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Bipartite quantum entangled systems can exhibit measurement correlations that violate Bell inequalities,
revealing the profoundly counter-intuitive nature of the physical universe. These correlations reflect the
impossibility of constructing a joint probability distribution for all values of all the different properties observed
in Bell inequality tests. Physically, the impossibility of measuring such a distribution experimentally, as a set
of relative frequencies, is due to the quantum back-action of projective measurements. Weakly coupling to a
quantum probe, however, produces minimal back-action, and so enables a weak measurement of the projector
of one observable, followed by a projective measurement of a noncommuting observable. By this technique it
is possible to empirically measure weak-valued probabilities for all of the values of the observables relevant to
a Bell test. The marginals of this joint distribution, which we experimentally determine, reproduces all of the
observable quantum statistics including a violation of the Bell inequality, which we independently measure. This
is possible because our distribution, like the weak values for projectors on which it is built, is not constrained
to the interval [0,1]. It was first pointed out by Feynman that, for explaining singlet-state correlations within “a
[local] hidden variable view of nature . . . everything works fine if we permit negative probabilities.” However,
there are infinitely many such theories. Our method, involving “weak-valued probabilities,” singles out a unique
set of probabilities, and moreover does so empirically.
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I. INTRODUCTION

Entanglement is the most strikingly counter-intuitive prop-
erty of quantum physics, and also underpins many quantum
information technologies [1–5]. As first discussed by Einstein,
Podolsky, and Rosen [6], the quantum description of bipartite
entangled systems is incompatible with the notion that systems
have properties that exist locally, independent of measurement,
and unaffected by distant events. This is formalized as the joint
assumption of locality (that causal influences are lightspeed-
limited) and realism (that systems possess objective properties
that determine measurement results). Following Bell’s proof
that this joint locality-realism assumption leads to empirically
testable inequalities [7], many experiments (e.g., [8–15]) have
demonstrated that at least one of these assumptions must be
false, contrary to our strong classical intuitions.

Tests of Bell inequalities typically involve measuring two
pairs of observables, one pair on each system. Because
the observables in each pair must be noncommuting (e.g.,
σ̂X = X̂ and σ̂Z = Ẑ of a quantum bit), measurement back-
action makes it impossible to simultaneously measure all
four combinations of observables. Rather, only one of the
four combinations can be measured on each instance of the
bipartite state. As particular measurement combinations are
chosen, randomly and locally, throughout a Bell experiment,
observed correlations in measurement results contradict the
joint locality-realism assumption, evident as a violation of the
Bell inequality under the conditions of standard probability
theory [16].
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The assumption of locality and realism is equivalent to the
existence of a joint probability distribution over all outcomes
for all observables, even if these cannot be measured as relative
frequencies because of measurement back-action. Implicit in
this formulation is that every probability in the distribution
must be between 0 and 1, inclusively. As first noted by
Feynman in the context of singlet correlations which violate
local realism [17], for a local hidden variable (LHV) theory,
“everything works fine if we permit negative probabilities.”
That is, by relaxing this condition and allowing for anomalous
probabilities—which includes both negative probabilities and
their necessary correlate (because of normalization), proba-
bilities greater than unity—the discrepancy between intuitive
concepts of local realism and the actuality of quantum exper-
iments can be made to vanish. Feynman gave one procedure
for constructing a local hidden variable theory based on
anomalous probabilities, defining a complete joint distribution
of anomalous probabilities. However, there are infinitely many
such distributions, all of which satisfy the remaining conditions
of probability and the experimental model.

One formalism which has proven useful for providing
unique answers where standard quantum mechanics provides
no answer, or many possible answers, is that of weak values
[18]. These have been applied experimentally to areas as
diverse as elucidating the three-box paradox [19], measuring
Bohmian-like trajectories [20], and testing measurement dis-
turbance and complementarity relations [21–24], providing
new ways to understand counter-intuitive and apparently
paradoxical behaviors found in quantum systems. In weak
measurements, quantum back-action is made arbitrarily small
by having a weak coupling between system and measurement
probe. Thus, it is possible to perform a weak measurement of
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an eigenprojector for one observable (Ẑ, for example) followed
by a strong measurement of a complementary observable
(e.g., X̂) on the same particle. Although the results of weak
measurements have a large variance due to the weak coupling,
a good signal-to-noise ratio can be achieved by averaging over
a sufficiently large ensemble. Importantly, every member of
the ensemble is subject to the same measurement.

Using this technique of a weak measurement of one
projector, followed by a strong measurement of a different
observable, one can “observe the unobservable,” namely joint
probabilities for the outcomes of incompatible measurements
on an individual system. To be more precise, weak values pro-
vide empirically grounded “weak-valued” joint probabilities,
which may of course be anomalous. In this paper, we apply
this idea to polarization-entangled photons, to determine a
unique distribution of weak-valued joint probabilities for the
complementary observables used in a Bell-type experiment,
out of the infinite set of such distributions. Such anomalous
weak-valued probabilities are encapsulated in a particular set
of marginals of these distributions, and it is these marginals
which we demonstrate experimentally. We stress that our
experiment does not constitute a Bell test, but rather gives
empirical meaning to Feynman’s style of “explanation” for
the paradoxical correlations in such a test. However, we do
independently perform a Bell test on the same two-photon
entangled states. (We do not attempt to close any of the
applicable loopholes, however, as that is not the focus of
this work.) This work was inspired by Hoffman’s proposal
[25,26] for inferring properties of a quantum system between
preparation and the final strong measurements. Our weak-
measurement technique is similar to that in other recent
experiments [20,22,27,28].

II. APPLYING WEAK MEASUREMENT FORMALISM
TO THE CHSH OBSERVABLES

To investigate quantum correlations through weak mea-
surements we study a version of Bell’s inequality often used
for experimental demonstrations, that due to Clauser, Horne,
Shimony, and Holt (CHSH) [29]. The CHSH inequality can be
written as a bound on the expectation value of the CHSH pa-
rameter, which is the following correlation between measure-
ment results on a pair of observables on each of two systems:

SCHSH = (X + Z)P + (X − Z)Q. (1)

Here X,Z ∈ {±1} are random variables representing the
results of a pair of measurements on Alice’s system A, and
P,Q ∈ {±1} similarly for Bob’s system B. In any individual
experimental run, SCHSH may then take one of two values:
+2 or −2. Assuming locality and realism, we can evaluate
the expectation of this by summing over the 16 possible
combinations of measurement outcomes, denoted by the
corresponding lowercase letters:

〈SCHSH〉 =
∑

x,z,p,q

[(x + z)p + (x − z)q] Pr[x,z,p,q]. (2)

Note only one of (x + z)p or (x − z)q contributes to each term
of the sum because one must be zero. If the probability of each
outcome is 0 � Pr[x,z,p,q] � 1, it is simple to arrive at the
CHSH inequality, |〈SCHSH〉| � 2. Under strict experimental
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FIG. 1. (Color online) Measurements on entangled states. A
source produces a pair of systems and sends one each to Alice and
Bob, who each measure from two possible observables. In a Bell test,
(a) Alice and Bob each choose one or the other observable to measure
strongly for each system. Using weak measurements (b) no such
choice is necessary, as Alice and Bob may collect statistics of every
observable with a fixed configuration. Doing so, Alice and Bob may
infer probabilities for simultaneous outcomes that cannot be measured
directly. Alternatively (c), Alice may perform weak measurements
while Bob performs strong measurements. Configurations (b) and (c)
generate identical weak-valued joint probabilities for values of the
CHSH parameter SCHSH owing to its factorization (see text).

conditions, demonstration of a statistically certain violation
of the CHSH inequality implies that the assumption of local
realism must fail.

Quantum mechanics permits violation of this inequality
when, e.g., Alice and Bob each possess one part of the
maximally entangled 2-qubit singlet state, |�−〉 = (|0〉A ⊗
|1〉B − |1〉A ⊗ |0〉B)/

√
2. The CHSH parameter becomes the

operator,

ŜCHSH = (X̂ + Ẑ) ⊗ P̂ + (X̂ − Ẑ) ⊗ Q̂. (3)

To maximize violation of the CHSH inequality [30], Alice can
use the Pauli observables X̂ ≡ |0〉 〈1| + |1〉 〈0|, Ẑ ≡ |0〉 〈0| −
|1〉 〈1|, and Bob the observables P̂ ≡ −(Ẑ + X̂)/

√
2 and Q̂ ≡

(Ẑ − X̂)/
√

2 (Fig. 1). A simple calculation yields |〈ŜCHSH〉| =
|〈�−| ŜCHSH |�−〉| = 2

√
2, violating the CHSH inequality by

a factor of
√

2.
Feynman [17], famous for “thinking outside the box,”

suggested a different way to interpret this result. He noted that
it is possible to obtain the quantum probability distribution
for measurements on a singlet state as follows. Let V± be the
event that Alice obtains the result ±1 when measuring Pauli
observable V̂ and likewise U± for Bob [31]. Then the complete
set of singlet correlations can be obtained by considering
Pr[U+,V+] for all U and V . Feynman shows that this can
be written as

Pr[U+,V+] =
∑
a,b

Pab ℘a(V+) ℘b(U+), (4)

where a and b are local hidden variables, and ℘a(V+) is the
probability of event V+ conditioned on the value of Alice’s
LHV a, and ℘b(U+) similarly. Of course this equation could
not possibly reproduce the singlet correlations, which disprove
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the possibility of any LHV theory, if it were not for the
fact that Feynman allows the probability distribution over
the hidden variables Pab to take anomalous (e.g., negative)
values. Reverting to the notation we used above, Feynman’s
model defines a joint distribution for observables X,Z,P ,
and Q,

Pr[x,z,p,q] =
∑
a,b

Pab℘a(Xx) ℘a(Zz) ℘b(Pp) ℘b(Qq). (5)

where x (for example) takes values ±1 as above, and
corresponds to the events X±. This joint distribution allows
violation of the CHSH inequality because it contains anoma-
lous probabilities emanating from those in Pab.

Feynman’s prescription is certainly not the only one for
constructing an anomalous joint distribution yielding the
CHSH correlations. In fact there are an infinite number of
distributions Pr[x,z,p,q] consistent with these correlations.
This is because it takes (imposing normalization) 15 real
numbers to specify all the Pr[x,z,p,q], whereas in any
experiment involving projective measurements, the full set
of joint probabilities (such as Pr[x,p], etc.) yields only
eight independent real numbers, because of the no-signaling
property of quantum mechanics [32]. (Each of the four
joint probability distributions, like Pr[x,p], defines four
probabilities, but one of each has one redundant probability
from normalization, giving 12 parameters. No-signaling then
gives four constraints, each one like

∑
p Pr[x = +1,p] =∑

q Pr[x = +1,q], leaving eight free parameters. Note that
these constraints are satisfied automatically by any normalized
joint distribution Pr[x,z,p,q].)

In this paper, we describe a strategy that provides unique
values for the joint probabilities in (2), grounded in observation
using weak measurements as the enabling tool. The key feature
of weak measurements is that they minimize measurement
back-action. This allows measurement results to be obtained
for all four variables (X, Z, P , and Q) for the same two-qubit
system simultaneously. For example, weak measurements can
be performed in the Ẑ basis on subsystem A and in the Q̂ basis
on subsystem B, before strongly measuring the subsystems in
the X̂ and P̂ bases, respectively. Through this process one
can determine |〈ŜCHSH〉| using fixed measurements on every
system in the ensemble. (This theoretical possibility was also
noted in [28].)

Weak measurement results have large variance due to the
weak coupling between the system and the probe. However, the
formalism of weak values allows us to extract an empirically
defined average value for the observables weakly measured
on the ensemble. Within the overall ensemble of identically
prepared states, subensembles of systems can be defined
by postselection, i.e., by the outcome of the final strong
measurement. For each such subensemble, the average value
of the results of the weak intermediate measurement, of some
observable Ô in general, is known as the weak value [18]
of Ô over that subensemble, which observationally grounds
any discussion about the value of Ô between preparation
and measurement. For qubits, every Hermitian operator is
proportional to the identity plus a projector; the former has
a weak value of one, and the latter has a weak value that can

be termed a weak-valued probability, Prw, for the system to
have the property represented by that projector. That is, for
qubits, every measurement of a weak value is equivalent to
measuring a weak-valued probability [33].

To apply this idea to the CHSH inequality, first consider
the weak measurement in the Ẑ basis of a single qubit in state
|ψ〉, followed by a strong measurement of X̂. The latter can be
equivalently framed as a postselection on the system being
found in the measurement eigenstate |φ(x)〉 corresponding
to the result x. For this postselected ensemble, the weak
value of Ẑ is the expectation value of the results of the weak
measurements in the Ẑ basis, in the limit that the measurement
strength goes to zero. Using the notation of [34], the weak value
of Ẑ for this pre- and postselection evaluates to [18]

φ(x)〈Ẑ〉w
ψ ≡ Re

[
〈φ(x)|Ẑ|ψ〉
〈φ(x)|ψ〉

]
. (6)

Weak values are unusual in that they can take values outside
the spectrum of the measured operator (here Ẑ). This is
possible because the values of individual weak measurements
are not constrained to the eigenvalues of the measured operator.
Weak values have proven useful in increasing measurement
precision where the resolution of the measuring device is
otherwise the limiting factor [35–39], in resolving a number of
quantum mechanical paradoxes (e.g., [19–21,34,40–45]) and
investigating macrorealism on one [46,47] or two [28] systems.

The weak value φ(x)〈�̂z〉w
ψ of the Ẑ basis projectors �̂z

can be interpreted as a weak-valued probability of obtaining
the outcome z, given the |ψ〉 input state, conditional on
finally postselecting the |φ(x)〉 state indicating an outcome
x in the X̂ basis, i.e., Prw[z|x,ψ] = φ(x)〈�̂z〉w

ψ . Because the
weak measurement’s back-action on the system is negligible,
it follows that the weak-valued joint probability of obtaining
both X = x and Z = z outcomes is

Prw[x,z|ψ] = Prw[z|x,ψ] Pr[x|ψ]

= φ(x)〈�̂z〉w
ψ Pr[φ(x)|ψ], (7)

where Pr[x|ψ] = Pr[φ(x)|ψ] = |〈φ(x)|ψ〉|2. Weak measure-
ments thereby allow us to ascertain pseudoprobabilities for
outcomes that are not directly obtainable by strong measure-
ments.

Similarly, the weak-valued joint probabilities for the two-
qubit case are

Prw[x,z,p,q|ψ] = φ(x)〈�̂z ⊗ �̂q〉w
ψ

Pr[φ(x,p)|ψ], (8)

where �̂q represents the Q̂ basis projectors (on Bob’s qubit)
corresponding to the outcome q, and the postselection state
|φ(x,p)〉 depends on strong measurement outcomes of both
Alice’s (X = x) and Bob’s (P = p) qubits. Note that all of the
quantities required to find the weak-valued joint probability
could be determined by experimental correlation statistics of
the joint measurement.

We can thus calculate the weak-valued joint probabilities
of each of the 16 outcomes of measurements on the entan-
gled state |�−〉. For measurements maximizing the CHSH
inequality violation, they each take one of four possible values,
(2 + √

2)/16,
√

2/16, (2 − √
2)/16, or −√

2/16, while each
of the 16 corresponding outcomes results in a value for the
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FIG. 2. (Color online) Experimental apparatus. Pairs of entan-
gled photons are generated by a type-I bismuth borate source. One of
the photons undergoes strong measurement, the other is coupled to
single-mode optic fiber and directed to the weak measurement appa-
ratus, implemented as a polarization interferometer. A tilted optical
plate is placed in each interferometric arm, causing a polarization-
dependent transverse shift of the photon’s spatial Gaussian mode, with
polarization postselection following. The mode intensity is sampled
by a scanning slit, and is collected into a multimode optical fiber
(after passing through telescoping lenses, not shown), connected to a
single-photon counting module (SPCM).

CHSH parameter, SCHSH, of ±2 by (1). Thus we find that the
total weak-valued probability for obtaining the positive value
of the CHSH parameter, SCHSH = +2, is (1 + √

2)/2 ≈ 1.207,
while the weak-valued probability for the negative value,
SCHSH = −2, is (1 − √

2)/2 ≈ −0.207. It is easy to see that the
contribution to the expectation value (2) is therefore positive
in both cases, giving |〈SCHSH〉| = 2

√
2 as expected [26]. As

it turns out, these predicted values are quite different from
the solution happened upon by Feynman from considering his
particular model of anomalous probabilities motivated by his
LHV model.

These anomalous (i.e., outside the range [0,1]) weak-valued
probabilities may at first seem nonsensical. Indeed, they cannot
be measured as relative frequencies in the laboratory—instead
they must be inferred from weak measurement data, as we
do below. They arise simply from the fact that they stand
for strong measurement results which cannot be physically
obtained (events that cannot actually take place) because of
measurement back-action. As shown previously [21,22,33,44],
such anomalous probabilities are nevertheless useful in prob-
ability accounting for physically realizable events.

III. EXPERIMENTAL APPARATUS

We now present our experimental demonstration of these
anomalous weak-valued probabilities using photons as shown
in Fig. 2. First we note that if Alice could obtain both X

and Z measurement results simultaneously, then by (1) either
P or Q of Bob’s results would not matter for each shot.
The only empirically relevant weak-valued probabilities, in
terms of contribution to the CHSH parameter SCHSH, are then
either Prw[x,z,p] or Prw[x,z,q]. We may therefore simplify
the experiment by performing weak measurement of only one
photon of each pair (Alice’s), rather than both simultaneously
(Fig. 1), with the weak-valued probabilities for each possible
value of the CHSH parameter remaining unchanged.

Pairs of polarization-entangled photons, having high fi-
delity with |�−〉, are generated via spontaneous parametric

downconversion using a type-I “sandwiched pair” source
[48], pumped by 410 nm-light from a mode-locked frequency-
doubled Ti:sapphire laser. Two thin (0.6 mm) bismuth borate
(BiBO) crystals, one cut for downconversion of horizontally
polarized incident light, the other cut for vertically polarized
incident light, are placed back-to-back. Pumping by diagonally
polarized light induces coherent downconversion from the
two crystals resulting in the two-photon polarization state
(|H 〉 |H 〉 + eiϕ |V 〉 |V 〉)/√2, for some constant phase ϕ. By
changing the polarization of the pump light we can adjust
the proportion satisfying the phase matching conditions of
each crystal, thereby tuning the degree of entanglement
generated. For a pump polarization angle θ , the resulting state
is |ψ(θ )〉 = sin θ |H 〉 |H 〉 + eiϕ cos θ |V 〉 |V 〉 with a tangle
(squared concurrence) [49] of sin2 2θ .

Each photon of the generated pair is assigned to either
Alice or Bob. Bob’s photon immediately undergoes strong
measurement, either P̂ or Q̂, by postselection using a quarter-
wave plate (QWP), half-wave plate (HWP), and polarizing
beamsplitter (PBS). Alice’s photon passes through a HWP set
to its optic axis, tilted around vertical such that it compensates
for ϕ and (in the condition of a diagonally polarized pump
beam) achieves a state having high fidelity with |�−〉 at
the measurement apparatus. The photon is guided to the
weak measurement apparatus using a single-mode optical
fiber, providing a Gaussian spatial mode. It passes through a
HWP which determines the basis of the weak measurement—
we initially set this wave plate to its optic axis, thereby
implementing weak measurement in the Ẑ basis.

Weak measurements are achieved by engineering a
polarization-dependent displacement 
r , significantly
smaller than the width of the transverse Gaussian mode [50].
To achieve this displacement, we construct a partially spatially
mismatched polarization interferometer. A polarizing beam
displacer (PBD) separates the horizontal and vertical
polarizations of the photon into two parallel spatial modes. An
optical plate is placed in each mode and tilted approximately
equally in opposing directions, causing small opposite
displacements of the two modes following Snell’s law. For
our apparatus it was logistically convenient to use QWPs set
at their optic axes. A HWP then flips horizontal and vertical
polarizations and the modes are (partially) recombined by
the final PBD. A large Gaussian beam width, relative to the
size of the displacement, ensures that decoherence due to
measurement back-action is negligible.

Alice’s photon is then postselected in the conjugate basis
using a HWP at ±22.5◦ from its optic axis followed by a PBS.
A slit, seated on a motorized translation stage, is scanned in
the direction transverse to the beam, allowing us to sample the
photon flux of the Gaussian profile at any point r . The photon
passes through telescoping lenses (not shown in Fig. 2) and a
3 nm full width at half maximum (FWHM) interference filter,
and is coupled into a multimode fiber guided to a single-photon
counting module (SPCM). (Similarly, following postselection,
Bob’s photon also passes through a 3 nm interference filter,
and is coupled into a single-mode optical fiber guided to
a SPCM.) Alternatively to postselection, one could also
perform strong two-outcome polarization measurements. In
either case, integration of the photon flux (in coincidence
with Bob’s photons) allows us to determine the expectation of

012113-4



USING WEAK VALUES TO EXPERIMENTALLY DETERMINE . . . PHYSICAL REVIEW A 91, 012113 (2015)

the weak polarization measurement, and thus the weak-valued
joint probability of each polarization outcome of Alice’s and
Bob’s photons. Assigning horizontal and vertical polarizations
to the Z = +1 and Z = −1 states, respectively, we obtain
weak measurements in the Ẑ basis, with postselection in the
X̂ basis.

Detecting Alice’s and Bob’s photons within a coincidence
window of ≈3 ns helps ensure high-fidelity entangled two-
photon states, however some accidental coincident detec-
tions remain. We estimate these accidental count rates by
simultaneously recording detection events of the two SPCMs
coincident when displaced in time by the pump pulsing
period. All such detections thus arise from uncorrelated events.
We subtract these accidental coincident counts from our
results.

We use a slit of width approximately 350 μm, scanned
over a 3.5 mm range in steps of 87.5 μm, counting for 10 s
at each step. This is performed for each of the eight total
postselections for X, P , and Q, in turn. The process is repeated
70 times, ensuring that any drift in pump power is experienced
equally (approximately) for each outcome. To calculate the
joint probabilities it is necessary to characterize the centroid
positions rH and rV associated with horizontally and vertically
polarized photons exiting the interferometer, respectively. This
is done by additionally postselecting horizontal and vertical
photon polarization states, making a total of 10 measurement
conditions in the experiment. We fit a Gaussian function to the
count rates of each characterization—the centers of these fits
define our rH and rV estimates.

Because rV > rH in our apparatus, it is convenient to write
the displacement 
r = rV − rH . Measuring the position of
the Gaussian profile for a given photon state corresponds to
a Ẑ measurement. In typical spatial-mode qubit encodings,
the modes are sufficiently far apart that the Gaussian profiles
are approximately orthogonal, and the measurement outcomes
thus correspond to strong measurements. The expectation
value for these measurements may be written,

〈Ẑ〉 =
∫ ∞

−∞

rH + rV − 2r


r
℘(r) dr, (9)

where ℘(r) is the (Gaussian) probability density of detecting
a photon at a position r . (For notational convenience, we omit
the explicit dependence on the initial state |ψ〉.) As 
r is
reduced towards zero, the measurement becomes weak and
the uncertainty of individual outcomes increases due to the
overlapping Gaussian distributions for each outcome. In our
apparatus, 
r ≈ 150 μm, in comparison to the ≈820 μm
FWHM of our Gaussian beam. Under these conditions,
we calculate the measurement strength, quantified by the
knowledge K [43], to be about 0.024—sufficiently small to
demonstrate our weak-valued probabilities.

In the absence of postselection, the expectation value 〈Ẑ〉
is the same in both the weak and strong measurement cases.
Therefore,

∑
z

z Prw[z] =
∫ ∞

−∞

rH + rV − 2r


r
℘(r) dr. (10)

Using the fact that the two weak-valued probabilities in (10)
must sum to one, it follows immediately that

Prw[Z = +1] = 1


r

∫ ∞

−∞
(rV − r)℘(r) dr, (11)

and

Prw[Z = −1] = 1


r

∫ ∞

−∞
(r − rH )℘(r) dr. (12)

The postselection outcomes become extra conditions on
(11) and (12). Supposing Bob measures P̂ , Alice X̂, then
℘(r) becomes ℘(r,x,p), and Prw[z] becomes Prw[z,x,p].
The weak-valued joint probabilities can be calculated from
experimental counting statistics by considering (11) and
(12). For a finite slit width, the integral becomes a sum
approximation over the range of measured positions as dr

becomes δr ,

Prw[Z = +1,x,p] ≈ 1


r

∑
r

(rV − r)℘(r,x,p)δr, (13)

and similarly for Prw[Z = −1,x,p].
The value of ℘(r,x,p) cannot be measured directly,

but must instead be estimated from photon detections. Let
C(r,x,p) represent the count rate of these detections. Then
℘(r,x,p)δr ≈ C(r,x,p)/CT, where CT = ∑

r,x,p C(r,x,p) is
the total number of coincident photon detections over all the
outcomes of the measurements in X̂ and P̂ . The weak-valued

TABLE I. Measured weak-valued probabilities Prw for the 16
possible values of the observables X, Y , P , and Q, for the entangled
state produced in the experiment. These are obtained from weak
measurements in the Ẑ basis. Not all conditions contribute to
the CHSH parameter—appropriate summation of these values for
the conditions satisfying SCHSH = +2 and SCHSH = −2 leads to
positive and negative weights of 1.172 ± 0.008 and −0.171 ± 0.002,
respectively. Since these multiply terms of opposite sign, both give
positive contributions to the CHSH parameter 〈SCHSH〉, leading to
violation of the CHSH inequality.

Outcome

x z p q SCHSH Prw

+1 +1 +1 +2 0.332 ± 0.005
+1 +1 −1 −2 −0.030 ± 0.001
+1 +1 +1 0.149 ± 0.004
+1 +1 −1 0.152 ± 0.002
+1 −1 +1 0.099 ± 0.005
+1 −1 −1 0.103 ± 0.002
+1 −1 +1 +2 0.244 ± 0.004
+1 −1 −1 −2 −0.048 ± 0.002
−1 +1 +1 0.131 ± 0.002
−1 +1 −1 0.148 ± 0.004
−1 +1 +1 −2 −0.042 ± 0.002
−1 +1 −1 +2 0.320 ± 0.004
−1 −1 +1 −2 −0.051 ± 0.002
−1 −1 −1 +2 0.276 ± 0.005
−1 −1 +1 0.131 ± 0.002
−1 −1 −1 0.087 ± 0.004
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joint probability can therefore be estimated by

Prw[Z = +1,x,p] ≈
∑

r (rV − r)C(r,x,p)


r
∑

r,x,p C(r,x,p)
, (14)

and similarly for Prw[Z = −1,x,p], Prw[Z = +1,x,q], and
Prw[Z = −1,x,q].

IV. RESULTS

The photon source performance is quantified by conducting
quantum state tomography [51] with the slit removed and
a QWP inserted immediately before the final HWP. With a
two-photon state of measured Bell-state fidelity 0.948 ± 0.002
and concurrence 0.917 ± 0.003 (tangle 0.841 ± 0.004), we
expect to be able to achieve a CHSH value of |〈SCHSH〉| ≈
2.67. For this state, the experimentally determined weak-
valued probabilities are given in Table I. The weak-valued
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FIG. 3. (Color online) Experimental results for states of various
degrees of entanglement, quantified by the concurrence C. (a) Weak-
valued joint probabilities of outcomes corresponding to SCHSH = +2
(upper curve) and SCHSH = −2 (lower curve). (b) The CHSH value
|〈ŜCHSH〉| calculated using the weak-valued joint probabilities. In both
plots, the experimentally measured values (points) closely match
the ideal theoretical values (lines) as the concurrence of the state
varies. Horizontal error bars represent the range of concurrence values
measured via tomography taken before and after data collection.
Vertical error bars span one standard deviation, calculated from the
(Poissonian) photon counting statistics.

probabilities of the positive and negative values of the CHSH
parameter are determined by taking the appropriate sums of
these results. They are 1.172 ± 0.008 for SCHSH = +2 and
−0.171 ± 0.002 for SCHSH = −2, resulting in |〈SCHSH〉| =
2.686 ± 0.017, violating the CHSH inequality by more than
40 standard deviations. (Note that we do not claim this
demonstrates a violation of local realism, as the nature of
our apparatus cannot support such a conclusion.)

Our choice of weakly measuring in the Ẑ basis is arbitrary—
we may instead measure X̂ weakly before a strong Ẑ

measurement and obtain essentially identical expected weak-
valued joint probabilities. To demonstrate this, we change
the basis of the measurements by setting the initial HWP in
the weak measurement device to 22.5◦ from its optic axis.
In this experimental condition we observe a concurrence of
0.926 ± 0.003 (tangle 0.857 ± 0.005, deviating slightly from
previous values due to a drift of the photon source during the
period between measurements), and weak-valued probabilities
of 1.147 ± 0.008 for SCHSH = +2 and −0.140 ± 0.002 for
SCHSH = −2. This gives a CHSH value of 2.574 ± 0.016.
Despite the improved entanglement for this state, sensitivity
to imprecision in the manual setting of the change-of-basis
HWP leads to slightly reduced magnitudes of the measured
weak-valued probabilities.

With weak measurements in the Ẑ basis, we also perform
the experiment for states of various entanglement. Theoret-
ically, for the states we produce with concurrence C, the
CHSH value goes as |〈ŜCHSH〉| = (C + 1)

√
2, while the weak-

valued probabilities of outcomes corresponding to positive
and negative values of SCHSH go as Prw[SCHSH = +2] = (2 +
(C + 1)

√
2)/4 and Prw[SCHSH = −2] = (2 − (C + 1)

√
2)/4,

respectively. The measured results, shown in Fig. 3, closely
follow these predictions, and show a one-to-one relationship
between violating the CHSH inequality and observing anoma-
lous (beyond-unit or negative) weak-valued probabilities. The
violation and anomalous values occur only for states with
high concurrence, above (1/

√
2) − 1 ≈ 0.41 (tangle above

3 − 2
√

2 ≈ 0.17). (Although any pure state with nonzero
concurrence can violate the CHSH inequality [49], this
requires optimization of the measurement bases, which we
do not do here.)

V. CONCLUSION

For our apparatus, the results that we measure can be
reproduced by a local hidden variable theory; this is the
case with any protocol in which there is no measurement
choice on one side [52]. We wish to make it very clear
that our experiment is not a Bell test using weak mea-
surements, nor is it aimed at testing quantum mechanics.
However, assuming quantum mechanics to be correct, the
negative weak-valued probabilities we measure imply that the
state could generate strong-measurement correlations which
could not be reproduced by any LHV theory. It is not
a new observation that Bell-violating CHSH tests may be
explained by recourse to negative joint probabilities [17,53].
What is new here is that such probabilities are not merely
hypothetical constructs, chosen arbitrarily from an infinite
set of equally valid possibilities, but rather they naturally
arise, as weak-valued joint probabilities, derived from the
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outcomes of experiments probing the intermediate state of
the system. Our results open the way to further experimental
investigations of counter-intuitive quantum phenomena, using
weak measurements in place of strong measurements, offering
more deep insights into the foundations of quantum mechanics.
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