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Linear-optical interferometers play a key role in designing circuits for quantum information processing and
quantum communications. Even though nested Mach-Zehnder interferometers appear easy to describe, there are
occasions when they provide unintuitive results. This paper explains the results of a highly discussed experiment
performed by Danan et al. [Phys. Rev. Lett. 111, 240402 (2013).] using a standard approach. We provide a simple
and intuitive one-state vector formalism capable of interpreting their experiment. Additionally, we cross-checked
our model with a classical-physics-based approach and found that both models are in complete agreement.
We argue that the quantity used in the mentioned experiment is not a suitable which-path witness, producing
seemingly contraintuitive results. To circumvent this issue, we establish a more reliable which-path witness and
show that it yields well-expected outcomes of the experiment.
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I. INTRODUCTION

In quantum mechanics (QM) particles are assigned a wave
function used to describe their properties [1]. This approach
sometimes leads to conclusions about experimental results that
seem to contradict intuitive estimations based on classical
physics [2,3]. QM, however, manages to provide accurate
predictions in agreement with all experiments performed so
far and is therefore widely accepted [1,4].

Recently, an experiment that contained counterintuitive
features was proposed and realized by Danan et al. [5]. The
authors used nested Mach-Zehnder interferometers (MZIs),
shown in Fig. 1, and mirrors (A, B, C, E, F) vibrating with
different frequencies, in order to leave a mark on passing
photons. At one selected output port of the interferometer,
the photons were detected by a quad-cell detector D capable
of tracing the spatial vibrations of the photon beam. After
measurement, the collected signal was further processed
and subjected to the Fourier transform. From the obtained
frequencies of vibrations, the authors judged whether the
detected photons have interacted with the mirror that was
oscillating at this particular frequency.

The results described in the article by Danan et al. [5] were
interpreted by means of two-state vector formalism (TSVF)
and weak values. Both the results and their unusual interpreta-
tion were questioned [6–11]. The critical comments pertained
to the visibility of interference inside the interferometer, the
correct application of TSVF, the processing of the obtained
data, and its validity. Saldanha provided an interpretation of the
experiment using classical optics [11]. However, theoretical
calculations and an interpretation of the experimental results
using only the standard one-state vector quantum-mechanical
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approach are still lacking. Assuming the above-mentioned
approach makes it possible to interpret the results from Ref. [5]
and verify their congruity with QM. Consequently, we would
manage to shed more light on the ongoing discussion regarding
the legitimacy of the experimental data and their interpretation.
In our opinion, this would be useful for describing experiments
similar to Ref. [5], clarifying the debate about the experiment.

In this paper, we present a relevant standard one-state vector
formalism and describe the evolution of the state vector as it
passes the MZI in the direction of the detector. We describe the
postselection process and derive the probabilities of detecting
at particular frequencies (that correspond to the vibrations of
the individual mirrors). The obtained results are compared with
the experimental data presented by Danan et al. [5]. Finally,
we use classical optics to describe the transverse profiles of
the light beams used in the experiment and we apply the
result to validate the one-state vector outcomes at the classical
limit. It is our intention to demonstrate that the experiment
can be readily interpreted using the formalism of annihilation
operators and one-state vector formalism and that there are, in
fact, no unexpected results.

II. QUANTUM APPROACH

A correct description of the experiment by Danan et al.
needs to consider all the photon modes present in the setup.
Apart from the spatial modes, additional modes are introduced
by vibrations of the mirrors (referred to as the “frequency
modes”). The modes must be taken into account, since they
differentiate, at least in principle, between the respective paths
of the photon. Our analysis uses the formalism of annihilation
operators and their transformations on beam splitters (BSs).
Spatial modes are labeled by the operators â, b̂, and ĉ, while
the frequency modes are marked by binary numbers. The
five frequency modes are introduced by the mirrors A, B,
C, E, or F. They are marked by consecutive binary indices
after the symbol naming the spatial mode. The index value
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FIG. 1. (Color online) Drawing of the experimental setup with
two nested Mach-Zender interferometers. (a) Power spectrum on
detector D shows all frequencies of mirror oscillations for the phase
ϕ = π , (b) power spectra for ϕ = 0, and (c) power spectrum for phase
ϕ = 0 and the lower path ĉ blocked, as predicted by our approach.

is either 0 or 1, indicating whether the mode frequency was
modulated by a corresponding mirror (1) or it was not (0).
So, for instance, if spatial mode â was frequency modulated
by mirrors A, E, and F, it would be indexed as â10011. These
frequency modes constitute a set of orthogonal modes making
the photons in principle distinguishable. The specific degree
of distinguishability of the photons in an experiment depends
on both the vibration amplitude and detection precision (e.g.,
transversal size of the beam in relation to the detector).
Quasiperfect distinguishability can be achieved using some
hypothetical frequency splitter that would convert these mirror
frequency modes to well-separated spatial modes.

At the beginning the photon is in the mode ĉ00000 (see the
setup depicted in Fig. 1). The first beam splitter (BS1) divides
the beam with an intensity ratio of 1:2. As a result, the spatial
mode gets transformed to

ĉ00000 → 1√
3
ĉ00000 +

√
2

3
ib̂00000. (1)

In the outer arm, the spatial mode ĉ interacts with the vibrating
mirror C, while the reflected mode b̂ comes into contact with
the mirror E. This is described by the transition

1√
3
ĉ00000 +

√
2

3
ib̂00000 → 1√

3
ĉ00100 +

√
2

3
ib̂00010. (2)

The spatial mode b̂ now enters the inner interferometer
formed by two balanced beam splitters. The first beam splitter,
BS2, transforms it to

b̂00010 → 1√
2
b̂00010 + 1√

2
iâ00010. (3)

The vibrating mirrors A and B then have the following effect:

1√
2

(b̂00010 + iâ00010) → 1√
2

(b̂01010 + iâ10010). (4)

The difference between the lengths of the upper and lower arms
of the inner interferometer introduces an additional phase shift
that can be attributed solely to the mode â:

â10010 → eiϕâ10010. (5)

The modes b̂ and â get recombined on the second beam
splitter of the inner interferometer, i.e., BS3. At this point we
disregard the outgoing mode â since only the mode b̂ can
further contribute to photon detection, hence

1√
2

(b̂01010 + ieiϕâ10010) → 1

2
(b̂01010 − eiϕb̂10010). (6)

The output mode of the inner interferometer, b̂, meets the last
vibrating mirror, F,

1
2 (b̂01010 − eiϕb̂10010) → 1

2 (b̂01011 − eiϕb̂10011). (7)

Finally, we recombine the modes ĉ and b̂ on the last unbalanced
beam splitter BS4 (identical to BS1). The final form of the
spatial mode ĉ, describing photons that reach detector D, is

1
3 (ĉ00100 − ĉ01011 + eiϕĉ10011). (8)

As in the case of the inner interferometer, we discard the
output mode b̂ that cannot lead to photon detection at the
detector D. We assume that the photons entering this setup are
single photons that can be described in terms of the creation
operator â†|0〉. The output state in the Fock basis then reads

|ψout〉 = 1
3 (â†

00100 − â
†
01011 + eiϕâ

†
10011)|0〉

= 1
3 (|1〉00100 − |1〉01011 + eiϕ|1〉10011). (9)

We use the same labeling for the annihilation operators and
frequency modes. Note that the authors of the experiment [5]
set the phase shift in the inner interferometer to ϕ = 0,π (see
Fig. 2 in Ref. [5]).

To explain the results of Ref. [5], it is crucial to correctly
describe the postselection process caused by photon detection
and the subsequent frequency mode analysis. When one
particular frequency mode is postselected, the information
about the photon being in a superposition of other frequency
modes is erased. The frequency modes are orthogonal, i.e., one
can perform a direct deterministic signal frequency analysis
to distinguish between the modes [12]. Thus, postselecting a
specific frequency mode makes the information about the other
frequency modes unavailable.

Postselection is a well-established technique in quantum
state engineering used, e.g., in optimal quantum cloning [13].
Here, the postselection on the photon that interacted with
mirror A is formally equivalent to the projection of the output
state onto the state

|�A〉 =
∑

A,B,C,E,F=0,1

δA,1|1〉ABCEF , (10)

where δA,1 is Kronecker’s delta. Postselection on any other
mode is also defined by Eq. (10), where A in Kronecker’s
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delta is replaced with a chosen mode, i.e., A ↔ X for X =
B,C,E,F . Now, one can immediately see from Eq. (9) that

|〈�A|ψout〉|2 = 1
9 , (11)

and, similarly,

|〈�B |ψout〉|2 = |〈�C |ψout〉|2 = 1
9 . (12)

The structure of the output state implies that postselecting
modes E and F yields the same results for both. For mode E
one obtains

〈�E|ψout〉 = 1
3 (−〈�E|1〉01011 + eiϕ〈�E|1〉10011)

= 2
3eiϕ/2 sin ϕ = 〈�F |ψout〉. (13)

Thus, for ϕ = 0, none of the frequency modes marked as E or
F will contribute to the final state. If the phase shift is set to ϕ =
π , both modes will appear as |〈�E|ψout〉|2 = |〈�F |ψout〉|2 =
4
9 .

Let us use the theoretical framework established above
to explain the experimental data in Ref. [5]. In case of
constructive interference [ϕ = π , see Fig. 1(a)], all frequencies
fX for X = A,B,C,E,F are present in the power spectrum
recorded by detector D. Intensities for frequencies fE and
fF are four times higher than others because of constructive
interference in the inner MZI. Destructive interference appears
for ϕ = 0 [see Fig. 1(b)] and it removes the peaks for
frequencies fE and fF from the power spectrum. The peaks for
frequencies fA and fB remain constant because postselecting
on mode A or B is equivalent to postselecting on a photon
traveling via the postselected arm of the inner MZI, so there is
no interference at the BS3.

The experimental results presented in Figs. 2(a) and 2(b) of
Ref. [5] agree with our theoretical predictions. If the photon
reflected from mirror C is blocked and the phase shift is
ϕ = 0 [see Fig. 1(c)], our theoretical prediction does not match
the experimental data from Ref. [5]. In this case we predict
that fA,fB should be constant (similarly to the previously
discussed cases). This is because it is possible to distinguish
between photons reflected from mirrors A and B. When
mode postselection (power spectrum analysis) is performed,
the interference on BS3 is effectively removed. Therefore, it
should be possible to observe the intensity peaks for fA and
fB . As we present below, the intensity peaks for fA and fB are
also predicted by the classical theory of light.

III. CLASSICAL APPROACH

The classical approach to deriving frequency-mode ampli-
tudes is based on the standard electromagnetic-wave theory
(see the Supplemental Material of Ref. [5]). We repeated this
classical procedure, but we did not keep track of the normal-
ization factors and took only those parts of the expressions
that were relevant. The amplitude of the electric field at the
detector D takes in general the form of

�(y,t) ∝ κe−(y−dC )2 − e−(y−dA−dE−dF )2

+eiϕe−(y−dB−dE−dF )2
,

where κ = 1 (κ = 0) when mode c is open (closed) and dX

are small shifts (small in comparison to the beamwidth) in

direction y oscillating with frequencies of the relevant mirror
labeled with X = A,B,C,E,F . The amplitude expressed
using the paraxial approximation reads

�(y,t) ∝ e−y2
[κ − 1 + eiϕ + 2κydC − 2ydA + eiϕ2ydB

+2y(eiϕ − 1)(dE + dF )]. (14)

Let us use Eq. (14) to calculate the intensities in all three
scenarios shown in Fig. 2 of Ref. [5]. In the first scenario (a),
there is constructive interference in the small MZI and mode
c is open, i.e., we set κ = 1 and ϕ = π . The associated field
amplitude reads

�a(y,t) ∝ e−y2
[1 + 2y(dA + dB − dC + 2dE + 2dF )]. (15)

The measurement performed by Danan et al. [5] consists of
evaluating the power spectrum of the function

	Ia(t) ≡
∫ ∞

0
|�a(y,t)|2dy −

∫ 0

−∞
|�a(y,t)|2dy. (16)

The Fourier transform of 	Ia(t) is 	Ia(f ) ∝ δ(f − fA) +
δ(f − fB) + δ(f − fC) + 2δ(f − fE) + 2δ(f − fF ). It pro-
vides five peaks in the associated power spectrum |	Ia(f )|2,
where peaks corresponding to frequencies fA,fB,fC have a
four times smaller area than peaks for fE,fF . Note that the
corresponding intensity difference ratios are 1:2 (in contrast
to our quantum model, which describes a sum of intensities).

In the second scenario (b), mode c is open (κ = 1) and there
is destructive interference in the small MZI (ϕ = 0). Thus, the
field amplitude

�b(y,t) ∝ e−y2
[1 + 2y (dC − dA + dB)] (17)

provides the power spectrum of |	Ia(f )|2 containing three
balanced peaks associated with mirrors A, B, and C (the same
result is provided by our quantum model).

In the third scenario (c), the mode c is blocked (κ = 0) and
ϕ = 0. The amplitude

�c(y,t) ∝ 2ye−y2
(dA − dB) (18)

in this case provides intensity |�c(y,t)|2 that is an even
function of y, hence 	Ic = 0. Therefore, no peaks are
observed by Danan et al. [5]. On the other hand, it follows from
Eq. (18) that the amplitude and the resulting intensity oscillates
with frequencies fA and fB . It means that these quantities
include the information about the photons impinging on the
mirrors A and B. However, the specific quantity measured by
Danan et al. [5] ignores this information. This leads us to
conclude that 	I is not a reliable which-path witness because
it ignores some of the available information.

In order to use the available information to its fullest extent
we propose to use the spectrum of the overall intensity

IT (f ) ≡
∫ ∞

−∞
|�(y,f )|2dy,

where �(y,f ) is a Fourier transform of the field �(y,t) [the
parameters of which can be established from the setup configu-
ration and I (t) measurements]. This quantity is a more reliable
which-path witness and it corresponds to our quantum model.
Note that IT does not vanish for even |�(y,f )|2 (in contrast
to 	I ). The total intensity IT (f ) contains contributions from
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the respective mirror frequencies. The weights associated with
the specific mirrors can be calculated as w(fX) = IT (fX)df ,
where fX stands for the respective mirror frequencies. This
approach produces exactly the same results as obtained by the
previously mentioned quantum approach. In scenario (a), the
intensity IT (f ) provides the weights w(fX) of the five peaks
that have the 1:4 ratio. In scenario (c), IT (f ) does not hide the
which-path information encoded in the presence of frequency
peaks corresponding to mirrors A and B (see Fig. 1).

IV. CONCLUSIONS

In this paper, we described the spectra at the output port of
nested MZI with vibrating mirrors applying both quantum and
classical theories of light. The quantum approach employed
the standard formalism of annihilation operators and one-state
vectors in Fock’s basis. The time-dependent transverse profiles
of beams were described classically and used in the analysis
of the spectrum of the electric field. Using the classical
approach, we have explained the results observed by Danan
et al. [5] and established that the quantity they used is not a
reliable which-path witness. We therefore propose to acquire

a spectrum of the overall intensity instead and show that it
produces well the expected results that can be described both
classically and in a quantum way. While we still believe that
the TSVF can be adopted to interpret experiments of this kind,
we have demonstrated that (i) it can be replaced by the standard
formalism of annihilation operators and (ii) rigorous care must
be exercised to correctly take into account all the modes present
(both spatial and vibration frequency).

ACKNOWLEDGMENTS
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