with
respect to other model-based measures of synchronization
lies in its universality and in the possibility of using it as
a steady-state order parameter (as done in Fig. 3). Indeed,
while a specific measure like sp loses its meaning when
all the initial Rabi oscillations are damped to equilibrium,
mutual information is still able to reveal the presence of
synchronization hidden in the cross correlations between the
two subsystems.

V. QUANTUM CORRELATIONS AND SYNCHRONIZATION

The use of the mutual information as an order parameter for
synchronization allows us to shed more light on the interplay
between synchronization and correlations. Quantum mutual
information describes the total amount of correlations in a
system and this total can be further divided into classical and
quantum correlations [24,25].
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Classical correlations can be interpreted as the information
gain about one subsystem as a result of a local measurement
on the other. In classical information theory this quantity is
defined as I (AB) = H (B) − H (B|A), where H (X) is the
Shannon entropy of the random variable X and H (B|A) is the
conditional entropy of B given A. This expression is equivalent
to the classical mutual information I (AB) = H (B) + H (A) −
H (AB) via Bayes rule. In quantum information theory, there
are many different measurements that can be performed on
a system and measurements generally disturb the quantum
state. Therefore, classical information is defined by taking the
maximum over all possible measurements and reads

IC
A (ρAB) = max

{EA}
[S(ρB) − S(B|{Ea})], (9)

where {Ea} are the elements of a positive operator valued
measurement (POVM) on A, S(B|{Ea}) = ∑

paS( TrA[Ea ρAB]
pa

)
is the average Von Neumann entropy of the conditional state of
B, and pa = Tr[Ea ρAB] is the probability of getting outcome
a.

The difference between the mutual information and the
classical information gives the so-called quantum discord
[24,25], which measures the genuinely quantum correlations
in the system,

DA = I − IC
A = S(ρA) − S(ρ) + min

{EA}
S(B|{Ea}). (10)

Analogous quantities can be defined if the measurement
is performed on subsystem B. In general, the classical
information and the discord are asymmetric (i.e., DA �= DB),
but for the cases examined in this paper the behavior of the two
alternatives is both qualitatively and quantitatively similar.

In the following we compute the classical information and
the discord for our two-qubit system. In principle, as prescribed
by Eqs. (9) and (10), we would have to face the challenging
task of optimizing over all POVMs. However, for qubits,
several simplifications are at hand. First of all, it was shown
in [26] that the optimal POVMs must be extremal; i.e., they
cannot be written as a convex combination of other POVMs.
Moreover, extremal POVMs for qubits can only have two,
three, or four projectors as their elements [27]. Finally, there
are strong numerical evidences that optimization over POVMs
with two (orthogonal) projectors yields numbers that can be
safely considered correct (the error being of the order of 10−4)
[28]. We adopt this approximation to reduce the computational
complexity.

The results are shown in Fig. 5. We find that the classical
information and the quantum discord give almost identical
plots (apart from different numerical scales), recovering the
same behavior observed by the quantum mutual informa-
tion. Therefore, we can say the synchronization process is
responsible for the creation of both classical and quantum
correlations in the system. Actually, in this particular example,
the amount of quantum correlations appears to be the dominant
contribution to the mutual information and this fact could
be associated with the deep quantum nature of the system
(two qubits), as already observed in other contexts [17,20]. In
general, we expect the interplay between classical and quantum
correlations to strongly depend on the particular system under
investigation.

FIG. 5. (Color online) (a) Classical information and (b) quantum
discord between the two qubits as a function of the optical coupling
constant g (units of μ) and detuning � (units of μ). The other
parameters are as in Fig. 3.

We also comment that, in all the parameter space that
we explored in the analysis of the two-qubit model, we did
not find any entanglement. This is consistent with the well-
established knowledge that entanglement is a much stronger
form of correlation with respect to quantum discord. So one
can expect that it is difficult to generate entanglement by
exploiting the effect of spontaneous synchronization. This
difficulty has been already noticed in [7] but, nonetheless,
other works found significant amounts of entanglement [9,18]
in different systems subject to synchronization. Again, as
for the case of quantum correlations, we can conclude
that also the relationship between entanglement and syn-
chronization strongly depends on the specific details of
system.

VI. CONCLUSIONS

In this work we introduced an approach to the analysis
of synchronization effects in quantum-mechanical systems.
Specifically, we proposed the use of quantum mutual in-
formation as an order parameter for signaling the presence
or the absence of quantum synchronization. With respect to
other specific or semiclassical measures of synchronization,
mutual information is well defined for every bipartite quantum
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state and does not depend on the particular details of the
system. Indeed, in this work we have been able to analyze,
within the same theoretical framework, the synchronization
of completely different devices: namely, two quantum VdP
resonators and two qubits. Given the universality of the
concept of information, we expect that our approach could
be successfully applied also to other systems like nonlinear
optical cavities [4,29] and optomechanical arrays [6].
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