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Energy expectation values of a particle in nonstationary fields
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We show that the origin of the nonequivalence of Hamiltonians in different representations is a change of
the form of the time-derivative operator at a time-dependent unitary transformation. This nonequivalence does
not lead to an ambiguity of the energy expectation values of a particle in nonstationary fields but assigns
the basic representation. It has been explicitly or implicitly supposed in previous investigations that this
representation is the Dirac one. We prove the alternative assertion about the basic role of the Foldy-Wouthuysen
representation. We also derive the general equation for the energy expectation values in the Dirac representation.
As an example, we consider a spin-1/2 particle with anomalous magnetic and electric dipole moments in
strong time-dependent electromagnetic fields. We apply the obtained results to a spin-1/2 particle in a plane
monochromatic electromagnetic wave and give an example of the exact Foldy-Wouthuysen transformation in the
nonstationary case.
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I. INTRODUCTION

The important problem of energy expectation values
(EEVs) of a particle in nonstationary external fields has a long
history. The basic equation describing a unitary transformation
of a time-dependent Hamiltonian operator is well known [1,2].
The problem of the EEVs has been considered in detail in
Refs. [3–6]. In these works, the dependence of the EEVs on
the representation used has been clearly demonstrated. It has
been claimed in Refs. [4–6] that this fact definitely results
in a physical nonequivalence of the initial and transformed
Hamiltonians in the time-dependent case. The problem of
physical equivalence of these Hamiltonians has been recently
reexamined in Refs. [7–9]. This problem is very important in
relation to the Foldy-Wouthuysen (FW) transformation [1].

Gorbatenko and Neznamov [8,9] have demonstrated the
possibility of connecting Hamiltonians in different represen-
tations and have also considered the problem of their physical
equivalence. Goldman [4] and Nieto [5] have shown that
derivation of the EEVs from the time-dependent Hamiltonians
may lead to controversial and even incorrect results. They
proceeded from the nonequivalence of different representa-
tions in the time-dependent case and explicitly or implicitly
supposed that the basic representation is the Dirac one. The
same supposition was used in Refs. [6,10].

We will show that further developments of the theory
of the FW transformation fulfilled after the publication of
Refs. [3–6,10] lead to a different conclusion about the basic
representation. We will also give a first example of the exact
FW transformation in the nonstationary case.

We use the system of units with c = 1 while � is included
in quantum-mechanical equations.

II. UNITARY TRANSFORMATIONS OF A
TIME-DEPENDENT HAMILTONIAN OPERATOR

Operators used in quantum mechanics are self-adjoint.
Many authors claim that such operators should be Hermitian.
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However, this assertion is inexact. When any operator is
Hermitian, it does not necessarily mean that this operator
is self-adjoint. A densely defined operator T on the Hilbert
space H is called symmetric (or Hermitian) if T ⊂ T ∗, that is,
if D(T ) ⊂ D(T ∗) and T ϕ = T ∗ϕ for all ϕ ∈ D(T ). Here T ∗ is
the adjoint operator and D(T ∗) is the domain of its definition.
Equivalently, T is symmetric if and only if (T ϕ,χ ) = (ϕ,T χ )
for all ϕ,χ ∈ D(T ) [11]. T is called self-adjoint if T = T ∗,
that is, if and only if T is symmetric and D(T ) = D(T ∗).

Thus, every self-adjoint operator is symmetric. However,
the converse may be unsatisfied. Let the operator T = i(d/dx)
be defined on the interval [0,1] as follows:

D(T ) = {ϕ|ϕ ∈ AC[0,1], ϕ(0) = ϕ(1) = 0}.
It can be proven (see Refs. [12]) that the operator T is closed
and symmetric (Hermitian) but it is not self-adjoint. If T is
continuous and is defined on the whole Hilbert space, D(T ) =
H, then the symmetric operator T is also self-adjoint.

A unitary transformation of any operator except for the
Hamiltonian one is given by

A′ = UAU−1, (1)

where U is a unitary operator transforming the wave function
(ψ ′ = Uψ) from the unprimed representation to the primed
one. The transformation of the Hamiltonian operator is
different because this operator is defined by

i�
∂ψ

∂t
= Hψ. (2)

As a result, the transformation also involves the operator
i� (∂/∂t). The transformed Hamiltonian is given by [1,2]

H′ = U

(
H − i�

∂

∂t

)
U−1 + i�

∂

∂t
= UHU−1 − i�U

∂U−1

∂t
.

(3)

Since ∂(UU−1)/(∂t) = 0, the result of the transformation can
also be presented as follows [8]:

H′ = UHU−1 + i�
∂U

∂t
U−1. (4)
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Evidently, the connection between the initial and transformed
Hamiltonians substantially differs from Eq. (1).

The EEV of the particle is defined by

E(t) =
∫

ψ†(r,t)H(t)ψ(r,t)dV . (5)

For a particle in nonstationary fields, the operators H and
U explicitly depend on time. In this case, the EEVs in the
unprimed and primed representations are not equal to each
other [3–7,10]. The use of Eqs. (3) and (4) results in∫

ψ ′†(r,t)H′(t)ψ ′(r,t)dV

=
∫

ψ†(r,t)H(t)ψ(r,t)dV

−i�

∫
ψ†(r,t)U

∂U−1

∂t
ψ(r,t)dV

=
∫

ψ†(r,t)H(t)ψ(r,t)dV

+ i�

∫
ψ†(r,t)

∂U

∂t
U−1ψ(r,t)dV . (6)

A comparison of Eqs. (5) and (6) demonstrates the nonequiv-
alence of the initial and transformed Hamiltonians in the
time-dependent case [4–7,10]. Equation (6) shows that Eq. (5)
for the particle EEV can be satisfied in one and only one
representation. This representation is basic and it cannot be
physically equivalent to others.

It has been claimed by Gorbatenko and Neznamov [8,9] that
Hamiltonians related to each other by unitary transformations
are physically equivalent. However, the problem of the EEVs
was not considered in Refs. [8,9].

Nieto [5] has stated that the operator UHU−1 has the same
expectation values as H:∫

ψ ′†(r,t)UH(t)U−1ψ ′(r,t)dV =
∫

ψ†(r,t)H(t)ψ(r,t)dV .

Let the unprimed representation be basic and U is the unitary
transformation operator from the unprimed representation to
the primed one. Therefore, the energy operator in the primed
representation is H̃′ = UHU−1 but not H′ (see Ref. [13]).
This property allows us to obtain correct EEVs in any
representation. If the Hamiltonian in a nonbasic (primed)
representation is known, the EEV is given by

E(t) =
∫

ψ ′†(r,t)H̃′(t)ψ ′(r,t)dV =
∫

ψ ′†(r,t)H′(t)ψ ′(r,t)dV

(7)

−i�

∫
ψ ′†(r,t)

∂U

∂t
U−1ψ ′(r,t)dV =

∫
ψ ′†(r,t)H′(t)ψ ′(r,t)dV + i�

∫
ψ ′†(r,t)U

∂U−1

∂t
ψ ′(r,t)dV ,

or

E(t) = 〈H̃′〉 = 〈H′〉 − i�

〈
∂U

∂t
U−1

〉
= 〈

H′〉 + i�

〈
U

∂U−1

∂t

〉
.

(8)

The possibility to use any representation for a correct de-
scription of a quantum system corresponds to fundamental
principles of quantum mechanics (QM).

It is easy to explain the origin of the nonequivalence.
Equation (2) can be transformed to the form

i�U
∂

∂t
U−1ψ ′ = i�

(
∂

∂t

)′
ψ ′ = H̃′ψ ′. (9)

Thus, time-dependent unitary transformations change the form
of the operator i�(∂/∂t) (as well as that of the time operator,
t). The spatial components of the four-momentum operators
pμ = i�(∂/∂xμ) and xμ possess similar properties. Therefore,
the operator i�(∂/∂t) is equivalent to the energy operator H̃ in
one and only one representation.

Now we need to determine the basic representation in order
to calculate the EEVs. It has been (explicitly or implicitly)
supposed in preceding investigations [3–6,10] that the Dirac
Hamiltonians and the Dirac wave functions satisfy Eq. (5). We
will obtain a different result below.

III. FUNDAMENTAL ROLE OF THE
FOLDY-WOUTHUYSEN REPRESENTATION

IN DETERMINATION OF THE ENERGY
EXPECTATION VALUES

A determination of the basic representation results from
(i) an ascertainment of a classical limit of the relativistic QM
and (ii) a comparison of classical and quantum-mechanical
Hamiltonians and equations of motion. The choice of the
Dirac representation as a basic one [3–6,10] may by mostly
motivated by the perfect covariance of the Dirac equation. On
the other hand, the fundamental role of the FW representation
in QM has become evident relatively recently.

It has been proven in Ref. [14] (with the extension of the
Wentzel-Kramers-Brillouin method) that the transition to the
classical limit of relativistic QM in the FW representation
is obtained by the replacement of operators in the quantum-
mechanical Hamiltonians and equations of motion with the
respective classical quantities. This wonderful property shows
that the relativistic quantum-mechanical equations for particles
with different spins should become very similar after the
FW transformation. Thus, this transformation results in a
unification of the relativistic QM.

Otherwise, investigations performed during the 20 years
in the framework of the FW transformation in relativistic
QM (see Refs. [15–20] and references therein) have as-
certained a strong resemblance between the Hamiltonians
and equations of motion in the FW representation and the
corresponding classical counterparts. It is important that
such a resemblance covers all considered stationary and
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nonstationary problems in electrodynamics [18,20–25] and
gravity [26–30]. It holds true for relativistic particles with spins
zero [20,23], one-half [18,20,22] and unity [20,21,24,25] in
arbitrary (generally, strong) time-dependent electromagnetic
fields as well as for Dirac particles in arbitrary (generally,
strong) time-independent [26–28] and time-dependent [30]
gravitational fields and noninertial frames. A similar result
has been recently obtained for spin-0 particles in gravitational
fields and noninertial frames [29]. It is instructive to mention
that the quantum-mechanical description of single particles
in strong external fields does not allow for specific effects of
quantum field theory except for a phenomenological treatment
of anomalous magnetic moments.

We can conclude that the above-mentioned replacement
of operators brings the relativistic quantum-mechanical FW
Hamiltonians to the corresponding classical Hamiltonians.
The considered properties cause relativistic QM in the FW
representation to be analogous to nonrelativistic QM.

We need to comment on the relation between the operator
r in the FW Hamiltonians and the radius vector r in classical
physics. The latter quantity corresponds to the Newton-Wigner
position operator [31] (“mean position operator” [1]) which
is equal to r only in the FW representation. In the Dirac
representation, this operator substantially differs from r and is
given by a cumbersome formula [1].

The operators of canonical variables, xμ and pμ, are
equal to xμ and i�(∂/∂xμ), respectively, in one and only one

representation. The previous explanations definitely show that
this is the FW representation. In classical physics, p0 is equal
to the Hamiltonian which defines the particle energy and is a
function of r, p, t , and the spin s. In the FW representation,
the operator p0 = i�(∂/∂t) should be equal to the Hamiltonian
operator and should define the particle energy. As a result, the
Hamiltonian operator is equal to the energy operator just in
this representation:

HFW = H̃FW. (10)

Therefore,

E(t) =
∫

ψ
†
FW(r,t)HFW(t)ψFW(r,t)dV . (11)

In the Dirac representation, xμ and i�(∂/∂xμ) [in particular,
i�(∂/∂t)] are not the operators of canonical coordinates and
momenta. In this representation, the determination of the EEVs
should therefore be based on the general formulas (7) and (8).
In these formulas, the operator U is the operator of transfor-
mation from the FW to the Dirac representation. Thus, the
nonequivalence of Hamiltonians in different representations
does not lead to the ambiguity of the EEVs.

Let us consider a spin-1/2 particle with anomalous mag-
netic and electric dipole moments in strong time-dependent
electromagnetic fields as an example of the fundamental role
of the FW representation. In this case, the FW Hamiltonian
has the form [22]

HFW = βε′ + e� + 1

4

{(
μ0m

ε′ + m
+ μ′

)
1

ε′ ,(� ·[π× E] − � ·[E×π ] − �∇ · E)

}
− 1

2

{(μ0m

ε′ + μ′
)

,�· B
}

+β
μ′

4

{
1

ε′(ε′ + m)
,[(B ·π )(� ·π ) + (� ·π )(π · B) + 2π�(π · j + j ·π )]

}

− d�· E + d

4

{
1

ε′(ε′ + m)
,[(E ·π )(�·π) + (�·π )(π · E)]

}
− d

4

{
1

ε′ ,(� ·[π× B] − � ·[B×π ])

}
, (12)

where π = p − eA ≡ −i�∇ − eA is the kinetic momentum operator, μ0 = e�/(2m) and μ′ = (g − 2)e�/(4m) are the Dirac
and anomalous magnetic moments, d is the electric dipole moment, ε′ = √

m2 + π2, and j = (1/4π ) (∇ × B − ∂ E/∂t) is the
density of the external electric current. To obtain the classical limit of the FW Hamiltonian, we set the Planck constant to zero
(� → 0) and substitute the classical quantities for the operators. As a result, we arrive at the equation

H = ε′ + e� + s · �, (13)

where ε′ is the classical counterpart of the corresponding operator and � is the angular velocity of spin precession:

� = 2

�

[(
μ0m

ε′ + m
+ μ′

)
1

ε′ π × E −
(μ0m

ε′ + μ′
)

B + μ′

ε′(ε′ + m)
π(π · B) − d E + d

ε′(ε′ + m)
π(π · E) − d

ε′ π × B
]

.

(14)

In classical physics, the Hamiltonian and the angular velocity
of spin precession [32] are defined by the same equations as
Eqs. (13) and (14).

Now we can check the consequences of the assumption
that the Dirac representation is the basic one. With this
assumption, the difference between the energy operator and
the FW Hamiltonian is given by

H̃FW − HFW = −i�
∂UFW

∂t
U−1

FW. (15)

The right-hand side of this equation contains both even and odd
terms. However, odd terms can be disregarded. Since the FW
wave functions have only one nonzero spinor (upper and lower
for states with positive and negative total energy, respectively
[19]), averaging the odd terms eliminates their contribution to
the EEVs.

Partial derivatives with respect to time are here-
inafter denoted by overdots. The relativistic method
of the FW transformation [18,20] allows us to de-
rive the following equation for the even part of
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H̃FW − HFW:

H̃FW − HFW

= 1

4

{
μ0m

ε′(ε′ + m)
,[� · (π × Ȧ − Ȧ × π ) − �∇ · Ȧ]

}

+β
�

8

{
1

ε′(ε′ + m)
,[μ′(π · Ė + Ė · π )

− d(π · Ḃ + Ḃ · π )]

}
. (16)

Terms presented in this equation are exact. Terms of the
second and higher orders in � which do not relate to the
contact interactions are not taken into account (μ0, μ′, and
d are proportional to �). The importance of terms presented
in Eq. (16) for a derivation of the EEVs has been shown in
Ref. [6]. In this work, the nonrelativistic approximation has
been used.

Evidently, the energy operator corresponds to the classical
Hamiltonian. Therefore, the assumption of the basic character
of the Dirac representation [3–6,10] destroys the agreement
between relativistic QM and classical physics. The example
considered confirms the fundamental role of the FW represen-
tation in relativistic QM, in particular, in the determination of
the EEVs.

IV. DERIVATION OF THE ENERGY EXPECTATION
VALUES IN THE DIRAC REPRESENTATION

Quantum-mechanical equations are usually solved in the
Dirac representation. A derivation of the general equation for
the EEVs in this representation is therefore rather important.
For this purpose, it is convenient to split the Dirac Hamiltonian
into even and odd operators commuting and noncommuting
with the operator β, respectively:

H = βm + E + O, βE = Eβ, βO = −Oβ. (17)

Even and odd operators are diagonal and off-diagonal in two
spinors, respectively. To fulfill the FW transformation of the
initial Hamiltonian (17), one uses a priori information about
commutation relations. Any commutator of the momentum
and coordinate operators adds the factor �, while a commutator
of different Pauli (or Dirac) matrices does not affix such a
factor. So one supposes that commutators like [O,E] have
the additional factor � as compared with the product of
operators OE . Since the Pauli matrices do not commute
with each other, we assume that multiple commutators of the
form [O,[O, . . . ,[O,E], . . . ]] add the factor � with respect
to the operator product OO · · ·OE . This factor already
appears due to the first commutation. Since O2 is an even
(block-diagonal) operator, the commutators of the forms
[O2,[O,E]], [O2,[O2,E]], and [[O,E],E] add the factor �

2

as compared with the corresponding products of the operators.
Contemporary methods of relativistic FW transformation use
an expansion in power series in the Planck constant [16,20].

Equations (3) and (8) show that the energy operator in the
Dirac representation is defined by

H̃D = HD + i�

(
U

∂

∂t
U−1 − ∂

∂t

)
, U = U−1

FW, (18)

where U and UFW are the transformation operators from the
FW representation to the Dirac one and the other way round,
respectively.

Let us determine H̃D with allowance for terms proportional
to the zeroth and first powers of �. The relativistic FW
transformation is fulfilled by iterative methods [18,20] and the
total transformation operator has the form UFW = · · · U2U1.
Since the first transformation performed with the operator U1

eliminates the main odd terms, 1 − U2 ∼ �. With the given ac-
curacy, i�U−1

2 (∂/∂t)U2 ≈ i�(∂/∂t). The transformation with
the operator [18] (see also Ref. [20])

U1 = ε + m + βO√
2ε(ε + m)

results in

H̃D = HD + i
�

8

{
1

ε(ε + m)
,

(β{ε,Ȯ} + 2βmȮ − β{ε̇,O} + [O,Ȯ])

}
, (19)

where ε = √
m2 + O2.

This general equation provides one with the possibility of
calculating the EEVs with time-dependent Dirac Hamiltoni-
ans. As an example, we can consider a spin-1/2 particle in
strong time-dependent electromagnetic fields. In this case, the
Dirac Hamiltonian has the form (17) where

E = e� − μ′� · B − d� · E,
(20)

O = cα · π + iμ′γ · E − idγ · B.

The energy operator which defines the EEVs by averaging
is given by

H̃D = HD + e�

8

{
1

ε′(ε′ + m)
,[−i{ε′,γ · Ȧ} − 2imγ · Ȧ

+� · (π × Ȧ − Ȧ × π )]
}

+ i
e�

8

{
1

ε′2(ε′+m)
,[(π · Ȧ)(γ · π )+(γ · π)( Ȧ · π )]

}
.

(21)

The contribution to the EEVs given by the two last terms
in Eq. (21) can be rather important. In a similar case, the
importance of such a contribution has been shown in Ref. [6]
with the use of the nonrelativistic approximation.

V. EXACT FOLDY-WOUTHUYSEN TRANSFORMATION
OF NONSTATIONARY HAMILTONIANS

The even (block-diagonal) form of the final Hamiltonian
was the only condition of transformation used by Foldy and
Wouthuysen [1]. However, this condition does not define the
FW Hamiltonian unambiguously. The additional condition
eliminating this ambiguity has been proposed by Eriksen [33]
and substantiated by Eriksen and Kolsrud [34]. Additional
substantiation of the Eriksen method has been given in
Ref. [35].

The operator transforming the initial Hamiltonian to the
FW representation can be presented in the exponential
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form:

UFW = exp (iS). (22)

The transformation remains unique if the operator S is odd and
Hermitian [33,34]. This condition is equivalent to [33,34]

βUFW = U
†
FWβ. (23)

We kept above the term “Hermitian” used in Refs. [33,34]
while the operator S should also be self-adjoint (see the
beginning of Sec. II).

Eriksen [33] has found the operator satisfying Eq. (23) and
therefore performing the exact FW transformation:

UE = UFW = 1 + βλ√
2 + βλ + λβ

, λ = H
(H2)1/2

, (24)

where λ is the sign operator. The denominator is an even
operator and commutes with the numerator [33,34] (see also
Ref. [19]).

In Refs. [33–35], only the stationary case was considered.
However, we can extend the Eriksen method on the nonstation-
ary case under discussion. The operator λ is the sign operator
even in this case: λψ = ±ψ [ψ is the initial wave function
defined by Eq. (2)]. As a result, the operators 1 + βλ and UE

cause either a lower or an upper spinor to vanish for positive
and negative energy states, respectively. In the nonstationary
case, these operators can be time dependent. Since the operator
i�(∂/∂t) in the FW representation (but not in the Dirac one)
corresponds to p0 in classical physics, the Dirac operator
∂/(∂t) corresponds to the following FW operator:(

∂

∂t

)
FW

= UE

∂

∂t
U−1

E . (25)

As

i�
∂ψFW

∂t
= HFWψFW, (26)

the exact FW Hamiltonian is equal to

HFW = UE

(
H − i�

∂

∂t

)
U−1

E + i�
∂

∂t
. (27)

While Eq. (27) solves the problem of the exact FW
transformation in the nonstationary case, an explicit exact FW
Hamiltonian can be obtained only in some special cases. In
the general case, only an approximate expression for the FW
Hamiltonian can be derived (see Ref. [20]).

A sufficient condition for the exact FW transformation has
been found in Refs. [18,36] for the stationary case. In the
nonstationary case, it takes the form

[F ,O] = 0, F = E − i�
∂

∂t
. (28)

When it is satisfied, the FW Hamiltonian is given by

HFW = βε + E, ε =
√

m2 + O2. (29)

Possibilities of satisfying the condition (28) are very
restricted. In particular, the operators ∂/(∂t) andO do not com-
mute for a spin-1/2 particle in nonstationary electromagnetic
fields because Ȯ = 0. Nevertheless, we can give an example of
the exact FW transformation in the nonstationary case. Let us
consider the Dirac particle in a nonstationarily rotating frame.

The angular velocity of frame rotation, ω(t), may arbitrarily
depend on time. This frame is flat and its metric is given by

ds2 = c2dt2 − {d r + [ω(t) × r]dt}2. (30)

The corresponding Dirac Hamiltonian is equal to [28,37]

H = βm + α · p − ω(t) ·
(

r × p + ��

2

)
. (31)

This Hamiltonian satisfies the condition (28) and its FW
transformation is exact. The transformed Hamiltonian is given
by

HFW = β
√

m2 + p2 − ω(t) ·
(

r × p + ��

2

)
. (32)

This is an example of the exact FW transformation in the
nonstationary case. For a stationarily rotating frame (ω =
const), the FW Hamiltonian has been derived in Ref. [27].
The exact operator equation of spin motion is given by

d�

dt
= −ω(t) × �. (33)

Thus, the spin rotates with the instantaneous angular velocity
−ω(t). This conclusion fully agrees with classical gravity.

VI. SPIN-1/2 PARTICLE IN A PLANE MONOCHROMATIC
ELECTROMAGNETIC WAVE

As an example demonstrating the validity of Eq. (10) and
the invalidity of Eq. (15), we can consider a spin-1/2 particle
in a plane monochromatic electromagnetic wave. In this case,
the conventional approach consists in

� = 0, A = E
iκ

, E = E0 exp [i(κ · r − ω′t)],

B = n × E, κ = ω′

c
n, (34)

where n and ω′ are the direction and the angular frequency
of the wave. The corresponding Dirac equation admits an
exact solution obtained by Volkov (see Ref. [38]). The FW
transformation is not exact but it ensures a high accuracy.

It has been mentioned in Sec. III that averaging elim-
inates the contribution of odd terms in the operator
−i�(∂UFW/∂t)U−1

FW to the EEVs. The leading even term in
this operator is proportional to [O,Ȯ] and therefore contains
the operator ��. As a result, it significantly affects the spin
motion while its influence on the evolution of the momentum
is rather weak.

The FW Hamiltonian of the particle is given by the general
equation (12) where the fields are presented by Eq. (34). If we
consent to the fundamental role of the FW representation in a
determination of the EEVs, the classical limit of the operator of
angular velocity of spin precession is presented by Eq. (14) and
the spin motion fully corresponds to the Thomas-Bargmann-
Michel-Telegdi [39,40] equation. If the fundamental role of the
Dirac representation in such a determination is assumed, the
energy operator of the particle is equal to H̃FW and is defined
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by Eqs. (15) and (16). In the considered case, Ȧ = −cE. When all terms of the second order in � are disregarded, the above
equations result in

H̃FW = HFW − 1

4

{
μ0m

ε′(ε′ + m)
,� · (π × E − E × π)

}

= βε′ + μ′

4

{
1

ε′ ,� · (π × E − E × π )

}
− 1

2

{(μ0m

ε′ + μ′
)

,�· B
}

+β
μ′

4

{
1

ε′(ε′ + m)
,[(B · π)(� · π ) + (� · π )(π · B)]

}
. (35)

The classical limit of the energy operator is the classical Hamiltonian. In this limit, the angular velocity of spin precession
corresponding to Eq. (35) is equal to [see Eq. (13)]

�̃ = � − 2

�

μ0m

ε′(ε′ + m)
π × E

= 2

�

[
μ′

ε′ π × E −
(μ0m

ε′ + μ′
)

B + μ′

ε′(ε′ + m)
π(π · B)

]
, (36)

where � is given by Eq. (14) (with d = 0). The quantity �̃ disagrees with the Thomas-Bargmann-Michel-Telegdi result. This
demonstrates that the supposition about the fundamental role of the Dirac representation in the determination of the EEVs is
incorrect.

The EEVs in the Dirac representation are defined by Eqs. (19) and (21). With allowance for terms proportional to the zeroth
and first powers of �, they take the form

H̃D = HD + e�

8

{
1

ε′(ε′ + m)
,[i{ε′,γ · E} + 2imγ · E − � · (π × E − E × π)]

}

− i
e�

8

{
1

ε′2(ε′ + m)
, [(π · E)(γ · π) + (γ · π )(E · π)]

}
. (37)

VII. SUMMARY

Thus, we confirm the result of the previous investigation
[5] that the nonequivalence of Hamiltonians in different
representations does not lead to an ambiguity of the EEVs.
We show that the origin of this nonequivalence is a change of
the form of the time-derivative operator at a time-dependent
unitary transformation. For a particle in nonstationary fields,
the energy operator is equal to UHU−1 and does not coincide
with the transformed Hamiltonian. Expectation values of the
energy operator define the EEVs [5]. However, it has been ex-
plicitly or implicitly supposed in Refs. [3–6,10] that the basic
representation in the time-dependent case is the Dirac one. We
prove that the comparatively recent developments of the theory
of the relativistic FW transformation lead to an alternative
conclusion about the basic role of the FW representation. As an
example of the importance of this problem, we have considered
the spin-1/2 particle with anomalous magnetic and electric
dipole moments in strong time-dependent electromagnetic
fields. The supposition that the Dirac representation is basic
leads to a wrong description of the particle spin motion in
this case and, in particular, in the case of a particle in a plane
monochromatic electromagnetic wave.

This result is very natural. The operator i� (∂/∂xi) (i =
1,2,3) in the Dirac representation does not correspond to

the classical momentum pi and also the operator xi in this
representation does not correspond to the classical coordinate.
Therefore, the assumption that the operator i� (∂/∂t) in this
representation is the energy operator and corresponds to
the classical energy p0 ≡ E postulates different properties
of the spatial and temporal components of the operator
i� (∂/∂xμ) (μ = 0,1,2,3) and contradicts the relativistic in-
variance of the Dirac equation.

Since quantum-mechanical equations are usually solved in
the Dirac representation, we have derived the general equation
for the EEVs in this representation. We have also found the
sufficient condition for the exact FW transformation in the
nonstationary case and have given an example of such a
transformation (the Dirac particle in a nonstationarily rotating
frame).
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