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Parameter estimation by multichannel photon counting
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The physical parameters governing the dynamics of a light-emitting quantum system can be estimated from
the photon counting signal. The information available in the full detection record can be analyzed by means
of the distribution of waiting times between detection events. Our theory allows calculation of the asymptotic,
long-time behavior of the sensitivity limit, and it applies to emission processes with branching towards different
final states accompanied by the emission of distinguishable photons. We illustrate the theory by application to a
laser-driven �-type atom.
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I. INTRODUCTION

Atoms and atomlike systems with discrete energy states are
widely used for precision measurements of time and frequency
and as sensitive probes of fields or other influences on the
system behavior. The random character of measurements
on quantum systems fundamentally limits the information
achievable, but quantum states with squeezed uncertainty of
particular observables and entangled states of multiparticle
systems have been identified as particularly sensitive initial
states for (repeated) single-shot experiments; see, e.g., [1,2].

Rather than many repeated experiments, we have the situa-
tion in mind of a single quantum system probed continuously
over time. One must then take the measurement backaction
into account at all measurement steps, and this is conveniently
done in the quantum trajectory formalism. This provides,
conditioned on the measurement record [3–5], both the state
of the quantum system and, via Bayes’ rule, the probabilities
of different candidate values of the estimated parameter. If the
system is subject to damping and decoherence, and behaves in
an ergodic manner, one may regard data obtained at sufficiently
well-separated moments of time as statistically independent.
Continuous probing of the same system for a long time T

can hence be thought of as a number of N independent
experiments with N ∝ T , and we expect an estimation error
scaling asymptotically as 1/

√
T .

To confirm this expectation and to identify the quantitative
performance of continuous probing, we shall address the
Cramér-Rao bound (CRB) [6],

[�S(θ )]2 � 1

F (θ )
, (1)

which expresses the lower limit of the statistical variance
[�S(θ )]2 of any unbiased estimator for an unknown quantity
θ by the Fisher information,

F (θ ) = −
∑
D

∂2 ln L(D|θ )

∂θ2
L(D|θ ), (2)

where L(D|θ ) in Eq. (2) is the likelihood to obtain measure-
ment data D conditioned on the value θ . For nrep repeated
experiments, Eq. (1) is written with an extra factor 1/nrep, and
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the bound applies in the limit of nrep � 1. In our case, however,
D represents a single, time-dependent detection record, and the
asymptotic convergence of our estimate should follow from the
probing time dependence of F (θ ) in the long-time limit.

In this article, we consider detection by photon counting
of the radiation emitted by a quantum light source. For a
closed two-level transition, the discrete waiting times between
detection events form independent and identically distributed
stochastic variables, and we have previously shown [7] that
this simplifies the evaluation of the Fisher information and the
Cramér-Rao bound. Here, we generalize the approach of [7] to
the case of multilevel systems with distinguishable emission
processes and branching of the decay towards different final
states. This situation is exemplified by the � system depicted
in Fig. 1, with an excited state from which spontaneous
decay occurs towards two different ground states. Since the
decay processes leave the atom in different states, subsequent
time intervals between detector clicks are not independent.
The purpose of this article is to derive a theory that allows
calculation of the Fisher information and the Cramér-Rao
bound for parameter estimation with two-channel (and more
general multichannel) counting signals.

The article is outlined as follows. In Sec. II, we discuss
how single-channel and multichannel photon counting records
can be reorganized as the sampling of uncorrelated stochastic
variables and how the Fisher information can be calculated
from the distribution of waiting times between detections in
different channels. In Sec. III, we present a master-equation
analysis of the theoretical waiting-time distribution functions
that allow practical calculation of the Fisher information. In
Sec. IV, we present the filter function that should be applied to
multichannel measurement data records to achieve parameter
estimates that reach the Cramér-Rao bound. In Sec. V, we
show results for the � system in Fig. 1, and, in Sec. VI, we
conclude the analysis.

II. SINGLE-CHANNEL AND MULTICHANNEL
COUNTING SIGNALS

A photon counting detection record contains the discrete
times of detection events D = {tk}, and, if the emitter always
jumps to the same state when a photon is detected, mea-
surement intervals τk = tk+1 − tk between detector clicks are
independent and identically distributed stochastic variables.
A data record with N + 1 count events thus yields N
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FIG. 1. (Color online) A quantum � system with laser-driven
|0〉 ↔ |2〉 and |1〉 ↔ |2〉 transitions with Rabi frequencies �0 and
�1, detunings δ0 and δ1, and excited-state decay rates 	0 and 	1.

independent samples of the waiting-time probability distri-
bution w(τ ). Each registered waiting time τk falls within
a short interval [τ [i] − �τ/2,τ [i] + �τ/2] with probability
wi = w(τ [i])�τ , and the data record D, fully represented by
the set of numbers ni of registered waiting times in all inter-
vals, is statistically governed by a multinomial distribution,
(
∑

i ni)!
∏

i w
ni

i /
∏

i ni!.
For a given total probing time T , the total number of

registered intervals, N = ∑
i ni , is itself a stochastic variable,

governed by a probability distribution PN , and hence the
likelihood for the data record D = {ni} is

L(D|θ ) =
( ∑

i ni

)
!
∏

i w
ni

i∏
i ni!

PN=∑
i ni

. (3)

The conditional dependence on the quantity θ stems from
the θ dependence of the wi and PN in Eq. (3), and the Fisher
information given by Eq. (2) can be evaluated directly,

F (θ ) = N
∑

i

1

wi

(
∂wi

∂θ

)2

+
∑
N

1

PN

(
∂PN

∂θ

)2

, (4)

where N denotes the mean value of N .
It is convenient to rearrange the terms in Eq. (4) in two

different contributions,

F (θ ) = FPoisson(θ ) + FN (θ ). (5)

The first term,

FPoisson(θ ) ≡
∑

i

1

ni

(
∂ni

∂θ

)2

=
∫

1

n(τ )

[
∂n(τ )

∂θ

]2

dτ, (6)

reflects the similarity between the multinomial distribution
and the Poisson distribution for each ni � N , with ni(θ ) =
N (θ )wi(θ ). In the last step, we have transformed the sum over
time intervals into an integral with ni(θ ) = n(τ,θ )�τ . See,
e.g., [8,9] for similar arguments applied to high-resolution
spatial measurements by scattering of coherent light or to
probing of the motion of a Bose condensate.

Equation (6) is, indeed, the Fisher information for uncorre-
lated Poisson-distributed variables ni , resulting in a sum, N =∑

i ni , which is also Poisson distributed. The total number of
photons emitted from quantum light sources may, however,
show sub- or super-Poissonian counting statistics [10], and the
second term in (5),

FN (θ ) ≡
∑
N

1

PN (θ )

[
∂PN (θ )

∂θ

]2

− 1

N (θ )

[
∂N (θ )

∂θ

]2

, (7)

accounts for the deviation of the information held by the true
statistics PN from that of a Poisson distribution. The two
expressions (4) and (5) are easily proven to be identical [note
that a term with mixed derivatives vanishes because of the
independence on θ of the integral of w(τ ) over time].

The waiting times are identically distributed random vari-
ables, and the stochastic counting process is a renewal process
[11]. We are interested in systems with no dark steady states,
i.e., the fluorescence is persistent and the waiting-time distri-
bution does not have long tails. In the asymptotic limit of large
T , where the CRB applies, a central limit theorem for such
renewal processes ensures that the distribution PN converges
asymptotically to a normal distribution with a mean value N

and a variance V ≡ Var(N ), which are both proportional with
T [12]. In this limit, we can thus evaluate Eq. (7),

FN (θ ) =
[

1

V (θ )
− 1

N (θ )

] [
∂N (θ )

∂θ

]2

. (8)

As easily understood, the correction (8) to the Fisher
information is positive (negative) if the total number N

fluctuates less (more) than the Poisson distribution.
Reference [7] did not take the correction (8) into account.

This was justified by the focus in that article on a saturated
transition, where the distribution of waiting times yields much
more information than the total count, and where the first term
in (5) therefore completely dominates the Fisher information.
The relative significance of the terms in Eq. (5) depends on
the physical system, and in the examples studied in Sec. VI in
this article, the full count statistics term cannot be ignored.

Since N , V , and n(τ,θ ) are all proportional to the probing
time T , the Fisher information is also proportional to T , and
we conclude from Eq. (1) that the estimation error decreases
asymptotically as ∼1/

√
T .

To evaluate our expression for the Fisher information (5),
we need to determine how the waiting-time distribution n(τ )
and the ensuing N and V depend on θ . This information can
be retrieved from the system master equation, but let us first
turn to the more general case of signals from quantum emitters
observed by photon counters that distinguish between different
decay channels, e.g., by making use of the polarization or
frequency of the emitted photons.

For generality, we assume that there are M such channels
(for the � system in Fig. 1, M = 2). Our analysis is restricted
to the case for which detection of a photon in channel m

accompanies a jump of the emitter into a definite state |φm〉,
which is the initial state for the subsequent evolution of the
system. This is not a requirement for the Bayesian analysis,
but our calculation of the Fisher information relies on definite
waiting-time distributions after detection in each channel.
These waiting-time distributions until the next detection event
thus depend on m, the channel of the most recently detected
photon, and we can sort the detection record into lists {τk}mm′

containing the duration of time intervals between detection in
channel m followed by subsequent detection in channel m′.
These lists, in turn, sample the corresponding waiting-time
distributions in an independent and uncorrelated manner, and,
for our parameter estimation, they retain all of the information
available in the multichannel detection record.
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The combinations mm′ define M2 interval types, and for
each mm′, the number nmm′,i denotes the number of waiting
times τ registered in intervals [τ [i] − �τ/2,τ [i] + �τ/2]. The
likelihood function in Eq. (2) now factorizes as a product of
weighted multinomial distributions,

L(D|θ ) =
∏
mm′

Lmm′(D|θ ), (9)

where the likelihood for each type, Lmm′(D|θ ), is as given in
Eq. (3), and the single-channel result (5) is readily generalized.

In particular,

FPoisson(θ ) =
∑
mm′

∫
1

nmm′ (τ,θ )

[
∂nmm′(τ,θ )

∂θ

]2

dτ, (10)

where nmm′ (τ,θ ) is the theoretically expected distribution of
intervals of type mm′ and duration τ . The correction due to
the count statistics with mean value Nm but a non-Poissonian
variance Vm in each channel is in the asymptotic limit given
by

FN (θ ) =
∑
m

(
1

Vm

− 1

Nm

)(
∂Nm

∂θ

)2

. (11)

III. WAITING-TIME DISTRIBUTIONS

We obtain the distribution functions wmm′(τ,θ ) and
nmm′(τ,θ ) by solving effective master equations where the
unknown quantity θ is one of the Hamiltonian or damping
parameters. With the understanding that our results may be
finally evaluated and varied with respect to the parameter of
interest, we suppress, in this section, the variable θ from the
equations.

The average behavior of an atomic quantum system
decaying by spontaneous emission of photons into broadband
photon reservoirs is described by a master equation of the form
(� = 1) [13]

dρ

dt
= −i[Ĥ0,ρ] +

∑
m

(
ĈmρĈ†

m − 1

2
{Ĉ†

mĈm,ρ}
)

, (12)

where the operators Ĉm represent jump processes in the
atom associated with decay and emission of different, dis-
tinguishable kinds of radiation. While decay processes may
preserve, e.g., coherences between excited Zeeman states in
the ground state after the emission of light of linear or circular
polarization, we emphasize that our analysis of the Fisher
information is restricted to the case in which a jump Ĉm

puts the system in a definite final state |φm〉, from which
the dynamics proceeds. This is, for example, the case for the
three-level atom, shown in Fig. 1, where the two operators,
Ĉ0 = √

	0|0〉〈2| and Ĉ1 = √
	1|1〉〈2|, describe decay into the

ground states |0〉 and |1〉 with rates 	0 and 	1, respectively.
With the interpretation of quantum trajectories or Monte

Carlo wave functions [7,14,15] as the states of dissipative
quantum systems conditioned on the outcome of continuous
probing of their emitted radiation, it is possible to simulate
realistic detection records. The jumps into state |φm〉 are
governed by the rate 〈Ĉ†

mĈm〉, where the expectation value
is calculated as a function of time for a given evolving

wave function. On average, the stochastically evolving wave
functions reproduce the master equation and therefore the
average number of these jumps equals the value obtained by
the density matrix describing the unobserved quantum system.
For probing over long times T , we thus get the average number
of jumps into state |φm〉, Nm = Tr(Ĉ†

mĈmρst)T, where ρst is
the steady-state density matrix solution to the master equation
(12).

For the distributions of intervals between detector clicks,
we now have nmm′(τ ) = Nmwmm′(τ ), where wmm′(τ )dτ is the
probability that after a jump into |φm〉, the next emission
event is detected in channel m′ in [τ,τ + dτ ]. To determine
the function wmm′(τ ), we note that the terms

∑
m ĈmρĈ

†
m

in Eq. (12) account for the feeding of the system ground
states associated with the emission process, i.e., they describe
terms in the reduced system density matrix, correlated with
single-photon excited states of the modes of the radiation
field. If the system has just been put into the state |φm〉 due
to detection of a photon in channel m, the probability that
no photon is detected until a certain later time τ is equal to
the population of the zero-photon component of the combined
state of the system and the environment at that time. This is, in
turn, given by the trace of the unnormalized density matrix, ρ̃,
which evolves from the initial state ρ̃|m(τ = 0) = |φm〉〈φm|,
omitting the ground-state feeding term of the master equation,

dρ̃

dt
= −i[Ĥ0,ρ̃] − 1

2

∑
m

{Ĉ†
mĈm,ρ̃}. (13)

The resulting ρ̃|m(τ ) is equivalent to the so-called no-jump
wave function [15] evolving from the state |φm〉 by the
non-Hermitian Hamiltonian Ĥeff = Ĥ0 − i

2

∑
m Ĉ

†
mĈm. The

probability wmm′(τ )dτ that after a detector click at time t

of type m, the next click is of type m′ and occurs in the time
interval [t + τ,t + τ + dτ ], is now given by

wmm′ (τ )dτ = Tr[Ĉ†
m′Ĉm′ ρ̃(τ )]dτ. (14)

It follows from the master equation that these waiting-time
distributions are normalized according to

∑
m′

∫ ∞

0
wmm′ (τ )dτ = 1. (15)

With the values thus found theoretically for Nm and wmm′(τ ),
we know nmm′ (τ ), and we can evaluate the Fisher information
in (10).

If photons are detected with only finite efficiency η, this
is equivalent to a fraction 1 − η of the quantum jumps
passing unnoticed. The corresponding unnormalized state ρ̃

conditioned on no detection events is then found by including
a ground-state feeding term, (1 − η)Ĉρ̃Ĉ†, in the no-jump
master equation to account for the unobserved emission [7].
In the multichannel case, if different channels are monitored
with detector efficiencies ηm, we obtain the no-detected-jump
master equation

dρ̃

dt
= −i[Ĥ0,ρ] +

∑
m

[
(1 − ηm)ĈmρĈ†

m − 1

2
{Ĉ†

mĈm,ρ̃}
]

.

(16)
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The solutions of this equation for initial states ρ̃|m(τ = 0) =
|φm〉〈φm| yield the waiting-time distributions between the
detected emission events [7],

wmm′(τ )dτ = ηm′Tr[Ĉ†
m′Ĉm′ ρ̃|m(τ )]dτ, (17)

which are normalized as in Eq. (15). The average number
of detected events in channel m during probing for time T

is Nm = ηmTr(Ĉ†
mĈmρst)T, and with the resulting nmm′ (τ ) =

Nmwmm′(τ )dτ , we can calculate the Fisher information ac-
cording to (10).

The Fisher information given by Eq. (5) also depends on
the moments of the total count statistics (11). Calculating
the variance in the photon count is one of the founding
problems of quantum optics [10], and we give here a
simple recipe relying on quantities already derived. Consider
the duration TN = ∑N

i=1 τi of N waiting-time intervals. TN

has a mean value T N = Nτ and a variance Var(TN ) =
NVar(τ ). The corresponding uncertainty in the number of
detection events in a definite time interval follows,

√
Var(N) =

(dN/dTN ) × √
Var(TN ) = √

N
√

Var(τ )/τ , where, for an ex-
ponential waiting-time distribution with Var(τ ) = τ 2, we
recover the Poissonian statistics.

The quantities τ and Var(τ ) can be evaluated from the
waiting-time distribution functions, and, in the multichannel
case, the k th moment of τ pertaining to the channel m is given
as

(τ k)m =
∫

τ kwmm(τ )dτ, (18)

where wmm(τ ) is the distribution function for waiting times
between photo-detection events in the channel m, and is
obtained by solving Eq. (16) with efficiencies ηm and ηm′ =m =
0. One may then calculate

Vm = Var(τ )m

τ 2
m

Nm, (19)

clearly identifying whether Nm follows sub- or super-
Poissonian statistics.

IV. ACHIEVING THE CRAMÉR-RAO BOUND

The CRB concerns the asymptotic sensitivity, and we
assume that the value of θ is already known to within a small
error δθ from an offset value which, for convenience, we rede-
fine as θ = 0. For single-channel Poisson-distributed counting
signals, a simple linear filter achieves the CRB [7,8,16] and
motivates an ansatz for the multichannel estimator, when the
total counts in each channel are Poisson distributed, of the
form

SP (nmm′(τ )) =
∑
mm′

[∫
gmm′(τ )nmm′(τ )dτ + Cmm′

]
, (20)

which weighs the actual recorded distributions of waiting times
nmm′(τ ) with gain functions gmm′(τ ) and constant offsets Cmm′ ,
chosen to ensure the correct mean value and to minimize the
statistical variance of the estimator.

We assume that δθ is sufficiently small that the corre-
sponding change in the expected waiting-time distribution
nmm′(τ,δθ ) in (20) is well represented by a first-order Taylor

expansion. To cancel the zeroth-order terms in (20), we then
pick

Cmm′ = −
∫

gmm′(τ )nmm′ (τ,0)dτ, (21)

and for data in complete accordance (no noise) with the
expected mean, we obtain, to first order,

SP (nmm′(τ,δθ )) = δθ
∑
mm′

∫
gmm′(τ )

∂nmm′(τ,θ )

∂θ

∣∣∣∣
θ=0

dτ.

The uncorrelated, Poisson-distributed count signals allow
calculation of the variance of the estimator (20),

(�SP )2 =
∑
mm′

∫
g2

mm′(τ )nmm′ (τ,0)dτ. (22)

Next, the signal-to-noise ratio,

(SNR)2 ≡ S2
P (nmm′ (τ,δθ ))

(�SP )2
,

can be maximized by the Cauchy-Schwarz inequality,
|〈vk(τ ),uk(τ )〉|2 � 〈vk(τ ),vk(τ )〉〈uk(τ ),uk(τ )〉, where uk(τ )
and vk(τ ) are functions of the continuous variable τ and the
discrete variable k = (mm′).

By applying the inequality with vk(τ ) = δθ
∂nmm′ (τ,θ)

∂θ
|θ=0

n
−1/2
mm′ (τ,0) and uk(τ ) = gmm′(τ )n1/2

mm′ (τ,0), we obtain

(SNR)2 � (δθ )2FPoisson(θ ), (23)

with FPoisson(θ ) given in Eq. (10). The Cauchy-Schwarz
inequality is saturated when the functions vk(τ ) and uk(τ )
are proportional, which occurs when

gmm′(τ ) = β

nmm′(τ,0)

∂nmm′ (τ,θ )

∂θ

∣∣∣∣
θ=0

, (24)

where the constant β is the same for all mm′.
The requirement that data in complete accordance

with the expected distributions nmm′ (τ,θ ) should lead to
S(nmm′ (τ,δθ )) = δθ establishes that, in fact, β must be the
inverse Fisher information, β = F−1

Poisson(θ ).
The shot-noise limit, SNR = 1 in (23), defines the lowest

distinguishable value of δθ = 1/
√

FP (θ ), and collecting the
results provides the linear estimator given by Eq. (20) in terms
of the expected and the actually measured distribution of time
intervals between the detector clicks,

SP (nmm′ (τ )) = F−1
Poisson(θ )

∑
mm′

∫
∂nmm′ (τ,θ )

∂θ

∣∣∣∣
θ=0

×
[

nmm′ (τ )

nmm′(τ,θ )
− 1

]
dτ. (25)

The prior estimate is adjusted according to the discrepancy
between the recorded waiting times and those expected from
that prior. The Fisher information appears as a normalizing
factor which reflects that larger adjustments may apply when
the uncertainty is large. Still, we recall that this expression only
applies asymptotically and that it is valid only if the first-order
Taylor expansions in the deviation from our prior guess are
accurate enough; see also [17].

In the general case of non-Poissonian counting statistics
Vm = Nm and in the derivation above, we must explicitly
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treat the Nm as independent stochastic variables that can
themselves have a θ dependence. Factorizing the waiting-time
distributions nmm′ (τ ) = Nm(θ )wmm′(τ,θ ) allows us to employ
separate gains for each Nm in Eq. (20), and when the variance
of the estimator given by Eq. (22) is corrected to include the
proper variances Vm, the arguments given in this section carry
over and the estimator acquires an extra term depending on the
photon counts Nm,

S(nmm′ (τ )) =F−1(θ )

{∑
mm′

∫
∂nmm′ (τ,θ )

∂θ

∣∣∣∣
θ=0

×
[

nmm′(τ )

nmm′ (τ,θ )
− 1

]
dτ

+
∑
m

∂Nm(τ,θ )

∂θ

∣∣∣∣∣
θ=0

[Nm − Nm(θ )]

×
[

1

Vm(θ )
− 1

Nm(θ )

] }
. (26)

The Fisher information is given in Eq. (5), and Eq. (26)
constitutes a linear estimator that exhausts the information
in the multichannel photon counting data record and, hence,
achieves the Cramér-Rao bound asymptotically.

V. PHOTON COUNTING FROM A LASER-DRIVEN
�-TYPE ATOM

As an example, we apply the formalism to a �-type system
coupled to two laser fields, as shown in Fig. 1. The couplings
are described by Rabi frequencies �0 and �1 and laser-atom
detunings δ0 and δ1, as indicated in the figure. We assume
no direct coupling between |0〉 and |1〉, and that the decay
into these two ground states is distinguishable, either by the
polarization or by well-separated frequencies of the emitted
photons.

In the rotating-wave approximation, the Hamiltonian of the
system can be written in matrix form as (� = 1)

Ĥ0 =

⎛
⎜⎝

δ0 0 �0
2

0 δ1
�1
2

�0
2

�1
2 0

⎞
⎟⎠ . (27)

The decay from |2〉 to |0〉 with rate 	0 and from |2〉 to |1〉
with rate 	1 (Fig. 1) leads to a measurement record of photo-
detection events, and the intervals between the associated
quantum jumps can be sorted according to the corresponding
four different types (mm′):

(00): |2〉 → |0〉 after |2〉 → |0〉,
(10): |2〉 → |0〉 after |2〉 → |1〉,
(01): |2〉 → |1〉 after |2〉 → |0〉,
(11): |2〉 → |1〉 after |2〉 → |1〉.

Most physical systems are prone to dephasing, e.g., due to
fluctuating magnetic fields, and we model this by introducing
a decoherence term in the master equations (12), (13), and (16)
corresponding to the operator ĈD = √

γ (|0〉 〈0| − |1〉 〈1| +
|2〉 〈2|). The effect of this is to flip the sign of the |1〉 amplitude
relative to those of the two other states with a rate γ .
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FIG. 2. (Color online) Delay functions for each of the relevant
interval types in a �-type system, calculated for �0 = 5	0, �1 =
3	0, δ0 = 0, 	1 = 0.5	0, and a ground-state dephasing rate γ =
0.1	0. The blue solid lines are for the resonant case δ1 = 0, and the
red dotted lines are for the detuned case δ1 = 	0.

In Fig. 2, we show two examples of the four delay functions
wmm′(τ ) for the � system, assuming perfect detection in both
channels (physical parameters are given in the figure caption).

For resonant coupling on both transitions (blue solid
lines), all four waiting-time distributions resemble those of
a two-level system (see [7]). For finite detuning (red dashed
lines) of the |1〉 ↔ |2〉 transition, the waiting-time distribution
functions after decay into |0〉 largely maintain the same
form, while after decay into |1〉 the distributions reflect the
off-resonant |1〉 → |2〉 excitation process.

In Fig. 3, we show in the upper panel the Fisher information
divided by the probing time for the estimation of the detuning
θ = δ1 for different values of the laser Rabi frequency �1.
For δ0 = 0, all statistical properties of the counting signal are
even functions of δ1 and, as witnessed by the vanishing Fisher
information, we are not able to distinguish values of δ1 close
to δ1 = 0. At finite detuning, we obtain the highest Fisher
information for �1 ∼ 	0. For weak driving (�1 = 0.5	0), the
|2〉 ↔ |1〉 laser is a small perturbation in the Hamiltonian (27),
and the absorption spectrum is characterized by resonances at
δ1 = ±�0/2, ac-Stark shifted by the strong |2〉 ↔ |0〉 coupling
laser. At resonances, the gradient of nmm′(τ,δ1) vanishes and, as
seen from the distinct dip in the Fisher information, our ability
to discern different values of the detuning here vanishes in the
limit �1 → 0.

In the lower panel of Fig. 3, we show the ratio τ 2
m/Var(τ )m

for the two channels as a function of δ1 and for �1 = 3	0.
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FIG. 3. (Color online) Upper panel: The Fisher information per
unit time for estimation of the laser-atom detuning δ1 by photon
counting. Results are shown for different values of the Rabi frequency,
from weak �1 = 0.5	0 to strong �1 = 6	0, and the other parameters
are �0 = 5	0, δ0 = 0, 	1 = 0.5	0, and γ = 0.1	0. For δ0 = 0, all
statistical properties of the counting signal, and hence the Fisher
information, are even functions of δ1. Lower panel: The ratio τ 2

m/

Var(τ )m for the waiting times in the two channels as a function of δ1.
We assume �1 = 3	0, while the remaining parameters are as in the
upper panel.

According to Eq. (19), the distribution of Nm is sub-Possionian
for values of this ratio larger than unity, which occur for counts
in the |2〉 → |1〉 channel for almost all values of δ1, and super-
Possionian for values smaller than unity which occur in the
|2〉 → |0〉 channel for all values of δ1, given the remaining
parameters used in this example.

Let us also investigate the parameter estimation sensitivity
for a system with multiple decay channels of which only one
is being observed. This situation occurs, e.g., in solid-state
emitters, which may relax both optically and by nonradiative
coupling to the host material, and in the case of atoms
which decay by emission of light in very different wavelength
regions. To describe this situation, we introduce hypothetical
observers, Alice and Bob, holding only partial detection
records. Alice has a perfect detector that monitors only the
|2〉 → |0〉 channel. Her record of waiting times must then be
matched to the distribution w00(τ ) found from Eq. (16), solved
for the initial state |0〉 with η0 = 1 and with η1 = 0. Bob, on
the other hand, monitors the |2〉 → |1〉 channel only, and his
record of waiting times must be matched to the distribution
w11(τ ) found from Eq. (16) solved for the initial state |1〉 with
η0 = 0 and η1 = 1. The middle timeline in Fig. 4(a) illustrates
a full detection record, while the upper (lower) line shows the
detection record of Alice (Bob).

In Fig. 4(b), we show the waiting-time distributions for two
values of the detuning δ1 (other physical parameters are given
in the figure caption). The achievements of optimal frequency
estimation strategies based on the individual records of Alice
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Time

FIG. 4. (Color online) (a) Schematic illustration of the detection
records of Alice and Bob (see text) and a full detection record.
The blue dots at times t

(0)
i are emissions in the channel |2〉 → |0〉

monitored by Alice. The red diamonds at times t
(1)
i are emissions in

the channel |2〉 → |1〉 monitored by Bob. The observers do not see
photons from the other channel. The full record holds information
on all emission events. (b) The waiting-time distributions for the
measurement records obtained by Alice (upper panel), monitoring
only the channel |2〉 → |0〉, and by Bob (lower panel), monitoring
only the channel |2〉 → |1〉. These are calculated for the parameter
values �0 = 5	0, �1 = 2	0, δ0 = 0, 	1 = 	0, and γ = 0.1	0, and
shown for δ1 = 	0 (blue solid lines) and δ1 = 2	0 (red dashed lines),
respectively.

and Bob are given by the Fisher information in Eqs. (10)
and (11), where the sum only has one term, (mm′) = (00) for
Alice and (mm′) = (11) for Bob. Combining their records of
waiting times, however, Alice and Bob may achieve a higher
level of sensitivity. The Fisher information is then the sum of
the individual Fisher informations according to Eqs. (10) and
(11). We show in Fig. 5 the Fisher information per time for
estimation of δ1 by the separate records of Alice and Bob and
by combining their registered distribution of waiting times. In
Fig. 4(b), we observe that the delay function connected to the
channel |2〉 → |0〉 is less sensitive to changes in detuning than
the one pertaining to the |2〉 → |1〉 channel. This explains why
Bob outperforms Alice at estimating the value of δ1.

The Fisher information for the full detection record (dash-
dotted line in Fig. 5) is higher than that of Alice and Bob,
even when they combine their waiting-time records. This is
because it makes use of all detection events and, for example,
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FIG. 5. (Color online) The Fisher information per time for esti-
mation of the laser-atom detuning δ1 in a �-type system by photon
counting by Alice (green solid line) and Bob (blue dotted line), and
by use of their combined records of waiting times (red short-dashed
line). The Fisher information from the complete detection record
of both channels is shown as the dash-dotted black curve, while the
sensitivity obtained by only utilizing the total photon count [Eq. (28)]
is shown by the purple dashed curve. The results are calculated for the
parameters �0 = 5	0, �1 = 2	0, δ0 = 0, 	1 = 1, and γ = 0.1	0.

recognizes the first interval in Alice’s record in Fig. 4(a) as
two subsequent (mm′) = (01) and (10) intervals rather than a
single (00) interval.

Consider, finally, an observer who only has access to the
total, accumulated photon count. For a general multichannel
emitter, the mean photo current in the asymptotic limit is
N/T = ∑

m Tr[Ĉ†
mĈmρst(τ )]. For general counting statistics,

we have �N = √
V . This implies an uncertainty on θ given

by �θ = (∂N/∂θ )−1
√

V , i.e., for detuning estimation in our
� atom,

(�δ1)−2

T
= (	0 + 	1)2

	0
Var(τ )0

τ 2
0

+ 	1
Var(τ )1

τ 2
1

(∂ρst
22/∂δ1)2

ρst
22

, (28)

where we have used Eq. (19) and V = V0 + V1. By Eq. (1), this
can be directly compared to the Fisher information per time,

and the result of Eq. (28) is included as the purple long-dashed
curve in Fig. 5. As expected, parameter estimates obtained
from the full record and from the combined waiting-time
records of Alice and Bob achieve higher sensitivity on the
whole detuning range.

VI. CONCLUSION

The full photo-detection record of a quantum emitter
contains more information about its dynamics than the mean
signal. In this article, we have formulated a theory that
quantifies this by calculating the Cramér-Rao sensitivity limit
for multichannel quantum light emitters: The information
in the full photo-detection record may be represented as
waiting-time distributions for which Eqs. (17) and (18) provide
theoretical results, and which, by Eq. (5), supply the funda-
mental sensitivity limit given by Eq. (1). This optimal limit
may be achieved via the linear estimator given by Eq. (26)
or by a maximum likelihood estimate [5]. We exemplified the
theory by the estimation of a detuning parameter in a driven
�-type system with two distinct decay channels.

Our theory assumes an ergodic emitter, i.e., the system has
a steady state which does not depend on the initial state of the
system and which is not a dark state, such that the amount of
accumulated data grows linearly with time. We also assumed
that the decay of the system always feeds the same discrete
set of final states, so that the data record can be analyzed by
a finite number of waiting-time functions. Both the ergodicity
assumption and the restriction to a finite number of final states
are technical conditions for our method to apply, while our
underlying Bayesian description is readily applied and several
of the concepts introduced in this paper can be modified to
account for the sensitivity limit in more general cases.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Villum
Foundation and helpful comments on the manuscript from C.
K. Andersen, D. D. Bhaktavatsala Rao, P. Haikka, X. Qing,
M. C. Tichy, and A. J. C. Wade.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).
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