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Efficient quantum filtering for quantum feedback control
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We discuss an efficient numerical scheme for the recursive filtering of diffusive quantum stochastic master
equations. We show that the resultant quantum trajectory is robust and may be used for feedback based on
inefficient measurements. The proposed numerical scheme is amenable to approximation, which can be used to
further reduce the computational burden associated with calculating quantum trajectories and may allow real-time
quantum filtering. We provide a two-qubit example where feedback control of entanglement may be within the
scope of current experimental systems.
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I. INTRODUCTION

Experiments have demonstrated the ability to use contin-
uous weak measurements to control the behavior of single
quantum systems in a variety of technologies, including
optical systems [1], atom-optical systems [2], superconducting
microwave systems [3], and NV diamond [4]. More recently,
experiments have shown that it is possible to reconstruct
quantum trajectories from the experimental records gener-
ated by continuous weak measurements in superconducting
microwave devices [5,6].

The use of continuous weak measurements to probe the
behavior of individual quantum mechanical devices has been
considered for over 30 years. This is often referred to as
quantum filtering, that is, generating an estimate of the under-
lying state of the quantum system that is conditioned on the
measurements that have been obtained. Belavkin formulated
the basic theory for quantum filtering in the early 1980s [7], and
related approaches evolved independently in the late 1980s in a
number of forms (see [8] and [9] for relevant reviews). Using
classical signals generated by weak measurements to effect
controls is often referred to as measurement-based quantum
control [10] or incoherent quantum feedback control [11],
as opposed to coherent quantum feedback control [12,13]
(see [10] for a recent comprehensive review of the subject).

Continuous weak measurements are normally derived by
considering a direct (projective) measurement on a coupled
quantum system, consisting of an environment and the
quantum system of interest. If the environment is much larger
than the system of interest, any back action of the projective
measurement on the combined system will have a relatively
small (i.e., weak) effect on the system of interest, compared
to its natural evolution. It is also common to make a Markov
approximation, which assumes that any correlations between
the system and the environment are damped on time scales
shorter than any of the time scales present in the system
of interest. By averaging over the environmental degrees of
freedom, it is possible to obtain an effective evolution for the
system of interest, either in average form (the master equation)
or in a form which provides a quantum state that is conditioned
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on the specific measurement record obtained for the single
system [the stochastic master equation (SME)]. The evolution
of the conditional state represents the best estimate of the
evolution of the single quantum system of interest and provides
a quantum trajectory for that system (often referred to as an
“unraveling” of the master equation).

The ability to generate a quantum trajectory from an
experimental measurement record provides an opportunity
to implement a particular form of measurement-based or
incoherent feedback control called rapid purification. In 2003,
Jacobs proposed the use of quantum feedback control to
modify the speed at which a completely mixed (unknown)
quantum state could be purified [14]. That is, feedback is
used to modify the rate at which information about the
quantum state is extracted from the system. In [14], Jacobs
showed that the use of measurement-based feedback could
increase the average rate of purification for a single qubit
by up to a factor of 2. This control protocol is relevant
for future experiments because existing experiments require
that the system be initialized in a known pure state using
a projective measurement before the quantum trajectory can
be found [5,6]. More general approaches using mixed initial
states require information to be extracted gradually as the
weak measurements are recorded. Subsequent studies on rapid
purification showed that the proposed protocol was optimal,
in that it maximized the average rate of purification, but
it did not minimize the time taken to reach a given level
of purity [15]. Other work has generalized these results for
different optimization conditions [16], N-level systems [17],
practical implementation of the controls [18], shared entangled
states [19], imperfections [20], inefficient detection [21], and
mixed protocols [21,22]. In particular, Li et al. demonstrated
that when the efficiency of the detector is lower than 50%, there
is no predicted speedup in purification rate [21]. This result
is significant for the recent quantum trajectory experiments
in superconducting microwave systems because the estimated
detection efficiency is given as 40% in [6].

This paper has two main aims: the extension of a numerical
integration method [23] to address the case of inefficient con-
tinuous weak measurements and the application of this method
to a specific example of quantum control for two coupled
qubits in a mixed initial state. The paper provides an efficient
numerical method to solve the SME for a given measurement
record or realization. It uses this method to demonstrate a
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two-qubit feedback control scheme for completely mixed
initial states that is robust and amenable to implementation
in current experimental systems. The integration method was
discussed for efficient continuous weak measurements in [23];
here it is adapted to deal with inefficient detection and extended
to include higher order corrections. The resultant method
ensures the positivity of the conditional quantum state (as
represented by the density matrix) and can be simplified
further, reducing the computational load associated with the
solution of the SME without a commensurate effect on the
accuracy of the conditioned state. The intention is to develop
a quantum filter that could be used for online quantum state
estimation and feedback control.

II. NUMERICAL METHOD

For a quantum system, represented by a density matrix ρ,
coupled to a Markovian environment, represented by a set of
environmental operators Vj (j = 1 . . . m), the master equation
in Linblad form is given by [9]

dρ = −i[H,ρ]dt

+
m∑

j=1

{
VjρV

†
j − 1

2
(V †

j Vjρ + ρV
†
j Vj )

}
dt, (1)

where H is the Hamiltonian of the system and dt is an
infinitesimal time increment.

If we select some of the environmental operators to provide
a set of continuous weak measurements Lr (r = 1 . . . m′,m′ <

m), with efficiencies ηr , the corresponding SME for the

conditioned state ρc is then given by [9]

dρc = −i[H,ρc]dt

+
m−m′∑
j=1

{
VjρcV

†
j − 1

2
(V †

j Vjρc + ρcV
†
j Vj )

}
dt

+
m′∑

r=1

{
LrρcL

†
r − 1

2
(L†

rLrρc + ρcL
†
rLr )

}
dt

+
m′∑

r=1

√
ηr (Lrρc + ρcL

†
r − Tr(Lrρc + ρcL

†
r )ρc)dWr,

(2)

where we have taken dWr to be a real Wiener incre-
ment (such that dWr = 0 and dWrdWr ′ = δrr ′dt). The mea-
surement record for each of the measurement operators
Lr during a time step t → t + dt is given by dyr (t) =√

ηj Tr(Lrρc + ρcL
†
r )dt + dWr . The previous case considered

in [23] deals with the case where ηr = 1 for all environmental
operators Lr .

For a given initial state, a system and a set of environmental
operators, the SME may be integrated using standard numer-
ical stochastic integration methods, e.g., the Euler-Maruyama
method (which is weakly convergent to first order) or the
Euler-Milstein method (strongly convergent to first order) [24].
For an SME of the form (2) with commuting measurement
operators ([Lr,Ls] = 0 for r,s between 1 and m′), the Euler-
Milstein increment for a finite time step �t and finite stochastic
increments �Wj can be computed using [24,25]

�ρc = −i[H,ρc]�t +
m−m′∑
j=1

{
VjρcV

†
j − 1

2
(V †

j Vjρc + ρcV
†
j Vj )

}
�t

+
m′∑

r=1

{
LrρcL

†
r − 1

2
(L†

rLrρc + ρcL
†
rLr )

}
�t +

m′∑
r=1

√
ηr (Lrρc + ρcL

†
r − Tr(Lrρc + ρcL

†
r )ρc)�Wr

+
m′∑

r,s=1

√
ηrηs

2

⎛
⎜⎜⎜⎜⎜⎜⎝

LrLsρc + ρcL
†
rL

†
s + LsρcL

†
r + LrρcL

†
s

−Tr(LrLsρc + ρcL
†
rL

†
s + LsρcL

†
r + LrρcL

†
s)ρc

−Tr(Lsρc + ρcL
†
s)(Lrρc + ρcL

†
r )

−Tr(Lrρc + ρcL
†
r )(Lsρc + ρcL

†
s)

+2Tr(Lrρc + ρcL
†
r )Tr(Lsρc + ρcL

†
s)ρc

⎞
⎟⎟⎟⎟⎟⎟⎠

(�Wr�Ws − δr,s�t), (3)

where δr,s is the Kronecker δ symbol, and the �Wr ’s are independent Gaussian variables with zero mean and a variance equal
to �t .

The Euler-Milstein increment is strongly convergent to first order in �t , but the stochastic increment �Wr is only half-order in
�t , so (�Wr )2 terms need to be retained [24]. The form given in (3) does guarantee that ρc is Hermitian, up to numerical rounding
errors due to the accuracy of the floating point calculations, however, it is computationally expensive and the formula does not
guarantee the positivity of the resultant density matrix. An alternative form for the increment, which ensures the positivity of ρc,
can be derived from an alternative expansion [23] to second order in �Wr that provides a positive operator-valued measure [9].
The increment for a time step t = n�t → (n + 1)�t is then given by �ρc(n) = ρc(n + 1) − ρc(n), where

ρc(n + 1) = Mnρc(n)M†
n + ∑m−m′

j=1 Vjρc(n)V †
j �t + ∑m′

r=1(1 − ηr )Lrρc(n)L†
r�t

Tr
(
Mnρc(n)M†

n + ∑m−m′
j=1 Vjρc(n)V †

j �t + ∑m′
r=1(1 − ηr )Lrρc(n)L†

r�t
) (4)
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and where the operator Mn is given by

Mn = I −
⎛
⎝iH + 1

2

m−m′∑
j=1

V
†
j Vj + 1

2

m′∑
r=1

L†
rLr

⎞
⎠ �t +

m′∑
r=1

√
ηrLr (

√
ηrTr(Lrρc(n) + ρc(n)L†

r )�t + �Wr (n))

+
m′∑

r,s=1

√
ηrηs

2
LrLs(�Wr (n)�Ws(n) − δr,s�t). (5)

However, we note that the integrated measurement records
over the time step �yr (n) are given by

�yr (n) = √
ηj Tr(Lrρc(n) + ρc(n)L†

r )�t + �Wr (n), (6)

so the operator Mn can be simplified to give

Mn = I −
⎛
⎝iH + 1

2

m−m′∑
j=1

V
†
j Vj + 1

2

m′∑
r=1

L†
rLr

⎞
⎠ �t

+
m′∑

r=1

√
ηrLr�yr (n)

+
m′∑

r,s=1

√
ηrηs

2
LrLs(�yr (n)�ys(n) − δr,s�t), (7)

where the state update is still given by (4).

III. EXAMPLE SYSTEM: TWO COUPLED QUBITS

To demonstrate the efficiency and the robustness of the
proposed method, we consider a specific two-qubit example.
A two-qubit example has been selected because single-qubit
quantum control and state estimation have been studied
extensively [14–16,18,20–22], and two-qubit quantum control
offers the potential to manipulate the entanglement between
the two qubits as well as the rate of purification [19,26–28].
Examples demonstrating that quantum feedback can be used
to stabilize or control the level of entanglement in two-qubit
systems have been discussed for stochastic quantum jump
processes [26–28] and continuous unravelings of the master
equation [19,27,28].

We consider the case where each qubit has an intrinsic
Hamiltonian H0 = ωX/2, where X, Y , and Z are the Pauli
matrices. This Hamiltonian generates a rotation of the indi-
vidual qubit Bloch vector around the respective X axis, with
angular frequency ω. We introduce a coupling between the two
qubits that couples the Z components of the Bloch vectors. The
total Hamiltonian (in the absence of controls) is given by

H = ω

2
(XI + IX) + κ(ZZ), (8)

where the tensor product is implied (i.e., ZZ = Z ⊗ Z), I

is the identity matrix, and κ is the strength of the coupling
between the two qubits.

In most of the cases considered here, we fix the qubit
rotation frequency to be a standard value, ω = ω0, which is
used to fix the size of the time steps used in the numerical
integration, so that �t = 2π/(Nω0) and N is the number
of steps per cycle. Each of the qubits is measured along its

Bloch Z axis and these measurements are inefficient, so that
the environmental operators are L1 = √

2k1(ZI ) and L2 =√
2k2(IZ), where k1 and k2 are the measurement strengths,

with efficiencies η1 and η2, respectively. We also fix the qubit-
qubit coupling and the measurement strengths to be relatively
weak so that the individual qubit evolution is perturbed but not
dominated by the coupling or the measurement interactions.
We use κ = 0.010ω0, k1 = k2 = 0.005ω0, and η1 = η2 = 0.85
in all of the examples. The measurement efficiencies are better
than those available to the experimental systems described
in [5] and [6]; however, the values are not so close to
100% efficiency as to be unrealistic. Lower values for the
measurement efficiency do reduce the level and robustness of
the steady-state entanglement found in the two-qubit control
example below, but the results presented below are not
critically dependent on the precise value of the measurement
efficiency. The two (local) measurement records are

�y1 =
√

8k1η1Tr(ZIρ) + �W1,

�y2 =
√

8k2η2Tr(IZρ) + �W2,

and there are no extraneous unprobed environmental degrees
of freedom, Vj , for simplicity.

IV. NUMERICAL ACCURACY

To explore the accuracy of the proposed method, a separable
initial pure state and a completely mixed (unknown) initial
state are integrated over 50 oscillation periods using the
Euler-Milstein increment with ω = ω0 and N = 5000 steps
per cycle. No controls are applied, and the qubits are allowed
to rotate freely around their respective X axes. Figure 1(a)
shows the average purity for both the pure state and the mixed
state; both states converge to an entangled mixed state with an
average purity of around 0.85. The integrated state found using
5000 steps per cycle is then compared against integrated states
found using the Euler-Milstein method with longer integration
steps (i.e., fewer steps per cycle) and compared against the
proposed method with much longer time steps. The only
modification to the methods described above is due to the fact
that the accuracies of the resultant states are quite sensitive to
the Hamiltonian part of the integration step. Because of this
sensitivity, the Hamiltonian evolution terms are expanded to at
least second order in �t . The other second-order terms in �t

are much smaller and can be removed. The comparison uses
the fidelity, F [29],

F = F (ρ0,ρc) = |Tr[
√√

ρcρ0
√

ρc]|2,
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FIG. 1. (Color online) (a) Average purity for the initial pure state
(solid black line) and initial completely mixed state (dashed black
line) calculated using the Euler-Milstein method with 5000 steps per
cycle. (b) The 1 − average fidelity, where the fidelity is calculated
between an initial pure state with 5000 steps per cycle and an initial
completely mixed state using the Euler-Milstein method with 1000
steps [(blue) crosses], 500 steps [(red) circles], and 250 steps [(green)
asterisks] per cycle. (c) The 1 − average fidelity, where the fidelity is
calculated between an initial pure state with 5000 steps per cycle and
an initial completely mixed state using the proposed method with 250
steps [(blue) crosses], 100 steps [(red) circles], and 50 steps [(green)
asterisks] per cycle;- all values averaged over 1000 realizations.

between the estimated (conditioned) state and the conditioned
state generated using 5000 steps per cycle, ρ0, as a metric.

Figure 1(b) shows the accuracy of the Euler-Milstein
integration method for different numbers of steps per qubit
cycle—1000, 500, and 250 steps per cycle—and gives the
average value of 1 − F , where the fidelity is averaged over a
large number of realizations (1000 realizations, in this case).
The integration errors decrease with more steps per cycle,
as expected, but 250 steps per cycle is sufficient to produce
a relatively high-fidelity state, F > 99%. The corresponding
calculations for the proposed method are shown in Fig. 1(c)
and, also, compared against the state generated using the
Euler-Milstein method with 5000 steps per cycle. In Fig. 1(c),
the number of steps per cycle is 250, 100, and 50. The
same accuracy can be achieved using the state update, (4),
with four to five times fewer integration steps than the
standard Euler-Milstein method: 50 steps per cycle provides
a conditioned state with a high average fidelity, F > 99%.
Recent experiments have generated quantum trajectories using
measurements that had been sampled around 60 times per
qubit oscillation period [6], so measurement rates of around
50–60 measurements per cycle can be considered to be the
current “state of the art” for practical systems, albeit without

feedback control. To move towards a practical implementation
of quantum feedback control in such systems, the quantum
trajectories and the corresponding controls would need to be
generated in real time.

Although it is not shown here, the numerical benefit is
even more pronounced when the purity of the state approaches
1. The Euler-Milstein method can give rise to unphysical
conditioned states with purities significantly above 1. This
numerical instability is greater with larger integration steps,
and it can lead to unreliable results of numerical integration.
For the proposed method, the normalization contained in
the positive-operator-valued-measure-like update, (4), dramat-
ically reduces the likelihood of such unphysical conditioned
states and the resultant purity is significantly more stable than
that found using the Euler-Milstein method.

V. EXAMPLE: QUANTUM CONTROL

In this section, we examine how the proposed numerical
method can be used with quantum feedback control to
affect the entanglement of the two qubits described by the
Hamiltonian, (8). The two measurement records are local and
we restrict ourselves to local controls, for simplicity and to
demonstrate that feedback control provides some advantages
even without explicit control over the entangling interaction
itself [26–28]. In the one-qubit case, the approach to quantum
rapid purification has centered on the use of Bloch rotations to
rotate the conditioned qubit state towards the plane orthogonal
to the measurement axis [14], or towards the measurement
axis [15], or some combination of the two [21,22]. These
approaches have the advantage of being relatively robust
and insensitive to small errors in these rotations [18]. In the
two-qubit case, we examine the use of local controls that rotate
the Bloch vectors for the individual qubits (corresponding to
a partial trace of the density matrix over the other qubit state)
towards one or another of the three main axes: i.e., rotations
towards the XI, Y I , or ZI axis for qubit 1 and the IX, IY , or
IZ axis for qubit 2. The controls applied are calculated at each
time step by taking the estimated one-qubit Bloch vector and
a target state (aligned along one or another of the one-qubit
axes) and then rotating the Bloch vector onto the target state
using a rotation based on Rodriques’ rotation formula [30].
The resultant rotations are similar to bang-bang controls [31],
but once the Bloch vectors are close to the target axes, the
controls are relatively small. The controls are applied at the
end of an integration time step, so the number of time steps
reflects the number of control rotations that are required in
every qubit cycle.

We characterize the entanglement in terms of the concur-
rence [32] and the negativity [33]. Two entanglement metrics
are used because the ordering of mixed states in terms of
their entanglement (i.e., the entanglement of the state ρ is
greater than that of the state ρ ′) can be different for different
entanglement measures [33], and two different metrics gives
more confidence that the relative ordering of the resultant states
is robust—although, in some of the examples, the difference
between the concurrence and the negativity is very small
and only the concurrence values are given. For a two-qubit
mixed-state density matrix ρ the concurrence is given by

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4},
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FIG. 2. (Color online) (a) Average concurrence (dashed lines)
and average negativity (solid lines) for the three control strategies for
a completely mixed initial state, averaged over 500 realizations and
250 steps per cycle using the proposed integration scheme: two-qubit
YI and IY controls [(blue) crosses], one-qubit XI controls [(red)
circles], and no controls, i.e., free rotation about the qubit X axes
[(green) asterisks]. (b) Concurrence (dashed lines) and negativity
(solid lines) for one realization of the three control strategies in (a).

where
√

λ1, . . . ,
√

λ4 are the eigenvalues of the matrix
ρ(YY )ρ∗(YY ) in nondecreasing order and the negativity N
is given by twice the absolute sum of the negative eigenvalues
of the partial trace of ρ with respect to one of the individual
systems [33].

If no controls are applied to the system, and the qubits are
allowed to rotate freely under the action of their respective
Hamiltonians, there is a small buildup of entanglement in
the system because of the ZZ coupling term. Figure 2(a)
shows the average entanglement for a completely mixed initial
state with no controls applied [(green) lines with asterisks].
The average concurrence is limited to around C � 0.11–0.12
(N � 0.09–0.10). Figure 2(b) shows a single realization,
where the entanglement varies significantly as a function of
time (between 0 and C � 0.20). Figure 2 also shows the
average entanglement if controls are only applied to one of
the two qubits: one qubit Bloch vector is rotated towards
its X axis (XI , in this case) and the other is allowed to
rotate under the action of the Hamiltonian. The result is a
small improvement in the rate of generation of entanglement
and a marginal improvement in the average entanglement
value C � 0.12–0.13 (N � 0.11–0.12), and—as with the no-
control case—the entanglement for an individual realization is
stochastic. Controls that rotate one of the qubits towards one
of the other axes, Y or Z, do not generate entanglement as long
as the intrinsic Hamiltonian rotations are significant.

Due to the symmetry of the example (two iden-
tical qubits), there are six possible two-qubit controls

available, rotating towards the following pairs of axes:
XI/IX, XI/IY, XI/IZ, Y I/IY, Y I/IZ, and ZI/IZ. Of
these, only simultaneously rotating towards the YI and IY

axes generates a reasonable level of entanglement. The steady-
state entanglement for the YI/IY controls is approximately
C � 0.34 (N � 0.33), with small fluctuations around this
value [see Fig. 2(b)]. (The maximum possible entanglement
achievable in this system—with κ = 0.010ω0 and perfect
100% measurement efficiencies—corresponds to C � 0.45.)
Compared with the no-control and one-qubit-control cases,
this entanglement is relatively robust; the stochastic fluc-
tuations are small compared to the average entanglement.
The entanglement for the two-qubit YI/IY control case
corresponds to a mixed state which is approximately described
by

ρYI/IY � 1

4
(0.85(YI + YY + IY ) − 0.40(XZ + ZX)),

with smaller XY and YX cross terms. The other combinations
provide zero entanglement. It is the combined effect of the
rotations about the X axis and the repeated rotations to the
individual YI and IY axes that allows entanglement to be
generated through the addition of the XZ and ZX terms in
ρYI/IY . Note that rotating both qubits towards the X axes (i.e.,
XI/IX controls) generates zero entanglement, even though
rotating one of the two qubits towards its X axis does provide
a small amount of additional entanglement.

If we were to remove the Hamiltonian evolution (rotation
around the respective X axes), the cases XI/IX, YI/IY ,
and XI/IY should be identical, and this is indeed the case.
However, in these cases—with no Hamiltonian evolution—the
local controls generate the same level of entanglement as
the rotating YI/IY case (C � 0.34). Any combination that
includes rotations towards one of the individual Z axes
generates no entanglement. If rotating the individual Bloch
vectors towards the XI/IY or XI/IX axes generates a
reasonable level of entanglement in the absence of Hamiltonian
rotations, and zero entanglement when ω = ω0, this could
provide a mechanism to control the level of steady-state
entanglement in the system. Varying the rate of Hamiltonian
rotation allows the buildup of entanglement to be moderated
without changing the control protocol (see Fig. 3).

VI. EXAMPLE: APPROXIMATE QUANTUM CONTROL

The SME provides the best (Bayesian) estimate of the
quantum trajectory of the individual system given the par-
ticular continuous weak measurement record or realization,
�y(n). The potential problem is that the calculations required
to construct this estimate could be impractical to perform in
real time or—preferably—quicker than real time, to allow
feedback controls to be applied in real time. There are a
number of ways in which a state estimation filter can be
modified to improve the computational efficiency. In classical
state estimation, it is common to introduce approximations
into the state update (measurement) and state prediction
(system dynamics) processes [34–36]. The rationale for these
approximations is that a state estimate does not necessarily
have to be optimal to be useful. In the case of quantum
feedback control, the requirement is that the estimated state
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FIG. 3. (Color online) Average concurrence (dashed lines) and
average negativity (solid lines) for the two-qubit controls rotating
towards the YI/IY [(blue) crosses], XI/IY [(red) circles], and
XI/IX [(green) asterisks] axes as functions of the Hamiltonian
rotation (angular) frequency ω/ω0, after 50 cycles (ω0) averaged
over 500 realizations and 250 steps per cycle using the proposed
integration scheme.

is sufficiently close to optimal for the quantum filter or
SME to be stable under the action of the resultant controls
(that is, deviations between the optimal and the approximate
state estimate vanish in the long-time limit). Standard ap-
proaches that could be used to simplify the SME include (i)
removal of small terms, (ii) use of fixed or filtered values

to replace the rapidly fluctuating dynamical variables, (iii)
analytic approximations, and (iv) replacement of continuous
variables with discrete values (analog-to-digital conversion).

Using the state update, (4), there are a number of benefits
in terms of computational efficiency compared to the standard
Euler-Milstein method. The first is that the measurement
record can be used directly in (7) and the majority of the oper-
ations applied to the density matrix are constant from time step
to time step (assuming that the measurement and environment
operators do not change in time). This reduces the number
of calculations required to find the new conditioned state by
reducing the number of operations that require quantities to be
calculated from ρc. The only operation requiring properties of
ρc to be calculated is in the normalization step, i.e., division by
the trace of the numerator in (4). In fact, because the positivity
of the density matrix is ensured by the modified update step,
the resultant quantum filter is also more stable numerically
than the standard Euler-Milstein method, leading to the use of
larger time steps seen in Sec. IV.

In addition to these numerical benefits, we now consider
two approximations to reduce the computational demands even
further for the specific control case considered here. The next
step is to identify the smallest terms in the Mn operator to trun-
cate the calculations (i.e., removal of small terms). As already
stated, the Hamiltonian evolution is dominant, for ω � ω0,
and the expansion of the Hamiltonian terms needs to be at
least second order in �t . Of the other terms, the L

†
rLr�t

and (�yr�ys − δr,s)�t terms are two orders of magnitude
smaller than the other terms, and they can be removed without
a significant effect on the fidelity of the final estimated state.
The resultant approximate state update is then given by

ρc(n + 1) = M
(approx)
n ρc(n)

(
M

(approx)
n

)† + (1 − η1)2k1(ZI )ρc(n)(ZI )�t + (1 − η2)2k2(IZ)ρc(n)(IZ)�t

Tr
(
M

(approx)
n ρc(n)

(
M

(approx)
n

)† + (1 − η1)2k1(ZI )ρc(n)(ZI )�t + (1 − η2)2k2(IZ)ρc(n)(IZ)�t
) , (9)

where

M (approx)
n = I − (iH + (k1 + k2)I )�t − 1

2
H 2(�t)2 +

√
2η1k1(ZI )�y1(n) +

√
2η2k2(IZ)�y2(n). (10)

The effect of these approximations is to limit the accuracy
of the integration and the resultant conditioned state. For 50
steps per cycle, the fidelity of the conditioned state is around
99.5% (Fig. 4). For 20 steps per cycle, the fidelity of the
conditioned state is around 98%; however, the entanglement
of the estimated state is robust to the use of the approximate
operator, (10), as long as the number of steps is greater than
20 per cycle. At 10 steps per cycle, there is a significant
reduction in the entanglement of the estimated state.

The next approximation that we consider is the precision of
the measurement record itself. Any numerical method using
an experimental measurement requires that the analog mea-
surements be digitized to a finite number of bits. The ability to
digitize an analog measurement is limited by the speed of the
analog-to-digital converters used in the experimental setup,
and any saving in terms of the number of bits used to store the
measured values will have a knock-on effect on the efficiency
of the processing. Conventionally, the number of bits used for

an experimental value is either 8, 16, or, possibly, 32. Here,
we consider far fewer bits per measurement (sample) value.
Figure 5 shows the average concurrence and 1 − average
fidelity for different numbers of bits using the approximate
operator, (10): 6, 4, 3, and 2 bits. For each number of bits, the
signal is discretized between a set of thresholds (n bits and
2n discrete values requires 2n − 1 threshold values), where
the thresholds are uniformly distributed between ±3

√
�t . The

measurement signals contain a significant Gaussian noise term,
so this range corresponds roughly to 3 standard deviations. For
4 or more bits per measurement, the accuracy of the resultant
state is unaffected by the reduced number of bits, with the
average fidelity approaching 99%, and the entanglement of the
estimated state is robust for 3 or more bits per measurement.
Similar calculations using 20 integration steps per cycle show
similarly robust results, with an average fidelity of around 98%.
Numerical calculations using a single bit per measurement
have been demonstrated elsewhere [37], but this requires
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FIG. 4. (Color online) (a) Average concurrence for the two-qubit
controls rotating towards YI/IY for ω = ω0 using the approximate
update operator, (10), with 500 steps per cycle (solid black line), 50
steps per cycle [(blue) crosses], 20 steps per cycle [(red) circles], 10
steps per cycle [(green) asterisks], and 5 steps per cycle [(purple)
diamonds]. (b) The 1 − average fidelity values corresponding to the
concurrence values in (a); all values averaged over 500 realizations,
with fidelities compared against solutions using the proposed integra-
tion scheme with 500 steps per cycle.

significantly higher measurement frequencies than the results
demonstrated here.

VII. CONCLUSIONS

In this paper, we have discussed a method for the efficient
integration of the SME for a quantum system under the action
of continuous weak measurements, and we have demonstrated
that it offers significant advantages in terms of accuracy and
stability over the Euler-Milstein integration method for finite
time steps. We have used an example with two coupled qubits
subject to inefficient local measurements and local controls to
show that the proposed method can be used with incoherent
(measurement-based) quantum feedback control. The fidelity
of the estimated (conditioned) quantum state and the resultant
quantum trajectory are very good, even when the number
of integration steps is very low (or the time steps are very
long). In addition, the entanglement between the two qubits is
remarkably robust for very low numbers of time steps, and with
a number of additional simplifying approximations for the state
update process and for the digitization of the measurement
signal. Using as few as 3 or 4 bits per measurement and 50
measurements per qubit period would allow the construction
of a conditioned state that is sufficiently accurate (fidelity, F �
99%) to allow feedback control to be used to generate states
with a concurrence very close to the maximum obtainable.
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FIG. 5. (Color online) (a) Average concurrence for the two-qubit
controls rotating towards YI/IY for ω = ω0 with 500 steps per
cycle (solid black line) using a full measurement record and 50
steps per cycle using a measurement record truncated to 6 bits
per measurement [(blue) crosses], 4 bits per measurement [(red)
circles], 3 bits per measurement [(green) asterisks], and 2 bits per
measurement [(purple) diamonds]. (b) The 1 − average fidelity values
corresponding to the concurrence values in (a); all values averaged
over 500 realizations, with fidelities compared against solutions using
the proposed integration scheme with 500 steps per cycle.

The ability to use local measurements, an efficient state es-
timation process, and local quantum feedback controls to ma-
nipulate the entanglement between two coupled qubits offers
a range of experimental realizations. The required continuous
measurement frequencies are within the scope of recent ex-
perimental developments and have been demonstrated through
the calculation of quantum trajectories from continuous weak
measurements [5,6]. The main obstacles to demonstrating such
feedback control of entanglement are the efficiency of the local
measurement interactions and the the ability to calculate the
updates in real time. The results given above are not critically
dependent on the efficiency of the measurement process, but
lower efficiency measurements limit the purity and the entan-
glement found in the final conditioned state. The ability to use
fairly coarse approximations in the update step and limited bit
digital measurements should assist greatly when implementing
the state estimation process and the feedback controls for
hardware and/or software reconfigurable processors.
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